Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOX-based p-type thin-film transistor
•A p-type metal oxide semiconductor-based TFT-type gas sensor was studied for the first time by using SnOX for both the channel and sensing layers.•The fabricated SnOX TFT gas sensor showed a maximum response value of 19.4–10 ppm NO2 at room temperature (RT).•This maximum response value is significa...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 288; pp. 625 - 633 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.06.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A p-type metal oxide semiconductor-based TFT-type gas sensor was studied for the first time by using SnOX for both the channel and sensing layers.•The fabricated SnOX TFT gas sensor showed a maximum response value of 19.4–10 ppm NO2 at room temperature (RT).•This maximum response value is significantly higher than the maximum response values of previously reported p-type MOS-based NO2 sensors.•The importance of this work is in the successful fabrication of highly selective and sensitive p-type NO2 gas sensor at RT via RF sputtering process.
The high-performance p-type metal-oxide-semiconductor (MOS)-based gas sensor is an important subject of research in the field of gas-sensing technology. In this work, we demonstrated a p-type MOS-based thin-film transistor (TFT) nitrogen dioxide (NO2) gas sensor that used tin oxide (SnOX) for both the channel and sensing layers. The crystalline status, surface morphology, and atomic-bonding configuration of the thin-film were examined using X-ray diffraction, field emission-scanning electron microscopy, and X-ray photoelectron spectroscopy. The results indicated that the deposited thin-film was mainly composed of polycrystalline SnO with a tetragonal structure. The fabricated p-type SnOX TFT showed a maximum response value of 19.4-10 ppm NO2 at room temperature (RT, 25 °C) when operated in the subthreshold region, which was significantly higher than that of 2.8–10 ppm NO2 obtained from a p-type SnOX thin-film chemiresistor at RT. In addition, the SnOX TFT gas sensor showed significantly higher sensitivity to NO2 gas than to other target gases such as NH3, H2S, CO2, and CO at RT. To the best of our knowledge, this is the first study to a p-type MOS-based field-effect transistor-type gas sensor. Our experimental results demonstrate that the p-type SnOX TFT is a promising gas sensor that can operate at RT with high sensitivity and selectivity to NO2 gas. |
---|---|
AbstractList | The high-performance p-type metal-oxide-semiconductor (MOS)-based gas sensor is an important subject of research in the field of gas-sensing technology. In this work, we demonstrated a p-type MOS-based thin-film transistor (TFT) nitrogen dioxide (NO2) gas sensor that used tin oxide (SnOX) for both the channel and sensing layers. The crystalline status, surface morphology, and atomic-bonding configuration of the thin-film were examined using X-ray diffraction, field emission-scanning electron microscopy, and X-ray photoelectron spectroscopy. The results indicated that the deposited thin-film was mainly composed of polycrystalline SnO with a tetragonal structure. The fabricated p-type SnOX TFT showed a maximum response value of 19.4-10 ppm NO2 at room temperature (RT, 25 °C) when operated in the subthreshold region, which was significantly higher than that of 2.8–10 ppm NO2 obtained from a p-type SnOX thin-film chemiresistor at RT. In addition, the SnOX TFT gas sensor showed significantly higher sensitivity to NO2 gas than to other target gases such as NH3, H2S, CO2, and CO at RT. To the best of our knowledge, this is the first study to a p-type MOS-based field-effect transistor-type gas sensor. Our experimental results demonstrate that the p-type SnOX TFT is a promising gas sensor that can operate at RT with high sensitivity and selectivity to NO2 gas. •A p-type metal oxide semiconductor-based TFT-type gas sensor was studied for the first time by using SnOX for both the channel and sensing layers.•The fabricated SnOX TFT gas sensor showed a maximum response value of 19.4–10 ppm NO2 at room temperature (RT).•This maximum response value is significantly higher than the maximum response values of previously reported p-type MOS-based NO2 sensors.•The importance of this work is in the successful fabrication of highly selective and sensitive p-type NO2 gas sensor at RT via RF sputtering process. The high-performance p-type metal-oxide-semiconductor (MOS)-based gas sensor is an important subject of research in the field of gas-sensing technology. In this work, we demonstrated a p-type MOS-based thin-film transistor (TFT) nitrogen dioxide (NO2) gas sensor that used tin oxide (SnOX) for both the channel and sensing layers. The crystalline status, surface morphology, and atomic-bonding configuration of the thin-film were examined using X-ray diffraction, field emission-scanning electron microscopy, and X-ray photoelectron spectroscopy. The results indicated that the deposited thin-film was mainly composed of polycrystalline SnO with a tetragonal structure. The fabricated p-type SnOX TFT showed a maximum response value of 19.4-10 ppm NO2 at room temperature (RT, 25 °C) when operated in the subthreshold region, which was significantly higher than that of 2.8–10 ppm NO2 obtained from a p-type SnOX thin-film chemiresistor at RT. In addition, the SnOX TFT gas sensor showed significantly higher sensitivity to NO2 gas than to other target gases such as NH3, H2S, CO2, and CO at RT. To the best of our knowledge, this is the first study to a p-type MOS-based field-effect transistor-type gas sensor. Our experimental results demonstrate that the p-type SnOX TFT is a promising gas sensor that can operate at RT with high sensitivity and selectivity to NO2 gas. |
Author | Kwon, Soo-Hun Jeong, Hwan-Seok Park, Min-Jae Kwon, Hyuck-In Joo, Hyo-Jun |
Author_xml | – sequence: 1 givenname: Hwan-Seok surname: Jeong fullname: Jeong, Hwan-Seok – sequence: 2 givenname: Min-Jae surname: Park fullname: Park, Min-Jae – sequence: 3 givenname: Soo-Hun surname: Kwon fullname: Kwon, Soo-Hun – sequence: 4 givenname: Hyo-Jun surname: Joo fullname: Joo, Hyo-Jun – sequence: 5 givenname: Hyuck-In surname: Kwon fullname: Kwon, Hyuck-In email: hyuckin@cau.ac.kr |
BookMark | eNp9kE1rGzEQhkVIIE7SH9CboGdtR9J-mZ5KaJNCqA9toTcxq521ZdbSVpID_vdV4p56yGl44X1mmOeGXfrgibH3EioJsv24r5IfKgVyXYGuoG4v2Er2nRYauu6SrWCtGlEDNNfsJqU9ANS6hRU7Pbrtbj7xRD657J6Jox9Lmsm-phjCQWQ6LBQxHyPx7xvFt5jEK-C33O4wos0UXcrOJh4m_sNvfosBE418Efm0EM8758Xk5gPPEQuXcoh37GrCOdG7f_OW_fr65ef9o3jaPHy7__wkrG5VFtR0NUm9niQ2NY5Tvcam6ftJSTvqAWrEqYEWwfaD7lDbVrcDkOo1DMVLZ_Ut-3Deu8Tw50gpm304Rl9OGqWU7EFKgNKS55aNIaVIk1miO2A8GQnmxbDZm2LYvBg2oE0xXJjuP8a6jNkFX75085vkpzNJ5fFnR9Ek68hbGl0s4s0Y3Bv0X6OGmYo |
CitedBy_id | crossref_primary_10_1016_j_micrna_2024_207830 crossref_primary_10_1039_C9TC06614D crossref_primary_10_1088_1361_6528_ad3a6c crossref_primary_10_1016_j_snb_2023_133341 crossref_primary_10_1016_j_ceramint_2022_11_010 crossref_primary_10_3390_micro4030025 crossref_primary_10_1039_D1TC04618G crossref_primary_10_1039_D4TC03313B crossref_primary_10_3390_ma12193248 crossref_primary_10_3390_nano13172391 crossref_primary_10_1016_j_snb_2020_129230 crossref_primary_10_3390_ma15144781 crossref_primary_10_1016_j_ijhydene_2025_01_466 crossref_primary_10_1016_j_mssp_2022_106927 crossref_primary_10_1016_j_snb_2021_131049 crossref_primary_10_1016_j_snb_2024_136498 crossref_primary_10_1109_JSEN_2023_3309413 crossref_primary_10_1016_j_surfin_2022_102560 crossref_primary_10_1016_j_matchemphys_2023_128776 crossref_primary_10_1021_acsami_9b19971 crossref_primary_10_1039_D2SD00175F crossref_primary_10_1007_s42341_022_00381_0 crossref_primary_10_1016_j_snb_2020_128676 crossref_primary_10_1007_s12274_020_3232_8 crossref_primary_10_1016_j_snb_2022_131398 crossref_primary_10_1016_j_jallcom_2023_170062 crossref_primary_10_1021_acsanm_3c01059 crossref_primary_10_1016_j_snb_2020_127954 crossref_primary_10_1016_j_tsf_2024_140441 crossref_primary_10_1021_acsami_0c12259 crossref_primary_10_1002_aelm_202400499 crossref_primary_10_1088_2632_959X_ac3636 crossref_primary_10_1088_1361_6528_ac1f54 crossref_primary_10_1109_LED_2019_2936887 crossref_primary_10_3390_mi11100917 crossref_primary_10_1016_j_aca_2021_338575 crossref_primary_10_1016_j_snb_2021_130058 crossref_primary_10_3390_electronics13101947 crossref_primary_10_1088_1361_6528_ac512d crossref_primary_10_1007_s11051_024_06058_4 crossref_primary_10_1021_acsami_9b13773 crossref_primary_10_1007_s10854_021_05494_5 crossref_primary_10_3390_chemosensors10090349 crossref_primary_10_1016_j_bios_2019_111606 crossref_primary_10_1039_D0TA08190F crossref_primary_10_1002_adfm_202102439 crossref_primary_10_1021_acsami_0c18549 crossref_primary_10_1016_j_matpr_2022_03_111 crossref_primary_10_1016_j_talanta_2024_127495 crossref_primary_10_1002_adma_202006091 crossref_primary_10_1007_s11664_022_09485_y crossref_primary_10_1002_adfm_202209969 crossref_primary_10_1021_acsanm_4c00259 crossref_primary_10_1021_acsaelm_1c00841 |
Cites_doi | 10.1016/j.snb.2012.04.050 10.1016/j.snb.2012.06.057 10.1016/j.ceramint.2016.10.138 10.1016/j.snb.2018.01.143 10.1016/j.snb.2015.04.057 10.1021/acsami.5b04541 10.1016/j.snb.2015.09.114 10.1021/j100330a017 10.1021/acsami.5b03059 10.1149/1.2428003 10.1016/j.snb.2011.02.033 10.1021/acsami.7b18657 10.1063/1.3469939 10.1007/s10854-017-8190-x 10.1016/j.snb.2017.08.025 10.1016/j.snb.2018.05.093 10.1021/acsami.5b09496 10.1016/j.cplett.2014.09.028 10.1016/j.snb.2013.05.050 10.1016/j.snb.2015.10.041 10.1039/C5CP01987G 10.1016/j.snb.2018.02.117 10.1002/adma.201101410 10.1016/j.ceramint.2015.01.098 10.1016/j.sna.2017.07.026 10.1016/j.ceramint.2018.06.189 10.1016/j.snb.2017.09.094 10.3390/s18020358 10.1016/j.snb.2017.10.044 10.1039/c2jm30378g 10.1016/j.snb.2018.08.129 10.1016/j.snb.2014.07.074 10.1016/j.mseb.2017.12.036 10.1016/j.snb.2016.04.010 10.1039/C8TA04404J 10.1016/j.snb.2013.11.005 10.1088/1361-6641/aa72b8 10.1016/j.snb.2015.07.070 10.1016/j.snb.2016.12.125 10.1016/j.ceramint.2017.02.135 10.1016/j.ceramint.2018.10.022 10.1039/C6RA08726D 10.1021/am3016894 10.1016/j.snb.2014.11.065 10.1021/acsami.5b02964 10.1016/j.snb.2017.11.132 10.1109/LED.2017.2758349 10.1016/j.apsusc.2014.11.115 10.1038/srep36183 10.1039/C6CP07799D 10.1021/acsami.5b12553 10.1016/j.snb.2018.10.002 10.1016/j.snb.2018.02.105 10.1016/j.snb.2016.12.062 10.1016/j.ceramint.2017.03.179 10.1016/j.snb.2004.02.017 10.1063/1.4960459 10.1016/j.snb.2015.05.047 10.1021/acs.jpcc.5b04940 10.1016/j.tsf.2017.01.032 10.1016/j.ceramint.2014.03.080 10.1016/j.ceramint.2017.09.243 10.1021/am402542j 10.1063/1.4955124 10.1109/TED.2017.2679239 10.1016/j.snb.2010.10.046 10.1016/j.snb.2015.12.105 10.1021/acsami.7b04395 10.1016/j.snb.2018.09.074 10.1016/j.snb.2011.08.017 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Jun 1, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jun 1, 2019 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2019.03.046 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
EndPage | 633 |
ExternalDocumentID | 10_1016_j_snb_2019_03_046 S0925400519303934 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c362t-e574e139f1a54adf49a5588f21cd3b04aaf506a0c8b37a3c636b0e2830b0167c3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Fri Jul 25 08:02:25 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Tue Jul 01 01:27:28 EDT 2025 Fri Feb 23 02:31:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NO2 gas sensing SnOX SnO Thin-film transistor P-type metal oxide semiconductor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-e574e139f1a54adf49a5588f21cd3b04aaf506a0c8b37a3c636b0e2830b0167c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2221801100 |
PQPubID | 2047454 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2221801100 crossref_primary_10_1016_j_snb_2019_03_046 crossref_citationtrail_10_1016_j_snb_2019_03_046 elsevier_sciencedirect_doi_10_1016_j_snb_2019_03_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Navale, Navale, Stadler, Ramgir, Debnath, Gadkari, Gupta, Aswal, Patil (bib0095) 2017; 43 Hoa, Tien, Luan, Chung, Hur (bib0240) 2013; 185 Cho, Yoon, Lim, Kim, Kim, Park, Kwon, Lee, Lee, Lee, Ko, Hahm (bib0330) 2015; 7 Achary, Kumar, Barik, Nayak, Tripathy, Kar, Dash (bib0015) 2018; 272 (bib0020) 2019 Zhang, Zeng, Zhao, Wu, Xu, Zhu (bib0320) 2015; 17 Hong, Kim, Shin, Kim, Kim, Hwang, Lee (bib0060) 2016; 232 Kim, Ahn, Jung, Cho, Cho (bib0070) 2018; 10 Gönüllü, Haidry, Saruhan (bib0115) 2015; 217 Hubner, Simion, Tomescu-Stanoiu, Pokhrela, Barsan, Weimar (bib0170) 2011; 153 Zhang, Kong, Yang, Li, Wilson, Liu, Xin, Wang, Song (bib0280) 2016; 108 Zhang, Qin, Zeng, Xie (bib0045) 2017; 19 Zhang, Hu, Tian, Qin, Zeng, Xie (bib0310) 2018; 256 Yun, Seo, Lee, Yoon (bib0080) 2017; 64 Wang, Zhang, Zhou, Lou, Deng, Zhang (bib0190) 2016; 223 Fortunato, Barros, Barquinha, Figueiredo, Park, Hwang, Martins (bib0215) 2010; 97 Nomura, Kamiya, Hosono (bib0205) 2011; 23 Azmi, Lee, Gim, Choi, Jeong (bib0235) 2017; 38 Kim, Lee (bib0185) 2014; 192 Gu, Li, Zhao, Wang (bib0105) 2017; 244 Cheon, Cho, Kim, Chung (bib0065) 2018; 7 Lee, Park, Kim, Lee, Park, Chang, Jin, Sohn, Heo, Lee (bib0145) 2015; 216 Hu, Zou, Su, Li, Han, Kong, Yang, Zhang (bib0370) 2018; 6 Zhao, Shen, Zhou, Zhang, Zhang, Chen, Wei, Fang, Shen (bib0195) 2018; 44 Dong, Liu (bib0285) 2018; 29 Dey (bib0050) 2018; 229 Sharma, Tomar, Gupta (bib0110) 2011; 156 Han, Kim, Ahn, Jeong, Yan, Kim (bib0255) 2016; 6 Zhou, Liu, Zhu, Guo (bib0090) 2017; 43 Al-Jawhari, Caraveo-Frescas, Hedhili, Alshareef (bib0225) 2013; 5 Liang, Liu, Cao, Yu, Shi, Chen, Zhang, Fang, Sun (bib0275) 2010; 157 Shin, Jong, Wu, Bae, Kwon, Park, Lee (bib0335) 2018; 258 Sutka, Kodu, Pärna, Saar, Juhnevica, Jaaniso, Kisand (bib0175) 2016; 224 Jie, Zeng, Zhang, Xub, Wu, Zhu, Xie (bib0300) 2015; 220 Jiang, Chiu, Kao, He, Wu, Yang, Hsu, Cheng, Chen (bib0245) 2015; 327 Zhang, Wu, Wang, Zeng, Xie (bib0305) 2017; 243 Hien, Heo (bib0055) 2016; 228 Chatterjee, Chatterjee, Ray, Chakraborty (bib0010) 2015; 221 Miller, Akbar, Morris (bib0290) 2014; 204 Ling, Leach (bib0350) 2004; 102 Li, Xin, Du, Qu, Li, Kong, Wang, Song (bib0260) 2016; 6 Xie, Xie, Zhou, Huang, Wu, Jiang, Tai (bib0325) 2014; 614 Wang, Su, Chen, Li, Shi, Zou, Zou (bib0140) 2017; 9 Tonezzer, Dang, Tran, Iannotta (bib0025) 2018; 255 Gao, Zhang (bib0005) 2018; 277 Navale, Navale, Stadler, Ramgir, Patil (bib0085) 2019; 45 Gönüllü, Rodriguez, Saruhan, Urgen (bib0120) 2012; 169 Luo, Liang, Cao, Dai, Lu, Wang (bib0230) 2015; 7 Zhuang, Han, Huai, Shi, Yu (bib0100) 2019; 279 Zhang, Cheng, Liu, Gao, Zhao, Li, Wang, Liu, Liang, Zhang, Lu (bib0365) 2018; 263 Bae, Kwon, Jeong, Kwon (bib0265) 2017; 32 Wang, Gao, Wu, Kan, Xu, Xie, Li, Shi (bib0135) 2015; 7 Zhang, Liu, Cheng, Gao, Zhao, Li, Liu, Yan, Zhang, Sun, Lu (bib0360) 2018; 261 Lee, Kang, Pak, Lim, Lee, Kumaresan, Lee, Lee, Ham, Jung (bib0040) 2018; 255 Yang, Whitfield, Cho, Cho, Kim, Saltsburg, Tuller (bib0160) 2012; 171–172 Lin, Fan, Tsai (bib0210) 2017; 43 Kotresh, Ravikiran, Vijaya Kumari, Ramana, Batoo (bib0345) 2017; 263 Kim, Ahn, Kang, Cho, Jung, Yoon, Cho (bib0075) 2017; 10 Zhang, Zeng, Zhu, Wu, Xu, Liao, Zhang, Xie (bib0180) 2015; 119 Boggs, Trozzo, Pellissier (bib0250) 1961; 108 Knobelspies, Bierer, Daus, Takabayashi, Salvatore, Cantarella, Perez, Wöllenstein, Palzer, Tröster (bib0165) 2018; 18 Wang, Liu, Wang, Song, Zhou, Han, Chen (bib0030) 2019; 278 Chang, Lin, Chen, Hsu (bib0125) 2014; 40 Mao, Cui, Lu, Yu, Wen, Chen (bib0315) 2012; 22 Wang, Nisar, Ahuja (bib0200) 2012; 4 Hwang, Kim, Lee, Seo, Lee, Cho (bib0220) 2011 Miller, Akbar, Morris (bib0035) 2014; 204 Jeong, Park, Kwon, Joo, Song, Kwon (bib0295) 2018; 44 Cho, Kim (bib0155) 2011; 160 Nguyen, Nguyen, Choi, Han, Kim, Choi (bib0270) 2017; 641 Madhin, Bouzid, Saadoun, Bessaïs (bib0150) 2015; 41 Ervin, Ho, Lineberger (bib0375) 1988; 92 Park, Cho, Kang, Park, Lee (bib0340) 2016; 109 Wang, Men, Zhang, Gu, Han (bib0355) 2018; 263 Wang, Li, Xi, Komarneni, Chen, Xu, Xiang, Xie (bib0130) 2016; 8 Gönüllü (10.1016/j.snb.2019.03.046_bib0120) 2012; 169 Miller (10.1016/j.snb.2019.03.046_bib0290) 2014; 204 Chang (10.1016/j.snb.2019.03.046_bib0125) 2014; 40 Zhao (10.1016/j.snb.2019.03.046_bib0195) 2018; 44 Park (10.1016/j.snb.2019.03.046_bib0340) 2016; 109 Kim (10.1016/j.snb.2019.03.046_bib0185) 2014; 192 Madhin (10.1016/j.snb.2019.03.046_bib0150) 2015; 41 Mao (10.1016/j.snb.2019.03.046_bib0315) 2012; 22 Chatterjee (10.1016/j.snb.2019.03.046_bib0010) 2015; 221 Wang (10.1016/j.snb.2019.03.046_bib0140) 2017; 9 Fortunato (10.1016/j.snb.2019.03.046_bib0215) 2010; 97 Zhou (10.1016/j.snb.2019.03.046_bib0090) 2017; 43 Wang (10.1016/j.snb.2019.03.046_bib0135) 2015; 7 Navale (10.1016/j.snb.2019.03.046_bib0095) 2017; 43 Zhang (10.1016/j.snb.2019.03.046_bib0305) 2017; 243 Nguyen (10.1016/j.snb.2019.03.046_bib0270) 2017; 641 Kim (10.1016/j.snb.2019.03.046_bib0075) 2017; 10 Miller (10.1016/j.snb.2019.03.046_bib0035) 2014; 204 Jiang (10.1016/j.snb.2019.03.046_bib0245) 2015; 327 Cheon (10.1016/j.snb.2019.03.046_bib0065) 2018; 7 Hien (10.1016/j.snb.2019.03.046_bib0055) 2016; 228 Azmi (10.1016/j.snb.2019.03.046_bib0235) 2017; 38 Jeong (10.1016/j.snb.2019.03.046_bib0295) 2018; 44 Luo (10.1016/j.snb.2019.03.046_bib0230) 2015; 7 Sharma (10.1016/j.snb.2019.03.046_bib0110) 2011; 156 Wang (10.1016/j.snb.2019.03.046_bib0030) 2019; 278 Hoa (10.1016/j.snb.2019.03.046_bib0240) 2013; 185 Boggs (10.1016/j.snb.2019.03.046_bib0250) 1961; 108 Hu (10.1016/j.snb.2019.03.046_bib0370) 2018; 6 Zhang (10.1016/j.snb.2019.03.046_bib0365) 2018; 263 Dey (10.1016/j.snb.2019.03.046_bib0050) 2018; 229 Wang (10.1016/j.snb.2019.03.046_bib0355) 2018; 263 Sutka (10.1016/j.snb.2019.03.046_bib0175) 2016; 224 Zhuang (10.1016/j.snb.2019.03.046_bib0100) 2019; 279 Zhang (10.1016/j.snb.2019.03.046_bib0180) 2015; 119 Yun (10.1016/j.snb.2019.03.046_bib0080) 2017; 64 Gao (10.1016/j.snb.2019.03.046_bib0005) 2018; 277 Gu (10.1016/j.snb.2019.03.046_bib0105) 2017; 244 Al-Jawhari (10.1016/j.snb.2019.03.046_bib0225) 2013; 5 Nomura (10.1016/j.snb.2019.03.046_bib0205) 2011; 23 Dong (10.1016/j.snb.2019.03.046_bib0285) 2018; 29 Ling (10.1016/j.snb.2019.03.046_bib0350) 2004; 102 Hwang (10.1016/j.snb.2019.03.046_bib0220) 2011 Lee (10.1016/j.snb.2019.03.046_bib0040) 2018; 255 Hong (10.1016/j.snb.2019.03.046_bib0060) 2016; 232 Li (10.1016/j.snb.2019.03.046_bib0260) 2016; 6 Wang (10.1016/j.snb.2019.03.046_bib0130) 2016; 8 Zhang (10.1016/j.snb.2019.03.046_bib0280) 2016; 108 Yang (10.1016/j.snb.2019.03.046_bib0160) 2012; 171–172 Liang (10.1016/j.snb.2019.03.046_bib0275) 2010; 157 Zhang (10.1016/j.snb.2019.03.046_bib0360) 2018; 261 Zhang (10.1016/j.snb.2019.03.046_bib0310) 2018; 256 Gönüllü (10.1016/j.snb.2019.03.046_bib0115) 2015; 217 Wang (10.1016/j.snb.2019.03.046_bib0190) 2016; 223 Kotresh (10.1016/j.snb.2019.03.046_bib0345) 2017; 263 Knobelspies (10.1016/j.snb.2019.03.046_bib0165) 2018; 18 Xie (10.1016/j.snb.2019.03.046_bib0325) 2014; 614 Lin (10.1016/j.snb.2019.03.046_bib0210) 2017; 43 Jie (10.1016/j.snb.2019.03.046_bib0300) 2015; 220 Zhang (10.1016/j.snb.2019.03.046_bib0320) 2015; 17 Bae (10.1016/j.snb.2019.03.046_bib0265) 2017; 32 Wang (10.1016/j.snb.2019.03.046_bib0200) 2012; 4 Lee (10.1016/j.snb.2019.03.046_bib0145) 2015; 216 Tonezzer (10.1016/j.snb.2019.03.046_bib0025) 2018; 255 Navale (10.1016/j.snb.2019.03.046_bib0085) 2019; 45 Achary (10.1016/j.snb.2019.03.046_bib0015) 2018; 272 (10.1016/j.snb.2019.03.046_bib0020) 2019 Cho (10.1016/j.snb.2019.03.046_bib0155) 2011; 160 Kim (10.1016/j.snb.2019.03.046_bib0070) 2018; 10 Hubner (10.1016/j.snb.2019.03.046_bib0170) 2011; 153 Shin (10.1016/j.snb.2019.03.046_bib0335) 2018; 258 Cho (10.1016/j.snb.2019.03.046_bib0330) 2015; 7 Ervin (10.1016/j.snb.2019.03.046_bib0375) 1988; 92 Zhang (10.1016/j.snb.2019.03.046_bib0045) 2017; 19 Han (10.1016/j.snb.2019.03.046_bib0255) 2016; 6 |
References_xml | – volume: 44 start-page: 17283 year: 2018 end-page: 17289 ident: bib0295 article-title: Low temperature NO publication-title: Ceram. Int. – volume: 44 start-page: 753 year: 2018 end-page: 759 ident: bib0195 article-title: Highly selective NO publication-title: Ceram. Int. – volume: 10 start-page: 10185 year: 2018 end-page: 10193 ident: bib0070 article-title: Toward adequate operation of amorphous oxide thin-film transistors for low-concentration gas detection publication-title: ACS Appl. Mater. Interfaces – volume: 108 start-page: 13 year: 1961 end-page: 24 ident: bib0250 article-title: The oxidation of tin publication-title: J. Electrochem. Soc. – volume: 258 start-page: 574 year: 2018 end-page: 579 ident: bib0335 article-title: An accurate and stable humidity sensing characteristic of Si FET-type humidity sensor with MoS publication-title: Sens. Actuators B Chem. – volume: 229 start-page: 206 year: 2018 end-page: 217 ident: bib0050 article-title: Semiconductor metal oxide gas sensors: a review publication-title: Mater. Sci. Eng. B – volume: 160 start-page: 499 year: 2011 end-page: 504 ident: bib0155 article-title: NO publication-title: Sens. Actuators B Chem. – volume: 641 start-page: 24 year: 2017 end-page: 27 ident: bib0270 article-title: Electrical performance enhancement of p-type tin oxide channel thin film transistor using aluminum doping publication-title: Thin Solid Films – volume: 10 year: 2017 ident: bib0075 article-title: An all oxide-based imperceptible thin-film transistor with humidity sensing properties publication-title: Materials – volume: 156 start-page: 743 year: 2011 end-page: 752 ident: bib0110 article-title: SnO publication-title: Sens. Actuators B Chem. – volume: 64 start-page: 2350 year: 2017 end-page: 2356 ident: bib0080 article-title: Improvement in sensing responses to ammonia gas for gas sensors with separately designed sensing element using ALD- grown ZnO nanoparticles and read-out element of top-gate In-Ga-Zn-O thin-film transistor publication-title: IEEE Trans. Electron Device – volume: 171–172 start-page: 1166 year: 2012 end-page: 1171 ident: bib0160 article-title: Amorphous InGaZnO publication-title: Sens. Actuators B Chem. – volume: 19 start-page: 6313 year: 2017 end-page: 6329 ident: bib0045 article-title: Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration publication-title: Phys. Chem. Chem. Phys. – volume: 43 start-page: 7057 year: 2017 end-page: 7064 ident: bib0095 article-title: Thermally evaporated copper oxide films: a view of annealing effect on physical and gas sensing properties publication-title: Ceram. Int. – volume: 169 start-page: 151 year: 2012 end-page: 160 ident: bib0120 article-title: Improvement of gas sensing performance of TiO publication-title: Sens. Actuators B Chem. – volume: 43 start-page: 8372 year: 2017 end-page: 8377 ident: bib0090 article-title: Cu publication-title: Ceram. Int. – volume: 263 start-page: 687 year: 2017 end-page: 692 ident: bib0345 article-title: Solution based–spin cast processed LPG sensor at room temperature publication-title: Sens. Actuators A Phys. – volume: 108 start-page: 263503 year: 2016 ident: bib0280 article-title: Analysis of carrier transport and band tail states in p-type tin monoxide thin-film transistors by temperature dependent characteristics publication-title: Appl. Phys. Lett. – volume: 32 start-page: 075006 year: 2017 ident: bib0265 article-title: Demonstration of high-performance p-type tin oxide thin-film transistors using argon plasma surface treatments publication-title: Semicond. Sci. Technol. – volume: 279 start-page: 238 year: 2019 end-page: 244 ident: bib0100 article-title: Sub-ppm and high response organic thin-film transistor NO publication-title: Sens. Actuators B Chem. – volume: 18 year: 2018 ident: bib0165 article-title: Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil publication-title: Sensors – volume: 256 start-page: 1001 year: 2018 end-page: 1010 ident: bib0310 article-title: CuInS publication-title: Sens. Actuators B Chem. – volume: 217 start-page: 78 year: 2015 end-page: 87 ident: bib0115 article-title: Nanotubular Cr-doped TiO publication-title: Sens. Actuators B Chem. – volume: 6 start-page: 17120 year: 2018 end-page: 17131 ident: bib0370 article-title: An ultrasensitive NO publication-title: J. Mater. Chem. – start-page: 1 year: 2011 end-page: 4 ident: bib0220 article-title: Irregular electrical conduction types in tin oxide thin films induced by nanoscale phase separation publication-title: J. Am. Ceram. Soc. – volume: 22 start-page: 11009 year: 2012 end-page: 11013 ident: bib0315 article-title: Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals publication-title: J. Mater. Chem. – volume: 4 start-page: 5691 year: 2012 end-page: 5697 ident: bib0200 article-title: Molecular simulation for gas adsorption at NiO (100) surface publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 10867 year: 2014 end-page: 10875 ident: bib0125 article-title: Ce-doped ZnO nanorods based low operation temperature NO publication-title: Ceram. Int. – volume: 43 start-page: 1802 year: 2017 end-page: 1808 ident: bib0210 article-title: Effects of annealing on wettability and physical properties of SnO thin films deposited at low RF power densities publication-title: Ceram. Int. – volume: 6 start-page: 36183 year: 2016 ident: bib0260 article-title: Extremely sensitive dependence of SnO publication-title: Sci. Rep. – volume: 5 start-page: 9615 year: 2013 end-page: 9619 ident: bib0225 article-title: P-Type Cu publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 17930 year: 2015 end-page: 17939 ident: bib0180 article-title: Effect of grain boundaries in NiO nanosheet layers room-temperature sensing mechanism under NO publication-title: J. Phys. Chem. C – volume: 327 start-page: 358 year: 2015 end-page: 363 ident: bib0245 article-title: Influence of rapid-thermal-annealing temperature on properties of rf sputtered SnO publication-title: Appl. Surf. Sci. – volume: 8 start-page: 8600 year: 2016 end-page: 8607 ident: bib0130 article-title: Hierarchical ZnO nanosheet-nanorod architectures for fabrication of poly(3-hexylthiophene)/ZnO hybrid NO publication-title: ACS Appl. Mater. Interfaces – volume: 224 start-page: 260 year: 2016 end-page: 265 ident: bib0175 article-title: Orthorhombic CaFe publication-title: Sens. Actuators B Chem. – volume: 277 start-page: 604 year: 2018 end-page: 633 ident: bib0005 article-title: An overview: facet-dependent metal oxide semiconductor gas sensors publication-title: Sens. Actuators B Chem. – volume: 216 start-page: 482 year: 2015 end-page: 487 ident: bib0145 article-title: Highly selective ppb-level detection of NH publication-title: Sens. Actuators B Chem. – volume: 272 start-page: 100 year: 2018 end-page: 109 ident: bib0015 article-title: Reduced graphene oxide-CuFe publication-title: Sens. Actuators B Chem. – volume: 17 start-page: 14903 year: 2015 end-page: 14911 ident: bib0320 article-title: Room temperature NO publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 14004 year: 2018 end-page: 14010 ident: bib0065 article-title: Thin film transistor gas sensors incorporating high-mobility diketopyrrolopyrole-based polymeric semiconductor doped with graphene oxide publication-title: ACS Appl. Mater. Interfaces – volume: 223 start-page: 311 year: 2016 end-page: 317 ident: bib0190 article-title: Concave Cu publication-title: Sens. Actuators B Chem. – volume: 153 start-page: 347 year: 2011 end-page: 353 ident: bib0170 article-title: Influence of humidity on CO sensing with p-type CuO thick film gas sensors publication-title: Sens. Actuators B Chem. – volume: 192 start-page: 607 year: 2014 end-page: 627 ident: bib0185 article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview publication-title: Sens. Actuators B Chem. – volume: 243 start-page: 1010 year: 2017 end-page: 1019 ident: bib0305 article-title: Enhancing room-temperature NO publication-title: Sens. Actuators B Chem. – volume: 185 start-page: 701 year: 2013 end-page: 705 ident: bib0240 article-title: Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO publication-title: Sens. Actuators B Chem. – volume: 255 start-page: 2785 year: 2018 end-page: 2793 ident: bib0025 article-title: Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor publication-title: Sens. Actuators B Chem. – volume: 204 start-page: 250 year: 2014 end-page: 272 ident: bib0290 article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review publication-title: Sens. Actuators B Chem. – volume: 244 start-page: 67 year: 2017 end-page: 76 ident: bib0105 article-title: Enhanced NO publication-title: Sens. Actuators B Chem. – volume: 157 start-page: H598 year: 2010 end-page: H602 ident: bib0275 article-title: Phase and optical characterizations of annealed SnO thin films and their p-Type TFT application publication-title: ECS Solid State Lett. – volume: 92 start-page: 5405 year: 1988 end-page: 5412 ident: bib0375 article-title: Ultraviolet photoelectron spectrum of NO publication-title: J. Phys. Chem. – volume: 614 start-page: 275 year: 2014 end-page: 281 ident: bib0325 article-title: Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection publication-title: Chem. Phys. Lett. – volume: 23 start-page: 3431 year: 2011 ident: bib0205 article-title: Ambipolar oxide thin-film transistor publication-title: Adv. Mater. – volume: 102 start-page: 102 year: 2004 end-page: 106 ident: bib0350 article-title: The effect of relative humidity on the NO publication-title: Sens. Actuators B Chem. – volume: 97 start-page: 3 year: 2010 end-page: 6 ident: bib0215 article-title: Transparent p-type SnO publication-title: Appl. Phys. Lett. – volume: 278 start-page: 28 year: 2019 end-page: 38 ident: bib0030 article-title: Sputtered SnO publication-title: Sens. Actuators B Chem. – volume: 38 start-page: 1543 year: 2017 end-page: 1546 ident: bib0235 article-title: Performance improvement of p-Channel tin monoxide transistors with a solution-processed zirconium oxide gate dielectric publication-title: IEEE Electron Device Lett. – volume: 261 start-page: 252 year: 2018 end-page: 263 ident: bib0360 article-title: The preparation of reduced graphene oxide-encapsulated α-Fe publication-title: Sens. Actuators B Chem. – year: 2019 ident: bib0020 article-title: Gas Sensors Market – Global Forecast 2023 – volume: 9 start-page: 16335 year: 2017 end-page: 16342 ident: bib0140 article-title: Ultrathin In publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 1513 year: 2019 end-page: 1522 ident: bib0085 article-title: Enhanced NO publication-title: Ceram. Int. – volume: 29 start-page: 2645 year: 2018 end-page: 2653 ident: bib0285 article-title: In publication-title: J. Mater. Sci.-Mater. El. – volume: 255 start-page: 70 year: 2018 end-page: 77 ident: bib0040 article-title: Transfer of preheat-treated SnO publication-title: Sens. Actuators B Chem. – volume: 7 start-page: 27152 year: 2015 end-page: 27159 ident: bib0135 article-title: Designed synthesis of In publication-title: ACS Appl. Mater. Interfaces – volume: 263 start-page: 218 year: 2018 end-page: 228 ident: bib0355 article-title: Pd loading induced excellent NO publication-title: Sens. Actuators B Chem. – volume: 220 start-page: 201 year: 2015 end-page: 209 ident: bib0300 article-title: Graphene-wrapped WO publication-title: Sens. Actuators B Chem. – volume: 109 year: 2016 ident: bib0340 article-title: Elimination of the gate and drain bias stresses in I-V characteristics of WSe publication-title: Appl. Phys. Lett. – volume: 6 start-page: 71757 year: 2016 end-page: 71766 ident: bib0255 article-title: Composition-dependent structural and electrical properties of p-type SnO publication-title: RSC Adv. – volume: 7 start-page: 16775 year: 2015 end-page: 16780 ident: bib0330 article-title: Chemical sensing of 2D Graphene/MoS publication-title: ACS Appl. Mater. Interfaces – volume: 228 start-page: 185 year: 2016 end-page: 191 ident: bib0055 article-title: Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO thin film publication-title: Sens. Actuators B Chem. – volume: 41 start-page: 6552 year: 2015 end-page: 6559 ident: bib0150 article-title: Synthesis and characterization of ITO-ZnO nanocomposite and its application as NO publication-title: Ceram. Int. – volume: 221 start-page: 1170 year: 2015 end-page: 1181 ident: bib0010 article-title: Graphene-metal oxide nanohybrids for toxic gas sensor: a review publication-title: Sens. Actuators B Chem. – volume: 263 start-page: 387 year: 2018 end-page: 399 ident: bib0365 article-title: Room temperature NO publication-title: Sens. Actuators B Chem. – volume: 204 start-page: 250 year: 2014 end-page: 272 ident: bib0035 article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review publication-title: Sens. Actuators B Chem. – volume: 7 start-page: 17023 year: 2015 end-page: 17031 ident: bib0230 article-title: Control of ambipolar transport in SnO thin-film transistors by back-channel surface passivation for high performance complementary-like inverters publication-title: ACS Appl. Mater. Interfaces – volume: 232 start-page: 653 year: 2016 end-page: 659 ident: bib0060 article-title: Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate publication-title: Sens. Actuators B Chem. – volume: 169 start-page: 151 year: 2012 ident: 10.1016/j.snb.2019.03.046_bib0120 article-title: Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.04.050 – volume: 171–172 start-page: 1166 year: 2012 ident: 10.1016/j.snb.2019.03.046_bib0160 article-title: Amorphous InGaZnO4 films: gas sensor response and stability publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.06.057 – volume: 43 start-page: 1802 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0210 article-title: Effects of annealing on wettability and physical properties of SnO thin films deposited at low RF power densities publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.10.138 – volume: 261 start-page: 252 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0360 article-title: The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.01.143 – volume: 216 start-page: 482 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0145 article-title: Highly selective ppb-level detection of NH3 and NO2 gas using patterned porous channels of ITO nanoparticles publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.04.057 – volume: 10 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0075 article-title: An all oxide-based imperceptible thin-film transistor with humidity sensing properties publication-title: Materials – volume: 7 start-page: 16775 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0330 article-title: Chemical sensing of 2D Graphene/MoS2 heterostructure device publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04541 – volume: 223 start-page: 311 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0190 article-title: Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene(C6H6) and nitrogen dioxide (NO2) detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.09.114 – volume: 92 start-page: 5405 year: 1988 ident: 10.1016/j.snb.2019.03.046_bib0375 article-title: Ultraviolet photoelectron spectrum of NO2− publication-title: J. Phys. Chem. doi: 10.1021/j100330a017 – volume: 7 start-page: 14004 issue: 25 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0065 article-title: Thin film transistor gas sensors incorporating high-mobility diketopyrrolopyrole-based polymeric semiconductor doped with graphene oxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03059 – volume: 108 start-page: 13 year: 1961 ident: 10.1016/j.snb.2019.03.046_bib0250 article-title: The oxidation of tin publication-title: J. Electrochem. Soc. doi: 10.1149/1.2428003 – volume: 156 start-page: 743 year: 2011 ident: 10.1016/j.snb.2019.03.046_bib0110 article-title: SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.02.033 – year: 2019 ident: 10.1016/j.snb.2019.03.046_bib0020 – volume: 10 start-page: 10185 issue: 12 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0070 article-title: Toward adequate operation of amorphous oxide thin-film transistors for low-concentration gas detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18657 – volume: 97 start-page: 3 year: 2010 ident: 10.1016/j.snb.2019.03.046_bib0215 article-title: Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing publication-title: Appl. Phys. Lett. doi: 10.1063/1.3469939 – volume: 29 start-page: 2645 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0285 article-title: In2O3-decorated ordered mesoporous NiO for enhanced NO2 sensing at room temperature publication-title: J. Mater. Sci.-Mater. El. doi: 10.1007/s10854-017-8190-x – volume: 255 start-page: 70 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0040 article-title: Transfer of preheat-treated SnO2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.08.025 – volume: 272 start-page: 100 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0015 article-title: Reduced graphene oxide-CuFe2O4 nanocomposite: a highly sensitive room temperature NH3 gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.05.093 – volume: 7 start-page: 27152 issue: 49 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0135 article-title: Designed synthesis of In2O3 Beads@TiO2-In2O3 composite nanofibers for high performance NO2 sensor at room temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09496 – volume: 614 start-page: 275 year: 2014 ident: 10.1016/j.snb.2019.03.046_bib0325 article-title: Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.09.028 – volume: 157 start-page: H598 year: 2010 ident: 10.1016/j.snb.2019.03.046_bib0275 article-title: Phase and optical characterizations of annealed SnO thin films and their p-Type TFT application publication-title: ECS Solid State Lett. – volume: 185 start-page: 701 year: 2013 ident: 10.1016/j.snb.2019.03.046_bib0240 article-title: Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.05.050 – volume: 224 start-page: 260 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0175 article-title: Orthorhombic CaFe2O4: a promising p-type gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.10.041 – volume: 17 start-page: 14903 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0320 article-title: Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposites have over pristine NiO? publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01987G – volume: 263 start-page: 387 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0365 article-title: Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.02.117 – volume: 23 start-page: 3431 year: 2011 ident: 10.1016/j.snb.2019.03.046_bib0205 article-title: Ambipolar oxide thin-film transistor publication-title: Adv. Mater. doi: 10.1002/adma.201101410 – volume: 41 start-page: 6552 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0150 article-title: Synthesis and characterization of ITO-ZnO nanocomposite and its application as NO2 gas sensor publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.01.098 – volume: 263 start-page: 687 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0345 article-title: Solution based–spin cast processed LPG sensor at room temperature publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.07.026 – volume: 44 start-page: 17283 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0295 article-title: Low temperature NO2 sensing properties of RF-sputtered SnO-SnO2 heterojunction thin-film with p-type semiconducting behavior publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.06.189 – volume: 255 start-page: 2785 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0025 article-title: Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.09.094 – volume: 18 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0165 article-title: Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil publication-title: Sensors doi: 10.3390/s18020358 – volume: 256 start-page: 1001 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0310 article-title: CuInS2 QDs decorated ring-like NiO for significantly enhanced room-temperature NO2 sensing performances via effective interfacial charge transfer publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.10.044 – volume: 22 start-page: 11009 year: 2012 ident: 10.1016/j.snb.2019.03.046_bib0315 article-title: Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals publication-title: J. Mater. Chem. doi: 10.1039/c2jm30378g – volume: 277 start-page: 604 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0005 article-title: An overview: facet-dependent metal oxide semiconductor gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.08.129 – volume: 204 start-page: 250 year: 2014 ident: 10.1016/j.snb.2019.03.046_bib0290 article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.07.074 – volume: 229 start-page: 206 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0050 article-title: Semiconductor metal oxide gas sensors: a review publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2017.12.036 – volume: 232 start-page: 653 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0060 article-title: Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.04.010 – volume: 6 start-page: 17120 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0370 article-title: An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower publication-title: J. Mater. Chem. doi: 10.1039/C8TA04404J – volume: 204 start-page: 250 year: 2014 ident: 10.1016/j.snb.2019.03.046_bib0035 article-title: Nanoscale metal oxide-based heterojunctions for gas sensing: a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.07.074 – volume: 192 start-page: 607 year: 2014 ident: 10.1016/j.snb.2019.03.046_bib0185 article-title: Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.11.005 – volume: 32 start-page: 075006 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0265 article-title: Demonstration of high-performance p-type tin oxide thin-film transistors using argon plasma surface treatments publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aa72b8 – volume: 221 start-page: 1170 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0010 article-title: Graphene-metal oxide nanohybrids for toxic gas sensor: a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.07.070 – volume: 244 start-page: 67 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0105 article-title: Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.12.125 – volume: 43 start-page: 7057 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0095 article-title: Thermally evaporated copper oxide films: a view of annealing effect on physical and gas sensing properties publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.02.135 – volume: 45 start-page: 1513 year: 2019 ident: 10.1016/j.snb.2019.03.046_bib0085 article-title: Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.10.022 – volume: 6 start-page: 71757 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0255 article-title: Composition-dependent structural and electrical properties of p-type SnOX thin films prepared by reactive DC magnetron sputtering: effects of oxygen pressure and heat treatment publication-title: RSC Adv. doi: 10.1039/C6RA08726D – volume: 4 start-page: 5691 issue: 10 year: 2012 ident: 10.1016/j.snb.2019.03.046_bib0200 article-title: Molecular simulation for gas adsorption at NiO (100) surface publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3016894 – volume: 217 start-page: 78 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0115 article-title: Nanotubular Cr-doped TiO2 for use as high-temperature NO2 gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.11.065 – volume: 7 start-page: 17023 issue: 15 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0230 article-title: Control of ambipolar transport in SnO thin-film transistors by back-channel surface passivation for high performance complementary-like inverters publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02964 – volume: 258 start-page: 574 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0335 article-title: An accurate and stable humidity sensing characteristic of Si FET-type humidity sensor with MoS2 as a sensing layer by pulse measurement publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.11.132 – volume: 38 start-page: 1543 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0235 article-title: Performance improvement of p-Channel tin monoxide transistors with a solution-processed zirconium oxide gate dielectric publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2758349 – volume: 327 start-page: 358 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0245 article-title: Influence of rapid-thermal-annealing temperature on properties of rf sputtered SnOx thin films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.11.115 – volume: 6 start-page: 36183 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0260 article-title: Extremely sensitive dependence of SnOx film properties on sputtering power publication-title: Sci. Rep. doi: 10.1038/srep36183 – volume: 19 start-page: 6313 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0045 article-title: Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP07799D – volume: 8 start-page: 8600 issue: 13 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0130 article-title: Hierarchical ZnO nanosheet-nanorod architectures for fabrication of poly(3-hexylthiophene)/ZnO hybrid NO2 sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12553 – volume: 279 start-page: 238 year: 2019 ident: 10.1016/j.snb.2019.03.046_bib0100 article-title: Sub-ppm and high response organic thin-film transistor NO2 sensor based on nanofibrillar structured TIPS-pentacene publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.10.002 – volume: 263 start-page: 218 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0355 article-title: Pd loading induced excellent NO2 gas sensing of 3DOM In2O3 at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.02.105 – volume: 243 start-page: 1010 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0305 article-title: Enhancing room-temperature NO2 sensing properties via forming heterojunction for NiO-rGO composited with SnO2 nanoplates publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.12.062 – volume: 43 start-page: 8372 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0090 article-title: Cu2O quantum dots modified by RGO nanosheets for ultrasensitive and selective NO2 gas detection publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.179 – volume: 102 start-page: 102 year: 2004 ident: 10.1016/j.snb.2019.03.046_bib0350 article-title: The effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2004.02.017 – volume: 109 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0340 article-title: Elimination of the gate and drain bias stresses in I-V characteristics of WSe2 FETs by using dual channel pulse measurement publication-title: Appl. Phys. Lett. doi: 10.1063/1.4960459 – volume: 220 start-page: 201 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0300 article-title: Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.05.047 – volume: 119 start-page: 17930 year: 2015 ident: 10.1016/j.snb.2019.03.046_bib0180 article-title: Effect of grain boundaries in NiO nanosheet layers room-temperature sensing mechanism under NO2 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04940 – start-page: 1 year: 2011 ident: 10.1016/j.snb.2019.03.046_bib0220 article-title: Irregular electrical conduction types in tin oxide thin films induced by nanoscale phase separation publication-title: J. Am. Ceram. Soc. – volume: 641 start-page: 24 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0270 article-title: Electrical performance enhancement of p-type tin oxide channel thin film transistor using aluminum doping publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.01.032 – volume: 40 start-page: 10867 year: 2014 ident: 10.1016/j.snb.2019.03.046_bib0125 article-title: Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.03.080 – volume: 44 start-page: 753 year: 2018 ident: 10.1016/j.snb.2019.03.046_bib0195 article-title: Highly selective NO2 sensor based on p-type nanocrystalline NiO thin films prepared by sol–gel dip coating publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.09.243 – volume: 5 start-page: 9615 issue: 19 year: 2013 ident: 10.1016/j.snb.2019.03.046_bib0225 article-title: P-Type Cu2O/SnO bilayer thin film transistors processed at low temperatures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402542j – volume: 108 start-page: 263503 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0280 article-title: Analysis of carrier transport and band tail states in p-type tin monoxide thin-film transistors by temperature dependent characteristics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4955124 – volume: 64 start-page: 2350 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0080 article-title: Improvement in sensing responses to ammonia gas for gas sensors with separately designed sensing element using ALD- grown ZnO nanoparticles and read-out element of top-gate In-Ga-Zn-O thin-film transistor publication-title: IEEE Trans. Electron Device doi: 10.1109/TED.2017.2679239 – volume: 153 start-page: 347 year: 2011 ident: 10.1016/j.snb.2019.03.046_bib0170 article-title: Influence of humidity on CO sensing with p-type CuO thick film gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2010.10.046 – volume: 228 start-page: 185 year: 2016 ident: 10.1016/j.snb.2019.03.046_bib0055 article-title: Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO thin film publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.12.105 – volume: 9 start-page: 16335 issue: 19 year: 2017 ident: 10.1016/j.snb.2019.03.046_bib0140 article-title: Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04395 – volume: 278 start-page: 28 year: 2019 ident: 10.1016/j.snb.2019.03.046_bib0030 article-title: Sputtered SnO2:NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.09.074 – volume: 160 start-page: 499 year: 2011 ident: 10.1016/j.snb.2019.03.046_bib0155 article-title: NO2 gas sensing properties of amorphous InGaZnO4 submicron-tubes prepared by polymeric fiber templating route publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.08.017 |
SSID | ssj0004360 |
Score | 2.4909139 |
Snippet | •A p-type metal oxide semiconductor-based TFT-type gas sensor was studied for the first time by using SnOX for both the channel and sensing layers.•The... The high-performance p-type metal-oxide-semiconductor (MOS)-based gas sensor is an important subject of research in the field of gas-sensing technology. In... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 625 |
SubjectTerms | Ammonia Chemical bonds Detection Field effect transistors Field emission microscopy Gas sensors Gases Hydrogen sulfide Metal oxides Morphology Nitrogen dioxide NO2 gas sensing Organic chemistry P-type metal oxide semiconductor P-type semiconductors Photoelectrons Room temperature Scanning electron microscopy Selectivity Semiconductor devices Sensitivity Sensors SnO SnOX Thin film transistors Thin-film transistor Tin Tin oxides Transistors X-ray diffraction |
Title | Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOX-based p-type thin-film transistor |
URI | https://dx.doi.org/10.1016/j.snb.2019.03.046 https://www.proquest.com/docview/2221801100 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BSFUnlgQjJ1EudrrCqqAqIdSqVulu0kJaikFQlDF347PicBilAHRke-KPJd7p2Td88IXekwsQD4SRxGimi8ZSQIEoto8JGBpMr1GDQnP4684ZTdz9xZA_XrXhigVVa5v8zpJltXV7rVanZXadqd0FBvbsoSBBpMQROUMR-i_Objm-bBHNMpDJMJzK7_bBqOV55JYHeVOqdQA_-NTb-ytIGewQHar2pG3Csf6xA14uwI7f1QEjxGa-BrLNY4Bz46ZDAssgjn5pAbGEF9TECGqtJQxqOxjeciJ8Ygm2O1KdyMlwmeZOMZAZSL8IrAp1pcPKcZSdLFKy4A4ozCyAmaDm6f-kNSnapAlAargsSuz2Jd9yWWcJmIEhYK19X-sS0VOZIyIRKXeoKqQDq-cJTneJLGoBMmoWVBOaeomS2z-AxhJvxAuNRWYRyy0JMiCv2I2bay9a7LTpIWovV6clVJjsPJFwtec8teuHYBBxdw6nDtgha6_jJZlXob2yaz2kl8I2i4xoNtZu3aobx6Y3Ou6yQrMAJ65_-76wXahVFJI2ujZvH2Hl_qgqWQHRORHbTTu3sYjj4BwD_qWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SkKBTwwIZk6iZMmI6pABfoxtJW6WbaTlKKSViQMXfjt-JwEKEIdGJPYUeSz752dd-8QutLTxALgJ1EQKqLxlhHfjy2iwUf6kirXY5Cc3O157RF7HLvjCmqVuTBAqyx8f-7Tjbcu7jSK0WwsptPGgAZ6c5OHIJBgyjbQJtPLF8oY3Hx88zyYY1KFoTWB5uWvTUPyShMJ9K5c6BSC4L_B6ZebNthzv4d2i6AR3-bftY8qUXKAdn5ICR6iJRA2ZkucAiEdXBgWSYhTU-UGriBAJqBDVYgo417fxhOREtMhmWC1qtyM5zEeJP0xAZgL8YLAWS3OnqcJiaezV5wBxhmJkSM0ur8bttqkKKtAlEarjERuk0U68Ist4TIRxiwQrqsNZFsqdCRlQsQu9QRVvnSawlGe40kagVCYhJwF5RyjajJPohOEmWj6wqW2CqKABZ4UYdAMmW0rW2-77DiuIVqOJ1eF5jiUvpjxklz2wrUJOJiAU4drE9TQ9VeXRS64sa4xK43EV2YN14Cwrlu9NCgvlmzKdaBk-UZB7_R_b71EW-1ht8M7D72nM7QNT3JOWR1Vs7f36FxHL5m8MLPzEyas6-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+and+selective+room-temperature+NO2+gas-sensing+characteristics+of+SnOX-based+p-type+thin-film+transistor&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Jeong%2C+Hwan-Seok&rft.au=Park%2C+Min-Jae&rft.au=Kwon%2C+Soo-Hun&rft.au=Joo%2C+Hyo-Jun&rft.date=2019-06-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=B288&rft.spage=625&rft_id=info:doi/10.1016%2Fj.snb.2019.03.046&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |