Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOX-based p-type thin-film transistor

•A p-type metal oxide semiconductor-based TFT-type gas sensor was studied for the first time by using SnOX for both the channel and sensing layers.•The fabricated SnOX TFT gas sensor showed a maximum response value of 19.4–10 ppm NO2 at room temperature (RT).•This maximum response value is significa...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 288; pp. 625 - 633
Main Authors Jeong, Hwan-Seok, Park, Min-Jae, Kwon, Soo-Hun, Joo, Hyo-Jun, Kwon, Hyuck-In
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.06.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A p-type metal oxide semiconductor-based TFT-type gas sensor was studied for the first time by using SnOX for both the channel and sensing layers.•The fabricated SnOX TFT gas sensor showed a maximum response value of 19.4–10 ppm NO2 at room temperature (RT).•This maximum response value is significantly higher than the maximum response values of previously reported p-type MOS-based NO2 sensors.•The importance of this work is in the successful fabrication of highly selective and sensitive p-type NO2 gas sensor at RT via RF sputtering process. The high-performance p-type metal-oxide-semiconductor (MOS)-based gas sensor is an important subject of research in the field of gas-sensing technology. In this work, we demonstrated a p-type MOS-based thin-film transistor (TFT) nitrogen dioxide (NO2) gas sensor that used tin oxide (SnOX) for both the channel and sensing layers. The crystalline status, surface morphology, and atomic-bonding configuration of the thin-film were examined using X-ray diffraction, field emission-scanning electron microscopy, and X-ray photoelectron spectroscopy. The results indicated that the deposited thin-film was mainly composed of polycrystalline SnO with a tetragonal structure. The fabricated p-type SnOX TFT showed a maximum response value of 19.4-10 ppm NO2 at room temperature (RT, 25 °C) when operated in the subthreshold region, which was significantly higher than that of 2.8–10 ppm NO2 obtained from a p-type SnOX thin-film chemiresistor at RT. In addition, the SnOX TFT gas sensor showed significantly higher sensitivity to NO2 gas than to other target gases such as NH3, H2S, CO2, and CO at RT. To the best of our knowledge, this is the first study to a p-type MOS-based field-effect transistor-type gas sensor. Our experimental results demonstrate that the p-type SnOX TFT is a promising gas sensor that can operate at RT with high sensitivity and selectivity to NO2 gas.
AbstractList The high-performance p-type metal-oxide-semiconductor (MOS)-based gas sensor is an important subject of research in the field of gas-sensing technology. In this work, we demonstrated a p-type MOS-based thin-film transistor (TFT) nitrogen dioxide (NO2) gas sensor that used tin oxide (SnOX) for both the channel and sensing layers. The crystalline status, surface morphology, and atomic-bonding configuration of the thin-film were examined using X-ray diffraction, field emission-scanning electron microscopy, and X-ray photoelectron spectroscopy. The results indicated that the deposited thin-film was mainly composed of polycrystalline SnO with a tetragonal structure. The fabricated p-type SnOX TFT showed a maximum response value of 19.4-10 ppm NO2 at room temperature (RT, 25 °C) when operated in the subthreshold region, which was significantly higher than that of 2.8–10 ppm NO2 obtained from a p-type SnOX thin-film chemiresistor at RT. In addition, the SnOX TFT gas sensor showed significantly higher sensitivity to NO2 gas than to other target gases such as NH3, H2S, CO2, and CO at RT. To the best of our knowledge, this is the first study to a p-type MOS-based field-effect transistor-type gas sensor. Our experimental results demonstrate that the p-type SnOX TFT is a promising gas sensor that can operate at RT with high sensitivity and selectivity to NO2 gas.
•A p-type metal oxide semiconductor-based TFT-type gas sensor was studied for the first time by using SnOX for both the channel and sensing layers.•The fabricated SnOX TFT gas sensor showed a maximum response value of 19.4–10 ppm NO2 at room temperature (RT).•This maximum response value is significantly higher than the maximum response values of previously reported p-type MOS-based NO2 sensors.•The importance of this work is in the successful fabrication of highly selective and sensitive p-type NO2 gas sensor at RT via RF sputtering process. The high-performance p-type metal-oxide-semiconductor (MOS)-based gas sensor is an important subject of research in the field of gas-sensing technology. In this work, we demonstrated a p-type MOS-based thin-film transistor (TFT) nitrogen dioxide (NO2) gas sensor that used tin oxide (SnOX) for both the channel and sensing layers. The crystalline status, surface morphology, and atomic-bonding configuration of the thin-film were examined using X-ray diffraction, field emission-scanning electron microscopy, and X-ray photoelectron spectroscopy. The results indicated that the deposited thin-film was mainly composed of polycrystalline SnO with a tetragonal structure. The fabricated p-type SnOX TFT showed a maximum response value of 19.4-10 ppm NO2 at room temperature (RT, 25 °C) when operated in the subthreshold region, which was significantly higher than that of 2.8–10 ppm NO2 obtained from a p-type SnOX thin-film chemiresistor at RT. In addition, the SnOX TFT gas sensor showed significantly higher sensitivity to NO2 gas than to other target gases such as NH3, H2S, CO2, and CO at RT. To the best of our knowledge, this is the first study to a p-type MOS-based field-effect transistor-type gas sensor. Our experimental results demonstrate that the p-type SnOX TFT is a promising gas sensor that can operate at RT with high sensitivity and selectivity to NO2 gas.
Author Kwon, Soo-Hun
Jeong, Hwan-Seok
Park, Min-Jae
Kwon, Hyuck-In
Joo, Hyo-Jun
Author_xml – sequence: 1
  givenname: Hwan-Seok
  surname: Jeong
  fullname: Jeong, Hwan-Seok
– sequence: 2
  givenname: Min-Jae
  surname: Park
  fullname: Park, Min-Jae
– sequence: 3
  givenname: Soo-Hun
  surname: Kwon
  fullname: Kwon, Soo-Hun
– sequence: 4
  givenname: Hyo-Jun
  surname: Joo
  fullname: Joo, Hyo-Jun
– sequence: 5
  givenname: Hyuck-In
  surname: Kwon
  fullname: Kwon, Hyuck-In
  email: hyuckin@cau.ac.kr
BookMark eNp9kE1rGzEQhkVIIE7SH9CboGdtR9J-mZ5KaJNCqA9toTcxq521ZdbSVpID_vdV4p56yGl44X1mmOeGXfrgibH3EioJsv24r5IfKgVyXYGuoG4v2Er2nRYauu6SrWCtGlEDNNfsJqU9ANS6hRU7Pbrtbj7xRD657J6Jox9Lmsm-phjCQWQ6LBQxHyPx7xvFt5jEK-C33O4wos0UXcrOJh4m_sNvfosBE418Efm0EM8758Xk5gPPEQuXcoh37GrCOdG7f_OW_fr65ef9o3jaPHy7__wkrG5VFtR0NUm9niQ2NY5Tvcam6ftJSTvqAWrEqYEWwfaD7lDbVrcDkOo1DMVLZ_Ut-3Deu8Tw50gpm304Rl9OGqWU7EFKgNKS55aNIaVIk1miO2A8GQnmxbDZm2LYvBg2oE0xXJjuP8a6jNkFX75085vkpzNJ5fFnR9Ek68hbGl0s4s0Y3Bv0X6OGmYo
CitedBy_id crossref_primary_10_1016_j_micrna_2024_207830
crossref_primary_10_1039_C9TC06614D
crossref_primary_10_1088_1361_6528_ad3a6c
crossref_primary_10_1016_j_snb_2023_133341
crossref_primary_10_1016_j_ceramint_2022_11_010
crossref_primary_10_3390_micro4030025
crossref_primary_10_1039_D1TC04618G
crossref_primary_10_1039_D4TC03313B
crossref_primary_10_3390_ma12193248
crossref_primary_10_3390_nano13172391
crossref_primary_10_1016_j_snb_2020_129230
crossref_primary_10_3390_ma15144781
crossref_primary_10_1016_j_ijhydene_2025_01_466
crossref_primary_10_1016_j_mssp_2022_106927
crossref_primary_10_1016_j_snb_2021_131049
crossref_primary_10_1016_j_snb_2024_136498
crossref_primary_10_1109_JSEN_2023_3309413
crossref_primary_10_1016_j_surfin_2022_102560
crossref_primary_10_1016_j_matchemphys_2023_128776
crossref_primary_10_1021_acsami_9b19971
crossref_primary_10_1039_D2SD00175F
crossref_primary_10_1007_s42341_022_00381_0
crossref_primary_10_1016_j_snb_2020_128676
crossref_primary_10_1007_s12274_020_3232_8
crossref_primary_10_1016_j_snb_2022_131398
crossref_primary_10_1016_j_jallcom_2023_170062
crossref_primary_10_1021_acsanm_3c01059
crossref_primary_10_1016_j_snb_2020_127954
crossref_primary_10_1016_j_tsf_2024_140441
crossref_primary_10_1021_acsami_0c12259
crossref_primary_10_1002_aelm_202400499
crossref_primary_10_1088_2632_959X_ac3636
crossref_primary_10_1088_1361_6528_ac1f54
crossref_primary_10_1109_LED_2019_2936887
crossref_primary_10_3390_mi11100917
crossref_primary_10_1016_j_aca_2021_338575
crossref_primary_10_1016_j_snb_2021_130058
crossref_primary_10_3390_electronics13101947
crossref_primary_10_1088_1361_6528_ac512d
crossref_primary_10_1007_s11051_024_06058_4
crossref_primary_10_1021_acsami_9b13773
crossref_primary_10_1007_s10854_021_05494_5
crossref_primary_10_3390_chemosensors10090349
crossref_primary_10_1016_j_bios_2019_111606
crossref_primary_10_1039_D0TA08190F
crossref_primary_10_1002_adfm_202102439
crossref_primary_10_1021_acsami_0c18549
crossref_primary_10_1016_j_matpr_2022_03_111
crossref_primary_10_1016_j_talanta_2024_127495
crossref_primary_10_1002_adma_202006091
crossref_primary_10_1007_s11664_022_09485_y
crossref_primary_10_1002_adfm_202209969
crossref_primary_10_1021_acsanm_4c00259
crossref_primary_10_1021_acsaelm_1c00841
Cites_doi 10.1016/j.snb.2012.04.050
10.1016/j.snb.2012.06.057
10.1016/j.ceramint.2016.10.138
10.1016/j.snb.2018.01.143
10.1016/j.snb.2015.04.057
10.1021/acsami.5b04541
10.1016/j.snb.2015.09.114
10.1021/j100330a017
10.1021/acsami.5b03059
10.1149/1.2428003
10.1016/j.snb.2011.02.033
10.1021/acsami.7b18657
10.1063/1.3469939
10.1007/s10854-017-8190-x
10.1016/j.snb.2017.08.025
10.1016/j.snb.2018.05.093
10.1021/acsami.5b09496
10.1016/j.cplett.2014.09.028
10.1016/j.snb.2013.05.050
10.1016/j.snb.2015.10.041
10.1039/C5CP01987G
10.1016/j.snb.2018.02.117
10.1002/adma.201101410
10.1016/j.ceramint.2015.01.098
10.1016/j.sna.2017.07.026
10.1016/j.ceramint.2018.06.189
10.1016/j.snb.2017.09.094
10.3390/s18020358
10.1016/j.snb.2017.10.044
10.1039/c2jm30378g
10.1016/j.snb.2018.08.129
10.1016/j.snb.2014.07.074
10.1016/j.mseb.2017.12.036
10.1016/j.snb.2016.04.010
10.1039/C8TA04404J
10.1016/j.snb.2013.11.005
10.1088/1361-6641/aa72b8
10.1016/j.snb.2015.07.070
10.1016/j.snb.2016.12.125
10.1016/j.ceramint.2017.02.135
10.1016/j.ceramint.2018.10.022
10.1039/C6RA08726D
10.1021/am3016894
10.1016/j.snb.2014.11.065
10.1021/acsami.5b02964
10.1016/j.snb.2017.11.132
10.1109/LED.2017.2758349
10.1016/j.apsusc.2014.11.115
10.1038/srep36183
10.1039/C6CP07799D
10.1021/acsami.5b12553
10.1016/j.snb.2018.10.002
10.1016/j.snb.2018.02.105
10.1016/j.snb.2016.12.062
10.1016/j.ceramint.2017.03.179
10.1016/j.snb.2004.02.017
10.1063/1.4960459
10.1016/j.snb.2015.05.047
10.1021/acs.jpcc.5b04940
10.1016/j.tsf.2017.01.032
10.1016/j.ceramint.2014.03.080
10.1016/j.ceramint.2017.09.243
10.1021/am402542j
10.1063/1.4955124
10.1109/TED.2017.2679239
10.1016/j.snb.2010.10.046
10.1016/j.snb.2015.12.105
10.1021/acsami.7b04395
10.1016/j.snb.2018.09.074
10.1016/j.snb.2011.08.017
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Jun 1, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jun 1, 2019
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2019.03.046
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
EndPage 633
ExternalDocumentID 10_1016_j_snb_2019_03_046
S0925400519303934
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SCH
SEW
SSH
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c362t-e574e139f1a54adf49a5588f21cd3b04aaf506a0c8b37a3c636b0e2830b0167c3
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Fri Jul 25 08:02:25 EDT 2025
Thu Apr 24 23:02:41 EDT 2025
Tue Jul 01 01:27:28 EDT 2025
Fri Feb 23 02:31:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NO2 gas sensing
SnOX
SnO
Thin-film transistor
P-type metal oxide semiconductor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-e574e139f1a54adf49a5588f21cd3b04aaf506a0c8b37a3c636b0e2830b0167c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2221801100
PQPubID 2047454
PageCount 9
ParticipantIDs proquest_journals_2221801100
crossref_primary_10_1016_j_snb_2019_03_046
crossref_citationtrail_10_1016_j_snb_2019_03_046
elsevier_sciencedirect_doi_10_1016_j_snb_2019_03_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Navale, Navale, Stadler, Ramgir, Debnath, Gadkari, Gupta, Aswal, Patil (bib0095) 2017; 43
Hoa, Tien, Luan, Chung, Hur (bib0240) 2013; 185
Cho, Yoon, Lim, Kim, Kim, Park, Kwon, Lee, Lee, Lee, Ko, Hahm (bib0330) 2015; 7
Achary, Kumar, Barik, Nayak, Tripathy, Kar, Dash (bib0015) 2018; 272
(bib0020) 2019
Zhang, Zeng, Zhao, Wu, Xu, Zhu (bib0320) 2015; 17
Hong, Kim, Shin, Kim, Kim, Hwang, Lee (bib0060) 2016; 232
Kim, Ahn, Jung, Cho, Cho (bib0070) 2018; 10
Gönüllü, Haidry, Saruhan (bib0115) 2015; 217
Hubner, Simion, Tomescu-Stanoiu, Pokhrela, Barsan, Weimar (bib0170) 2011; 153
Zhang, Kong, Yang, Li, Wilson, Liu, Xin, Wang, Song (bib0280) 2016; 108
Zhang, Qin, Zeng, Xie (bib0045) 2017; 19
Zhang, Hu, Tian, Qin, Zeng, Xie (bib0310) 2018; 256
Yun, Seo, Lee, Yoon (bib0080) 2017; 64
Wang, Zhang, Zhou, Lou, Deng, Zhang (bib0190) 2016; 223
Fortunato, Barros, Barquinha, Figueiredo, Park, Hwang, Martins (bib0215) 2010; 97
Nomura, Kamiya, Hosono (bib0205) 2011; 23
Azmi, Lee, Gim, Choi, Jeong (bib0235) 2017; 38
Kim, Lee (bib0185) 2014; 192
Gu, Li, Zhao, Wang (bib0105) 2017; 244
Cheon, Cho, Kim, Chung (bib0065) 2018; 7
Lee, Park, Kim, Lee, Park, Chang, Jin, Sohn, Heo, Lee (bib0145) 2015; 216
Hu, Zou, Su, Li, Han, Kong, Yang, Zhang (bib0370) 2018; 6
Zhao, Shen, Zhou, Zhang, Zhang, Chen, Wei, Fang, Shen (bib0195) 2018; 44
Dong, Liu (bib0285) 2018; 29
Dey (bib0050) 2018; 229
Sharma, Tomar, Gupta (bib0110) 2011; 156
Han, Kim, Ahn, Jeong, Yan, Kim (bib0255) 2016; 6
Zhou, Liu, Zhu, Guo (bib0090) 2017; 43
Al-Jawhari, Caraveo-Frescas, Hedhili, Alshareef (bib0225) 2013; 5
Liang, Liu, Cao, Yu, Shi, Chen, Zhang, Fang, Sun (bib0275) 2010; 157
Shin, Jong, Wu, Bae, Kwon, Park, Lee (bib0335) 2018; 258
Sutka, Kodu, Pärna, Saar, Juhnevica, Jaaniso, Kisand (bib0175) 2016; 224
Jie, Zeng, Zhang, Xub, Wu, Zhu, Xie (bib0300) 2015; 220
Jiang, Chiu, Kao, He, Wu, Yang, Hsu, Cheng, Chen (bib0245) 2015; 327
Zhang, Wu, Wang, Zeng, Xie (bib0305) 2017; 243
Hien, Heo (bib0055) 2016; 228
Chatterjee, Chatterjee, Ray, Chakraborty (bib0010) 2015; 221
Miller, Akbar, Morris (bib0290) 2014; 204
Ling, Leach (bib0350) 2004; 102
Li, Xin, Du, Qu, Li, Kong, Wang, Song (bib0260) 2016; 6
Xie, Xie, Zhou, Huang, Wu, Jiang, Tai (bib0325) 2014; 614
Wang, Su, Chen, Li, Shi, Zou, Zou (bib0140) 2017; 9
Tonezzer, Dang, Tran, Iannotta (bib0025) 2018; 255
Gao, Zhang (bib0005) 2018; 277
Navale, Navale, Stadler, Ramgir, Patil (bib0085) 2019; 45
Gönüllü, Rodriguez, Saruhan, Urgen (bib0120) 2012; 169
Luo, Liang, Cao, Dai, Lu, Wang (bib0230) 2015; 7
Zhuang, Han, Huai, Shi, Yu (bib0100) 2019; 279
Zhang, Cheng, Liu, Gao, Zhao, Li, Wang, Liu, Liang, Zhang, Lu (bib0365) 2018; 263
Bae, Kwon, Jeong, Kwon (bib0265) 2017; 32
Wang, Gao, Wu, Kan, Xu, Xie, Li, Shi (bib0135) 2015; 7
Zhang, Liu, Cheng, Gao, Zhao, Li, Liu, Yan, Zhang, Sun, Lu (bib0360) 2018; 261
Lee, Kang, Pak, Lim, Lee, Kumaresan, Lee, Lee, Ham, Jung (bib0040) 2018; 255
Yang, Whitfield, Cho, Cho, Kim, Saltsburg, Tuller (bib0160) 2012; 171–172
Lin, Fan, Tsai (bib0210) 2017; 43
Kotresh, Ravikiran, Vijaya Kumari, Ramana, Batoo (bib0345) 2017; 263
Kim, Ahn, Kang, Cho, Jung, Yoon, Cho (bib0075) 2017; 10
Zhang, Zeng, Zhu, Wu, Xu, Liao, Zhang, Xie (bib0180) 2015; 119
Boggs, Trozzo, Pellissier (bib0250) 1961; 108
Knobelspies, Bierer, Daus, Takabayashi, Salvatore, Cantarella, Perez, Wöllenstein, Palzer, Tröster (bib0165) 2018; 18
Wang, Liu, Wang, Song, Zhou, Han, Chen (bib0030) 2019; 278
Chang, Lin, Chen, Hsu (bib0125) 2014; 40
Mao, Cui, Lu, Yu, Wen, Chen (bib0315) 2012; 22
Wang, Nisar, Ahuja (bib0200) 2012; 4
Hwang, Kim, Lee, Seo, Lee, Cho (bib0220) 2011
Miller, Akbar, Morris (bib0035) 2014; 204
Jeong, Park, Kwon, Joo, Song, Kwon (bib0295) 2018; 44
Cho, Kim (bib0155) 2011; 160
Nguyen, Nguyen, Choi, Han, Kim, Choi (bib0270) 2017; 641
Madhin, Bouzid, Saadoun, Bessaïs (bib0150) 2015; 41
Ervin, Ho, Lineberger (bib0375) 1988; 92
Park, Cho, Kang, Park, Lee (bib0340) 2016; 109
Wang, Men, Zhang, Gu, Han (bib0355) 2018; 263
Wang, Li, Xi, Komarneni, Chen, Xu, Xiang, Xie (bib0130) 2016; 8
Gönüllü (10.1016/j.snb.2019.03.046_bib0120) 2012; 169
Miller (10.1016/j.snb.2019.03.046_bib0290) 2014; 204
Chang (10.1016/j.snb.2019.03.046_bib0125) 2014; 40
Zhao (10.1016/j.snb.2019.03.046_bib0195) 2018; 44
Park (10.1016/j.snb.2019.03.046_bib0340) 2016; 109
Kim (10.1016/j.snb.2019.03.046_bib0185) 2014; 192
Madhin (10.1016/j.snb.2019.03.046_bib0150) 2015; 41
Mao (10.1016/j.snb.2019.03.046_bib0315) 2012; 22
Chatterjee (10.1016/j.snb.2019.03.046_bib0010) 2015; 221
Wang (10.1016/j.snb.2019.03.046_bib0140) 2017; 9
Fortunato (10.1016/j.snb.2019.03.046_bib0215) 2010; 97
Zhou (10.1016/j.snb.2019.03.046_bib0090) 2017; 43
Wang (10.1016/j.snb.2019.03.046_bib0135) 2015; 7
Navale (10.1016/j.snb.2019.03.046_bib0095) 2017; 43
Zhang (10.1016/j.snb.2019.03.046_bib0305) 2017; 243
Nguyen (10.1016/j.snb.2019.03.046_bib0270) 2017; 641
Kim (10.1016/j.snb.2019.03.046_bib0075) 2017; 10
Miller (10.1016/j.snb.2019.03.046_bib0035) 2014; 204
Jiang (10.1016/j.snb.2019.03.046_bib0245) 2015; 327
Cheon (10.1016/j.snb.2019.03.046_bib0065) 2018; 7
Hien (10.1016/j.snb.2019.03.046_bib0055) 2016; 228
Azmi (10.1016/j.snb.2019.03.046_bib0235) 2017; 38
Jeong (10.1016/j.snb.2019.03.046_bib0295) 2018; 44
Luo (10.1016/j.snb.2019.03.046_bib0230) 2015; 7
Sharma (10.1016/j.snb.2019.03.046_bib0110) 2011; 156
Wang (10.1016/j.snb.2019.03.046_bib0030) 2019; 278
Hoa (10.1016/j.snb.2019.03.046_bib0240) 2013; 185
Boggs (10.1016/j.snb.2019.03.046_bib0250) 1961; 108
Hu (10.1016/j.snb.2019.03.046_bib0370) 2018; 6
Zhang (10.1016/j.snb.2019.03.046_bib0365) 2018; 263
Dey (10.1016/j.snb.2019.03.046_bib0050) 2018; 229
Wang (10.1016/j.snb.2019.03.046_bib0355) 2018; 263
Sutka (10.1016/j.snb.2019.03.046_bib0175) 2016; 224
Zhuang (10.1016/j.snb.2019.03.046_bib0100) 2019; 279
Zhang (10.1016/j.snb.2019.03.046_bib0180) 2015; 119
Yun (10.1016/j.snb.2019.03.046_bib0080) 2017; 64
Gao (10.1016/j.snb.2019.03.046_bib0005) 2018; 277
Gu (10.1016/j.snb.2019.03.046_bib0105) 2017; 244
Al-Jawhari (10.1016/j.snb.2019.03.046_bib0225) 2013; 5
Nomura (10.1016/j.snb.2019.03.046_bib0205) 2011; 23
Dong (10.1016/j.snb.2019.03.046_bib0285) 2018; 29
Ling (10.1016/j.snb.2019.03.046_bib0350) 2004; 102
Hwang (10.1016/j.snb.2019.03.046_bib0220) 2011
Lee (10.1016/j.snb.2019.03.046_bib0040) 2018; 255
Hong (10.1016/j.snb.2019.03.046_bib0060) 2016; 232
Li (10.1016/j.snb.2019.03.046_bib0260) 2016; 6
Wang (10.1016/j.snb.2019.03.046_bib0130) 2016; 8
Zhang (10.1016/j.snb.2019.03.046_bib0280) 2016; 108
Yang (10.1016/j.snb.2019.03.046_bib0160) 2012; 171–172
Liang (10.1016/j.snb.2019.03.046_bib0275) 2010; 157
Zhang (10.1016/j.snb.2019.03.046_bib0360) 2018; 261
Zhang (10.1016/j.snb.2019.03.046_bib0310) 2018; 256
Gönüllü (10.1016/j.snb.2019.03.046_bib0115) 2015; 217
Wang (10.1016/j.snb.2019.03.046_bib0190) 2016; 223
Kotresh (10.1016/j.snb.2019.03.046_bib0345) 2017; 263
Knobelspies (10.1016/j.snb.2019.03.046_bib0165) 2018; 18
Xie (10.1016/j.snb.2019.03.046_bib0325) 2014; 614
Lin (10.1016/j.snb.2019.03.046_bib0210) 2017; 43
Jie (10.1016/j.snb.2019.03.046_bib0300) 2015; 220
Zhang (10.1016/j.snb.2019.03.046_bib0320) 2015; 17
Bae (10.1016/j.snb.2019.03.046_bib0265) 2017; 32
Wang (10.1016/j.snb.2019.03.046_bib0200) 2012; 4
Lee (10.1016/j.snb.2019.03.046_bib0145) 2015; 216
Tonezzer (10.1016/j.snb.2019.03.046_bib0025) 2018; 255
Navale (10.1016/j.snb.2019.03.046_bib0085) 2019; 45
Achary (10.1016/j.snb.2019.03.046_bib0015) 2018; 272
(10.1016/j.snb.2019.03.046_bib0020) 2019
Cho (10.1016/j.snb.2019.03.046_bib0155) 2011; 160
Kim (10.1016/j.snb.2019.03.046_bib0070) 2018; 10
Hubner (10.1016/j.snb.2019.03.046_bib0170) 2011; 153
Shin (10.1016/j.snb.2019.03.046_bib0335) 2018; 258
Cho (10.1016/j.snb.2019.03.046_bib0330) 2015; 7
Ervin (10.1016/j.snb.2019.03.046_bib0375) 1988; 92
Zhang (10.1016/j.snb.2019.03.046_bib0045) 2017; 19
Han (10.1016/j.snb.2019.03.046_bib0255) 2016; 6
References_xml – volume: 44
  start-page: 17283
  year: 2018
  end-page: 17289
  ident: bib0295
  article-title: Low temperature NO
  publication-title: Ceram. Int.
– volume: 44
  start-page: 753
  year: 2018
  end-page: 759
  ident: bib0195
  article-title: Highly selective NO
  publication-title: Ceram. Int.
– volume: 10
  start-page: 10185
  year: 2018
  end-page: 10193
  ident: bib0070
  article-title: Toward adequate operation of amorphous oxide thin-film transistors for low-concentration gas detection
  publication-title: ACS Appl. Mater. Interfaces
– volume: 108
  start-page: 13
  year: 1961
  end-page: 24
  ident: bib0250
  article-title: The oxidation of tin
  publication-title: J. Electrochem. Soc.
– volume: 258
  start-page: 574
  year: 2018
  end-page: 579
  ident: bib0335
  article-title: An accurate and stable humidity sensing characteristic of Si FET-type humidity sensor with MoS
  publication-title: Sens. Actuators B Chem.
– volume: 229
  start-page: 206
  year: 2018
  end-page: 217
  ident: bib0050
  article-title: Semiconductor metal oxide gas sensors: a review
  publication-title: Mater. Sci. Eng. B
– volume: 160
  start-page: 499
  year: 2011
  end-page: 504
  ident: bib0155
  article-title: NO
  publication-title: Sens. Actuators B Chem.
– volume: 641
  start-page: 24
  year: 2017
  end-page: 27
  ident: bib0270
  article-title: Electrical performance enhancement of p-type tin oxide channel thin film transistor using aluminum doping
  publication-title: Thin Solid Films
– volume: 10
  year: 2017
  ident: bib0075
  article-title: An all oxide-based imperceptible thin-film transistor with humidity sensing properties
  publication-title: Materials
– volume: 156
  start-page: 743
  year: 2011
  end-page: 752
  ident: bib0110
  article-title: SnO
  publication-title: Sens. Actuators B Chem.
– volume: 64
  start-page: 2350
  year: 2017
  end-page: 2356
  ident: bib0080
  article-title: Improvement in sensing responses to ammonia gas for gas sensors with separately designed sensing element using ALD- grown ZnO nanoparticles and read-out element of top-gate In-Ga-Zn-O thin-film transistor
  publication-title: IEEE Trans. Electron Device
– volume: 171–172
  start-page: 1166
  year: 2012
  end-page: 1171
  ident: bib0160
  article-title: Amorphous InGaZnO
  publication-title: Sens. Actuators B Chem.
– volume: 19
  start-page: 6313
  year: 2017
  end-page: 6329
  ident: bib0045
  article-title: Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration
  publication-title: Phys. Chem. Chem. Phys.
– volume: 43
  start-page: 7057
  year: 2017
  end-page: 7064
  ident: bib0095
  article-title: Thermally evaporated copper oxide films: a view of annealing effect on physical and gas sensing properties
  publication-title: Ceram. Int.
– volume: 169
  start-page: 151
  year: 2012
  end-page: 160
  ident: bib0120
  article-title: Improvement of gas sensing performance of TiO
  publication-title: Sens. Actuators B Chem.
– volume: 43
  start-page: 8372
  year: 2017
  end-page: 8377
  ident: bib0090
  article-title: Cu
  publication-title: Ceram. Int.
– volume: 263
  start-page: 687
  year: 2017
  end-page: 692
  ident: bib0345
  article-title: Solution based–spin cast processed LPG sensor at room temperature
  publication-title: Sens. Actuators A Phys.
– volume: 108
  start-page: 263503
  year: 2016
  ident: bib0280
  article-title: Analysis of carrier transport and band tail states in p-type tin monoxide thin-film transistors by temperature dependent characteristics
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 075006
  year: 2017
  ident: bib0265
  article-title: Demonstration of high-performance p-type tin oxide thin-film transistors using argon plasma surface treatments
  publication-title: Semicond. Sci. Technol.
– volume: 279
  start-page: 238
  year: 2019
  end-page: 244
  ident: bib0100
  article-title: Sub-ppm and high response organic thin-film transistor NO
  publication-title: Sens. Actuators B Chem.
– volume: 18
  year: 2018
  ident: bib0165
  article-title: Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil
  publication-title: Sensors
– volume: 256
  start-page: 1001
  year: 2018
  end-page: 1010
  ident: bib0310
  article-title: CuInS
  publication-title: Sens. Actuators B Chem.
– volume: 217
  start-page: 78
  year: 2015
  end-page: 87
  ident: bib0115
  article-title: Nanotubular Cr-doped TiO
  publication-title: Sens. Actuators B Chem.
– volume: 6
  start-page: 17120
  year: 2018
  end-page: 17131
  ident: bib0370
  article-title: An ultrasensitive NO
  publication-title: J. Mater. Chem.
– start-page: 1
  year: 2011
  end-page: 4
  ident: bib0220
  article-title: Irregular electrical conduction types in tin oxide thin films induced by nanoscale phase separation
  publication-title: J. Am. Ceram. Soc.
– volume: 22
  start-page: 11009
  year: 2012
  end-page: 11013
  ident: bib0315
  article-title: Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 5691
  year: 2012
  end-page: 5697
  ident: bib0200
  article-title: Molecular simulation for gas adsorption at NiO (100) surface
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 10867
  year: 2014
  end-page: 10875
  ident: bib0125
  article-title: Ce-doped ZnO nanorods based low operation temperature NO
  publication-title: Ceram. Int.
– volume: 43
  start-page: 1802
  year: 2017
  end-page: 1808
  ident: bib0210
  article-title: Effects of annealing on wettability and physical properties of SnO thin films deposited at low RF power densities
  publication-title: Ceram. Int.
– volume: 6
  start-page: 36183
  year: 2016
  ident: bib0260
  article-title: Extremely sensitive dependence of SnO
  publication-title: Sci. Rep.
– volume: 5
  start-page: 9615
  year: 2013
  end-page: 9619
  ident: bib0225
  article-title: P-Type Cu
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 17930
  year: 2015
  end-page: 17939
  ident: bib0180
  article-title: Effect of grain boundaries in NiO nanosheet layers room-temperature sensing mechanism under NO
  publication-title: J. Phys. Chem. C
– volume: 327
  start-page: 358
  year: 2015
  end-page: 363
  ident: bib0245
  article-title: Influence of rapid-thermal-annealing temperature on properties of rf sputtered SnO
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 8600
  year: 2016
  end-page: 8607
  ident: bib0130
  article-title: Hierarchical ZnO nanosheet-nanorod architectures for fabrication of poly(3-hexylthiophene)/ZnO hybrid NO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 224
  start-page: 260
  year: 2016
  end-page: 265
  ident: bib0175
  article-title: Orthorhombic CaFe
  publication-title: Sens. Actuators B Chem.
– volume: 277
  start-page: 604
  year: 2018
  end-page: 633
  ident: bib0005
  article-title: An overview: facet-dependent metal oxide semiconductor gas sensors
  publication-title: Sens. Actuators B Chem.
– volume: 216
  start-page: 482
  year: 2015
  end-page: 487
  ident: bib0145
  article-title: Highly selective ppb-level detection of NH
  publication-title: Sens. Actuators B Chem.
– volume: 272
  start-page: 100
  year: 2018
  end-page: 109
  ident: bib0015
  article-title: Reduced graphene oxide-CuFe
  publication-title: Sens. Actuators B Chem.
– volume: 17
  start-page: 14903
  year: 2015
  end-page: 14911
  ident: bib0320
  article-title: Room temperature NO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 14004
  year: 2018
  end-page: 14010
  ident: bib0065
  article-title: Thin film transistor gas sensors incorporating high-mobility diketopyrrolopyrole-based polymeric semiconductor doped with graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 223
  start-page: 311
  year: 2016
  end-page: 317
  ident: bib0190
  article-title: Concave Cu
  publication-title: Sens. Actuators B Chem.
– volume: 153
  start-page: 347
  year: 2011
  end-page: 353
  ident: bib0170
  article-title: Influence of humidity on CO sensing with p-type CuO thick film gas sensors
  publication-title: Sens. Actuators B Chem.
– volume: 192
  start-page: 607
  year: 2014
  end-page: 627
  ident: bib0185
  article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview
  publication-title: Sens. Actuators B Chem.
– volume: 243
  start-page: 1010
  year: 2017
  end-page: 1019
  ident: bib0305
  article-title: Enhancing room-temperature NO
  publication-title: Sens. Actuators B Chem.
– volume: 185
  start-page: 701
  year: 2013
  end-page: 705
  ident: bib0240
  article-title: Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO
  publication-title: Sens. Actuators B Chem.
– volume: 255
  start-page: 2785
  year: 2018
  end-page: 2793
  ident: bib0025
  article-title: Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor
  publication-title: Sens. Actuators B Chem.
– volume: 204
  start-page: 250
  year: 2014
  end-page: 272
  ident: bib0290
  article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review
  publication-title: Sens. Actuators B Chem.
– volume: 244
  start-page: 67
  year: 2017
  end-page: 76
  ident: bib0105
  article-title: Enhanced NO
  publication-title: Sens. Actuators B Chem.
– volume: 157
  start-page: H598
  year: 2010
  end-page: H602
  ident: bib0275
  article-title: Phase and optical characterizations of annealed SnO thin films and their p-Type TFT application
  publication-title: ECS Solid State Lett.
– volume: 92
  start-page: 5405
  year: 1988
  end-page: 5412
  ident: bib0375
  article-title: Ultraviolet photoelectron spectrum of NO
  publication-title: J. Phys. Chem.
– volume: 614
  start-page: 275
  year: 2014
  end-page: 281
  ident: bib0325
  article-title: Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection
  publication-title: Chem. Phys. Lett.
– volume: 23
  start-page: 3431
  year: 2011
  ident: bib0205
  article-title: Ambipolar oxide thin-film transistor
  publication-title: Adv. Mater.
– volume: 102
  start-page: 102
  year: 2004
  end-page: 106
  ident: bib0350
  article-title: The effect of relative humidity on the NO
  publication-title: Sens. Actuators B Chem.
– volume: 97
  start-page: 3
  year: 2010
  end-page: 6
  ident: bib0215
  article-title: Transparent p-type SnO
  publication-title: Appl. Phys. Lett.
– volume: 278
  start-page: 28
  year: 2019
  end-page: 38
  ident: bib0030
  article-title: Sputtered SnO
  publication-title: Sens. Actuators B Chem.
– volume: 38
  start-page: 1543
  year: 2017
  end-page: 1546
  ident: bib0235
  article-title: Performance improvement of p-Channel tin monoxide transistors with a solution-processed zirconium oxide gate dielectric
  publication-title: IEEE Electron Device Lett.
– volume: 261
  start-page: 252
  year: 2018
  end-page: 263
  ident: bib0360
  article-title: The preparation of reduced graphene oxide-encapsulated α-Fe
  publication-title: Sens. Actuators B Chem.
– year: 2019
  ident: bib0020
  article-title: Gas Sensors Market – Global Forecast 2023
– volume: 9
  start-page: 16335
  year: 2017
  end-page: 16342
  ident: bib0140
  article-title: Ultrathin In
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 1513
  year: 2019
  end-page: 1522
  ident: bib0085
  article-title: Enhanced NO
  publication-title: Ceram. Int.
– volume: 29
  start-page: 2645
  year: 2018
  end-page: 2653
  ident: bib0285
  article-title: In
  publication-title: J. Mater. Sci.-Mater. El.
– volume: 255
  start-page: 70
  year: 2018
  end-page: 77
  ident: bib0040
  article-title: Transfer of preheat-treated SnO
  publication-title: Sens. Actuators B Chem.
– volume: 7
  start-page: 27152
  year: 2015
  end-page: 27159
  ident: bib0135
  article-title: Designed synthesis of In
  publication-title: ACS Appl. Mater. Interfaces
– volume: 263
  start-page: 218
  year: 2018
  end-page: 228
  ident: bib0355
  article-title: Pd loading induced excellent NO
  publication-title: Sens. Actuators B Chem.
– volume: 220
  start-page: 201
  year: 2015
  end-page: 209
  ident: bib0300
  article-title: Graphene-wrapped WO
  publication-title: Sens. Actuators B Chem.
– volume: 109
  year: 2016
  ident: bib0340
  article-title: Elimination of the gate and drain bias stresses in I-V characteristics of WSe
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 71757
  year: 2016
  end-page: 71766
  ident: bib0255
  article-title: Composition-dependent structural and electrical properties of p-type SnO
  publication-title: RSC Adv.
– volume: 7
  start-page: 16775
  year: 2015
  end-page: 16780
  ident: bib0330
  article-title: Chemical sensing of 2D Graphene/MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 228
  start-page: 185
  year: 2016
  end-page: 191
  ident: bib0055
  article-title: Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO thin film
  publication-title: Sens. Actuators B Chem.
– volume: 41
  start-page: 6552
  year: 2015
  end-page: 6559
  ident: bib0150
  article-title: Synthesis and characterization of ITO-ZnO nanocomposite and its application as NO
  publication-title: Ceram. Int.
– volume: 221
  start-page: 1170
  year: 2015
  end-page: 1181
  ident: bib0010
  article-title: Graphene-metal oxide nanohybrids for toxic gas sensor: a review
  publication-title: Sens. Actuators B Chem.
– volume: 263
  start-page: 387
  year: 2018
  end-page: 399
  ident: bib0365
  article-title: Room temperature NO
  publication-title: Sens. Actuators B Chem.
– volume: 204
  start-page: 250
  year: 2014
  end-page: 272
  ident: bib0035
  article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review
  publication-title: Sens. Actuators B Chem.
– volume: 7
  start-page: 17023
  year: 2015
  end-page: 17031
  ident: bib0230
  article-title: Control of ambipolar transport in SnO thin-film transistors by back-channel surface passivation for high performance complementary-like inverters
  publication-title: ACS Appl. Mater. Interfaces
– volume: 232
  start-page: 653
  year: 2016
  end-page: 659
  ident: bib0060
  article-title: Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate
  publication-title: Sens. Actuators B Chem.
– volume: 169
  start-page: 151
  year: 2012
  ident: 10.1016/j.snb.2019.03.046_bib0120
  article-title: Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.04.050
– volume: 171–172
  start-page: 1166
  year: 2012
  ident: 10.1016/j.snb.2019.03.046_bib0160
  article-title: Amorphous InGaZnO4 films: gas sensor response and stability
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.06.057
– volume: 43
  start-page: 1802
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0210
  article-title: Effects of annealing on wettability and physical properties of SnO thin films deposited at low RF power densities
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.10.138
– volume: 261
  start-page: 252
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0360
  article-title: The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.01.143
– volume: 216
  start-page: 482
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0145
  article-title: Highly selective ppb-level detection of NH3 and NO2 gas using patterned porous channels of ITO nanoparticles
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.04.057
– volume: 10
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0075
  article-title: An all oxide-based imperceptible thin-film transistor with humidity sensing properties
  publication-title: Materials
– volume: 7
  start-page: 16775
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0330
  article-title: Chemical sensing of 2D Graphene/MoS2 heterostructure device
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04541
– volume: 223
  start-page: 311
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0190
  article-title: Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene(C6H6) and nitrogen dioxide (NO2) detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.09.114
– volume: 92
  start-page: 5405
  year: 1988
  ident: 10.1016/j.snb.2019.03.046_bib0375
  article-title: Ultraviolet photoelectron spectrum of NO2−
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100330a017
– volume: 7
  start-page: 14004
  issue: 25
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0065
  article-title: Thin film transistor gas sensors incorporating high-mobility diketopyrrolopyrole-based polymeric semiconductor doped with graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03059
– volume: 108
  start-page: 13
  year: 1961
  ident: 10.1016/j.snb.2019.03.046_bib0250
  article-title: The oxidation of tin
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2428003
– volume: 156
  start-page: 743
  year: 2011
  ident: 10.1016/j.snb.2019.03.046_bib0110
  article-title: SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.02.033
– year: 2019
  ident: 10.1016/j.snb.2019.03.046_bib0020
– volume: 10
  start-page: 10185
  issue: 12
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0070
  article-title: Toward adequate operation of amorphous oxide thin-film transistors for low-concentration gas detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18657
– volume: 97
  start-page: 3
  year: 2010
  ident: 10.1016/j.snb.2019.03.046_bib0215
  article-title: Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3469939
– volume: 29
  start-page: 2645
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0285
  article-title: In2O3-decorated ordered mesoporous NiO for enhanced NO2 sensing at room temperature
  publication-title: J. Mater. Sci.-Mater. El.
  doi: 10.1007/s10854-017-8190-x
– volume: 255
  start-page: 70
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0040
  article-title: Transfer of preheat-treated SnO2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.08.025
– volume: 272
  start-page: 100
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0015
  article-title: Reduced graphene oxide-CuFe2O4 nanocomposite: a highly sensitive room temperature NH3 gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.05.093
– volume: 7
  start-page: 27152
  issue: 49
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0135
  article-title: Designed synthesis of In2O3 Beads@TiO2-In2O3 composite nanofibers for high performance NO2 sensor at room temperature
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09496
– volume: 614
  start-page: 275
  year: 2014
  ident: 10.1016/j.snb.2019.03.046_bib0325
  article-title: Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2014.09.028
– volume: 157
  start-page: H598
  year: 2010
  ident: 10.1016/j.snb.2019.03.046_bib0275
  article-title: Phase and optical characterizations of annealed SnO thin films and their p-Type TFT application
  publication-title: ECS Solid State Lett.
– volume: 185
  start-page: 701
  year: 2013
  ident: 10.1016/j.snb.2019.03.046_bib0240
  article-title: Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.05.050
– volume: 224
  start-page: 260
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0175
  article-title: Orthorhombic CaFe2O4: a promising p-type gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.10.041
– volume: 17
  start-page: 14903
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0320
  article-title: Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposites have over pristine NiO?
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01987G
– volume: 263
  start-page: 387
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0365
  article-title: Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.02.117
– volume: 23
  start-page: 3431
  year: 2011
  ident: 10.1016/j.snb.2019.03.046_bib0205
  article-title: Ambipolar oxide thin-film transistor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101410
– volume: 41
  start-page: 6552
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0150
  article-title: Synthesis and characterization of ITO-ZnO nanocomposite and its application as NO2 gas sensor
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.01.098
– volume: 263
  start-page: 687
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0345
  article-title: Solution based–spin cast processed LPG sensor at room temperature
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.07.026
– volume: 44
  start-page: 17283
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0295
  article-title: Low temperature NO2 sensing properties of RF-sputtered SnO-SnO2 heterojunction thin-film with p-type semiconducting behavior
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.06.189
– volume: 255
  start-page: 2785
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0025
  article-title: Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.09.094
– volume: 18
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0165
  article-title: Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil
  publication-title: Sensors
  doi: 10.3390/s18020358
– volume: 256
  start-page: 1001
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0310
  article-title: CuInS2 QDs decorated ring-like NiO for significantly enhanced room-temperature NO2 sensing performances via effective interfacial charge transfer
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.10.044
– volume: 22
  start-page: 11009
  year: 2012
  ident: 10.1016/j.snb.2019.03.046_bib0315
  article-title: Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30378g
– volume: 277
  start-page: 604
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0005
  article-title: An overview: facet-dependent metal oxide semiconductor gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.08.129
– volume: 204
  start-page: 250
  year: 2014
  ident: 10.1016/j.snb.2019.03.046_bib0290
  article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.07.074
– volume: 229
  start-page: 206
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0050
  article-title: Semiconductor metal oxide gas sensors: a review
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2017.12.036
– volume: 232
  start-page: 653
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0060
  article-title: Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.04.010
– volume: 6
  start-page: 17120
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0370
  article-title: An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA04404J
– volume: 204
  start-page: 250
  year: 2014
  ident: 10.1016/j.snb.2019.03.046_bib0035
  article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.07.074
– volume: 192
  start-page: 607
  year: 2014
  ident: 10.1016/j.snb.2019.03.046_bib0185
  article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.11.005
– volume: 32
  start-page: 075006
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0265
  article-title: Demonstration of high-performance p-type tin oxide thin-film transistors using argon plasma surface treatments
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aa72b8
– volume: 221
  start-page: 1170
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0010
  article-title: Graphene-metal oxide nanohybrids for toxic gas sensor: a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.07.070
– volume: 244
  start-page: 67
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0105
  article-title: Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.12.125
– volume: 43
  start-page: 7057
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0095
  article-title: Thermally evaporated copper oxide films: a view of annealing effect on physical and gas sensing properties
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.02.135
– volume: 45
  start-page: 1513
  year: 2019
  ident: 10.1016/j.snb.2019.03.046_bib0085
  article-title: Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.10.022
– volume: 6
  start-page: 71757
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0255
  article-title: Composition-dependent structural and electrical properties of p-type SnOX thin films prepared by reactive DC magnetron sputtering: effects of oxygen pressure and heat treatment
  publication-title: RSC Adv.
  doi: 10.1039/C6RA08726D
– volume: 4
  start-page: 5691
  issue: 10
  year: 2012
  ident: 10.1016/j.snb.2019.03.046_bib0200
  article-title: Molecular simulation for gas adsorption at NiO (100) surface
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3016894
– volume: 217
  start-page: 78
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0115
  article-title: Nanotubular Cr-doped TiO2 for use as high-temperature NO2 gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.11.065
– volume: 7
  start-page: 17023
  issue: 15
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0230
  article-title: Control of ambipolar transport in SnO thin-film transistors by back-channel surface passivation for high performance complementary-like inverters
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02964
– volume: 258
  start-page: 574
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0335
  article-title: An accurate and stable humidity sensing characteristic of Si FET-type humidity sensor with MoS2 as a sensing layer by pulse measurement
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.11.132
– volume: 38
  start-page: 1543
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0235
  article-title: Performance improvement of p-Channel tin monoxide transistors with a solution-processed zirconium oxide gate dielectric
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2758349
– volume: 327
  start-page: 358
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0245
  article-title: Influence of rapid-thermal-annealing temperature on properties of rf sputtered SnOx thin films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.11.115
– volume: 6
  start-page: 36183
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0260
  article-title: Extremely sensitive dependence of SnOx film properties on sputtering power
  publication-title: Sci. Rep.
  doi: 10.1038/srep36183
– volume: 19
  start-page: 6313
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0045
  article-title: Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP07799D
– volume: 8
  start-page: 8600
  issue: 13
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0130
  article-title: Hierarchical ZnO nanosheet-nanorod architectures for fabrication of poly(3-hexylthiophene)/ZnO hybrid NO2 sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12553
– volume: 279
  start-page: 238
  year: 2019
  ident: 10.1016/j.snb.2019.03.046_bib0100
  article-title: Sub-ppm and high response organic thin-film transistor NO2 sensor based on nanofibrillar structured TIPS-pentacene
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.10.002
– volume: 263
  start-page: 218
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0355
  article-title: Pd loading induced excellent NO2 gas sensing of 3DOM In2O3 at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.02.105
– volume: 243
  start-page: 1010
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0305
  article-title: Enhancing room-temperature NO2 sensing properties via forming heterojunction for NiO-rGO composited with SnO2 nanoplates
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.12.062
– volume: 43
  start-page: 8372
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0090
  article-title: Cu2O quantum dots modified by RGO nanosheets for ultrasensitive and selective NO2 gas detection
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.03.179
– volume: 102
  start-page: 102
  year: 2004
  ident: 10.1016/j.snb.2019.03.046_bib0350
  article-title: The effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2004.02.017
– volume: 109
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0340
  article-title: Elimination of the gate and drain bias stresses in I-V characteristics of WSe2 FETs by using dual channel pulse measurement
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4960459
– volume: 220
  start-page: 201
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0300
  article-title: Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.05.047
– volume: 119
  start-page: 17930
  year: 2015
  ident: 10.1016/j.snb.2019.03.046_bib0180
  article-title: Effect of grain boundaries in NiO nanosheet layers room-temperature sensing mechanism under NO2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b04940
– start-page: 1
  year: 2011
  ident: 10.1016/j.snb.2019.03.046_bib0220
  article-title: Irregular electrical conduction types in tin oxide thin films induced by nanoscale phase separation
  publication-title: J. Am. Ceram. Soc.
– volume: 641
  start-page: 24
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0270
  article-title: Electrical performance enhancement of p-type tin oxide channel thin film transistor using aluminum doping
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2017.01.032
– volume: 40
  start-page: 10867
  year: 2014
  ident: 10.1016/j.snb.2019.03.046_bib0125
  article-title: Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.03.080
– volume: 44
  start-page: 753
  year: 2018
  ident: 10.1016/j.snb.2019.03.046_bib0195
  article-title: Highly selective NO2 sensor based on p-type nanocrystalline NiO thin films prepared by sol–gel dip coating
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.09.243
– volume: 5
  start-page: 9615
  issue: 19
  year: 2013
  ident: 10.1016/j.snb.2019.03.046_bib0225
  article-title: P-Type Cu2O/SnO bilayer thin film transistors processed at low temperatures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402542j
– volume: 108
  start-page: 263503
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0280
  article-title: Analysis of carrier transport and band tail states in p-type tin monoxide thin-film transistors by temperature dependent characteristics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4955124
– volume: 64
  start-page: 2350
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0080
  article-title: Improvement in sensing responses to ammonia gas for gas sensors with separately designed sensing element using ALD- grown ZnO nanoparticles and read-out element of top-gate In-Ga-Zn-O thin-film transistor
  publication-title: IEEE Trans. Electron Device
  doi: 10.1109/TED.2017.2679239
– volume: 153
  start-page: 347
  year: 2011
  ident: 10.1016/j.snb.2019.03.046_bib0170
  article-title: Influence of humidity on CO sensing with p-type CuO thick film gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2010.10.046
– volume: 228
  start-page: 185
  year: 2016
  ident: 10.1016/j.snb.2019.03.046_bib0055
  article-title: Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO thin film
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.12.105
– volume: 9
  start-page: 16335
  issue: 19
  year: 2017
  ident: 10.1016/j.snb.2019.03.046_bib0140
  article-title: Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04395
– volume: 278
  start-page: 28
  year: 2019
  ident: 10.1016/j.snb.2019.03.046_bib0030
  article-title: Sputtered SnO2:NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.09.074
– volume: 160
  start-page: 499
  year: 2011
  ident: 10.1016/j.snb.2019.03.046_bib0155
  article-title: NO2 gas sensing properties of amorphous InGaZnO4 submicron-tubes prepared by polymeric fiber templating route
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.08.017
SSID ssj0004360
Score 2.4909139
Snippet •A p-type metal oxide semiconductor-based TFT-type gas sensor was studied for the first time by using SnOX for both the channel and sensing layers.•The...
The high-performance p-type metal-oxide-semiconductor (MOS)-based gas sensor is an important subject of research in the field of gas-sensing technology. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 625
SubjectTerms Ammonia
Chemical bonds
Detection
Field effect transistors
Field emission microscopy
Gas sensors
Gases
Hydrogen sulfide
Metal oxides
Morphology
Nitrogen dioxide
NO2 gas sensing
Organic chemistry
P-type metal oxide semiconductor
P-type semiconductors
Photoelectrons
Room temperature
Scanning electron microscopy
Selectivity
Semiconductor devices
Sensitivity
Sensors
SnO
SnOX
Thin film transistors
Thin-film transistor
Tin
Tin oxides
Transistors
X-ray diffraction
Title Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOX-based p-type thin-film transistor
URI https://dx.doi.org/10.1016/j.snb.2019.03.046
https://www.proquest.com/docview/2221801100
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BSFUnlgQjJ1EudrrCqqAqIdSqVulu0kJaikFQlDF347PicBilAHRke-KPJd7p2Td88IXekwsQD4SRxGimi8ZSQIEoto8JGBpMr1GDQnP4684ZTdz9xZA_XrXhigVVa5v8zpJltXV7rVanZXadqd0FBvbsoSBBpMQROUMR-i_Objm-bBHNMpDJMJzK7_bBqOV55JYHeVOqdQA_-NTb-ytIGewQHar2pG3Csf6xA14uwI7f1QEjxGa-BrLNY4Bz46ZDAssgjn5pAbGEF9TECGqtJQxqOxjeciJ8Ygm2O1KdyMlwmeZOMZAZSL8IrAp1pcPKcZSdLFKy4A4ozCyAmaDm6f-kNSnapAlAargsSuz2Jd9yWWcJmIEhYK19X-sS0VOZIyIRKXeoKqQDq-cJTneJLGoBMmoWVBOaeomS2z-AxhJvxAuNRWYRyy0JMiCv2I2bay9a7LTpIWovV6clVJjsPJFwtec8teuHYBBxdw6nDtgha6_jJZlXob2yaz2kl8I2i4xoNtZu3aobx6Y3Ou6yQrMAJ65_-76wXahVFJI2ujZvH2Hl_qgqWQHRORHbTTu3sYjj4BwD_qWg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SkKBTwwIZk6iZMmI6pABfoxtJW6WbaTlKKSViQMXfjt-JwEKEIdGJPYUeSz752dd-8QutLTxALgJ1EQKqLxlhHfjy2iwUf6kirXY5Cc3O157RF7HLvjCmqVuTBAqyx8f-7Tjbcu7jSK0WwsptPGgAZ6c5OHIJBgyjbQJtPLF8oY3Hx88zyYY1KFoTWB5uWvTUPyShMJ9K5c6BSC4L_B6ZebNthzv4d2i6AR3-bftY8qUXKAdn5ICR6iJRA2ZkucAiEdXBgWSYhTU-UGriBAJqBDVYgo417fxhOREtMhmWC1qtyM5zEeJP0xAZgL8YLAWS3OnqcJiaezV5wBxhmJkSM0ur8bttqkKKtAlEarjERuk0U68Ist4TIRxiwQrqsNZFsqdCRlQsQu9QRVvnSawlGe40kagVCYhJwF5RyjajJPohOEmWj6wqW2CqKABZ4UYdAMmW0rW2-77DiuIVqOJ1eF5jiUvpjxklz2wrUJOJiAU4drE9TQ9VeXRS64sa4xK43EV2YN14Cwrlu9NCgvlmzKdaBk-UZB7_R_b71EW-1ht8M7D72nM7QNT3JOWR1Vs7f36FxHL5m8MLPzEyas6-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+and+selective+room-temperature+NO2+gas-sensing+characteristics+of+SnOX-based+p-type+thin-film+transistor&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Jeong%2C+Hwan-Seok&rft.au=Park%2C+Min-Jae&rft.au=Kwon%2C+Soo-Hun&rft.au=Joo%2C+Hyo-Jun&rft.date=2019-06-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=B288&rft.spage=625&rft_id=info:doi/10.1016%2Fj.snb.2019.03.046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon