The relevance of DHA with modulating of host-gut microbiome signatures alterations and repairing of lipids metabolism shifts

Huge of previous reports recommended that gut microbiome have a crucial role in the human health and its change was profound impact for the metabolic improvements associated with lipids metabolism. In order to explore the relevance of a direct dysbiosis effect of gut microbiome on lipids metabolism...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmacology Vol. 895; p. 173885
Main Authors Yu, Haining, Fang, Chengjie, Li, Peng, Wu, Manman, Shen, Shengrong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Huge of previous reports recommended that gut microbiome have a crucial role in the human health and its change was profound impact for the metabolic improvements associated with lipids metabolism. In order to explore the relevance of a direct dysbiosis effect of gut microbiome on lipids metabolism shifts and repaired position of DHA, we built the animal model for the study with gut microbiome dysbiosis administrated by i.g. with CRO and intervened by DHA in the present work. Gut microbiome was analyzed by high throughput sequencing and bioinformatics analyses of bacteria. The composition of fatty acids and short chain fatty acids (SCFAs) were determined by gas chromatography. Blood lipids and bile acids were assayed by kit and UPLC-MS/MS, respectively. The expressions of enzymes of long chain fatty acid metabolism were analyzed by qRT-PCR. The results showed that gut microbiome dysbiosis caused lipid metabolism abnormal, and DHA was able to repair the lipids metabolism shifts resulted from gut microbiome dysbiosis. DHA could modulate host-gut microbiome signatures, improve concentrations of SCFAs, regulate fatty acids metabolism but modify bile acid profiles. In conclusion, we considered that DHA repaired lipid metabolism by modulating gut microbiome and regulating fatty acids metabolism pathway.
AbstractList Huge of previous reports recommended that gut microbiome have a crucial role in the human health and its change was profound impact for the metabolic improvements associated with lipids metabolism. In order to explore the relevance of a direct dysbiosis effect of gut microbiome on lipids metabolism shifts and repaired position of DHA, we built the animal model for the study with gut microbiome dysbiosis administrated by i.g. with CRO and intervened by DHA in the present work. Gut microbiome was analyzed by high throughput sequencing and bioinformatics analyses of bacteria. The composition of fatty acids and short chain fatty acids (SCFAs) were determined by gas chromatography. Blood lipids and bile acids were assayed by kit and UPLC-MS/MS, respectively. The expressions of enzymes of long chain fatty acid metabolism were analyzed by qRT-PCR. The results showed that gut microbiome dysbiosis caused lipid metabolism abnormal, and DHA was able to repair the lipids metabolism shifts resulted from gut microbiome dysbiosis. DHA could modulate host-gut microbiome signatures, improve concentrations of SCFAs, regulate fatty acids metabolism but modify bile acid profiles. In conclusion, we considered that DHA repaired lipid metabolism by modulating gut microbiome and regulating fatty acids metabolism pathway.
Huge of previous reports recommended that gut microbiome have a crucial role in the human health and its change was profound impact for the metabolic improvements associated with lipids metabolism. In order to explore the relevance of a direct dysbiosis effect of gut microbiome on lipids metabolism shifts and repaired position of DHA, we built the animal model for the study with gut microbiome dysbiosis administrated by i.g. with CRO and intervened by DHA in the present work. Gut microbiome was analyzed by high throughput sequencing and bioinformatics analyses of bacteria. The composition of fatty acids and short chain fatty acids (SCFAs) were determined by gas chromatography. Blood lipids and bile acids were assayed by kit and UPLC-MS/MS, respectively. The expressions of enzymes of long chain fatty acid metabolism were analyzed by qRT-PCR. The results showed that gut microbiome dysbiosis caused lipid metabolism abnormal, and DHA was able to repair the lipids metabolism shifts resulted from gut microbiome dysbiosis. DHA could modulate host-gut microbiome signatures, improve concentrations of SCFAs, regulate fatty acids metabolism but modify bile acid profiles. In conclusion, we considered that DHA repaired lipid metabolism by modulating gut microbiome and regulating fatty acids metabolism pathway.Huge of previous reports recommended that gut microbiome have a crucial role in the human health and its change was profound impact for the metabolic improvements associated with lipids metabolism. In order to explore the relevance of a direct dysbiosis effect of gut microbiome on lipids metabolism shifts and repaired position of DHA, we built the animal model for the study with gut microbiome dysbiosis administrated by i.g. with CRO and intervened by DHA in the present work. Gut microbiome was analyzed by high throughput sequencing and bioinformatics analyses of bacteria. The composition of fatty acids and short chain fatty acids (SCFAs) were determined by gas chromatography. Blood lipids and bile acids were assayed by kit and UPLC-MS/MS, respectively. The expressions of enzymes of long chain fatty acid metabolism were analyzed by qRT-PCR. The results showed that gut microbiome dysbiosis caused lipid metabolism abnormal, and DHA was able to repair the lipids metabolism shifts resulted from gut microbiome dysbiosis. DHA could modulate host-gut microbiome signatures, improve concentrations of SCFAs, regulate fatty acids metabolism but modify bile acid profiles. In conclusion, we considered that DHA repaired lipid metabolism by modulating gut microbiome and regulating fatty acids metabolism pathway.
ArticleNumber 173885
Author Yu, Haining
Fang, Chengjie
Li, Peng
Shen, Shengrong
Wu, Manman
Author_xml – sequence: 1
  givenname: Haining
  surname: Yu
  fullname: Yu, Haining
  email: yuhaining@zjut.edu.cn
  organization: College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Chengjie
  surname: Fang
  fullname: Fang, Chengjie
  organization: College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Peng
  surname: Li
  fullname: Li, Peng
  organization: Department of Geratoloy, The Third People's Hospital of Hangzhou, Hangzhou, China
– sequence: 4
  givenname: Manman
  surname: Wu
  fullname: Wu, Manman
  organization: College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
– sequence: 5
  givenname: Shengrong
  surname: Shen
  fullname: Shen, Shengrong
  organization: Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33482183$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFTEUxYNU7Gv1G4hk6Wae-TN5k3EhlGpboeCmrkMmc_Mmj8xkTDItgh_ePOd140LhQi7hnAP3_C7Q2RQmQOgtJVtK6O7DYQuHedBxywijW9pwKcULtKGyaSvSUHaGNoTQumJt256ji5QOhBDRMvEKnXNeS0Yl36BfDwPgCB4e9WQAB4s_313hJ5cHPIZ-8Tq7aX_8HkLK1X7JeHQmhs6FEXBy-0nnJULC2meIRRymsk99iZy1iyevd7PrEx4h6y54l0acBmdzeo1eWu0TvDm9l-j7zZeH67vq_tvt1-ur-8rwHcsVcFsL2re0tZ3lfVNbYQ3jIIwuw6Ste0a5oMA0ocRKqhtq2I50jEjJWsEv0fs1d47hxwIpq9ElA97rCcKSFKslYYIIUhfpu5N06Ubo1RzdqONP9dxYEXxcBaWFlCJYZVz-c3iO2nlFiTriUQe14lFHPGrFU8z1X-bn_P_YPq02KCU9OogqGQeFV-8imKz64P4d8BtplKzO
CitedBy_id crossref_primary_10_1016_j_fbio_2024_103875
crossref_primary_10_1016_j_crfs_2022_100427
crossref_primary_10_3390_nu14153150
crossref_primary_10_1016_j_fct_2021_112699
crossref_primary_10_3389_fnut_2022_870343
crossref_primary_10_1016_j_foodres_2022_111373
Cites_doi 10.1038/s41598-019-40272-8
10.1016/j.foodres.2017.04.024
10.1002/biof.1495
10.1038/nature11400
10.1038/nrmicro2536
10.1039/C8FO01404C
10.3390/nu10060761
10.1039/C9FO00766K
10.1128/mSystems.00070-16
10.1039/C9FO00263D
10.1038/s41467-019-11978-0
10.3389/fmicb.2019.01809
10.1194/jlr.M046151
10.1016/j.plipres.2019.101008
10.1016/j.tem.2017.11.002
10.1039/C7FO00094D
10.1007/s00125-011-2097-5
10.3389/fmicb.2019.03141
10.1038/s41598-019-38874-3
10.3390/nu11112606
10.1016/j.jnutbio.2018.01.001
10.1021/acs.jafc.7b01803
10.1186/s40168-019-0628-3
10.1016/j.bbi.2018.11.005
10.1016/j.bpg.2003.10.002
10.1017/S0007114514000117
10.2217/fmb-2015-0024
10.3390/ijms18122645
10.1017/S0007114517002380
10.3390/nu10091298
10.3920/BM2019.0034
10.1016/j.toxlet.2018.08.002
10.1097/MPG.0b013e31821d298f
10.1016/j.envpol.2017.03.068
10.1016/j.jhep.2017.11.014
10.1038/s41598-017-10382-2
10.1093/toxsci/kfw150
10.1002/biof.1246
10.1194/jlr.M800383-JLR200
10.1038/nature05414
10.1002/hep.29857
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ejphar.2021.173885
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1879-0712
ExternalDocumentID 33482183
10_1016_j_ejphar_2021_173885
S0014299921000388
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSP
T5K
TEORI
~G-
.55
.GJ
29G
3O-
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HMT
HVGLF
HZ~
R2-
RIG
SEW
SNS
SPT
SSH
SSZ
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-e3f451d919fbf3d74f5fc23e5ca5ca28f4d21351e2a010f81a71c260b20882953
IEDL.DBID .~1
ISSN 0014-2999
1879-0712
IngestDate Fri Jul 11 04:18:52 EDT 2025
Thu Apr 03 07:00:27 EDT 2025
Tue Jul 01 01:33:42 EDT 2025
Thu Apr 24 23:16:10 EDT 2025
Fri Feb 23 02:40:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lipids metabolism
Bile acids
DHA
Gut microbiome
Fatty acids
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-e3f451d919fbf3d74f5fc23e5ca5ca28f4d21351e2a010f81a71c260b20882953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33482183
PQID 2480250504
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2480250504
pubmed_primary_33482183
crossref_citationtrail_10_1016_j_ejphar_2021_173885
crossref_primary_10_1016_j_ejphar_2021_173885
elsevier_sciencedirect_doi_10_1016_j_ejphar_2021_173885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle European journal of pharmacology
PublicationTitleAlternate Eur J Pharmacol
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Turnbaugh, Ley, Mahowald, Magrini, Mardis, Gordon (bib36) 2006; 444
Behr, Ramírez-Hincapié, Cameron, Strauss, Walk, Herold, Beekmann, Rietjens, van Ravenzwaay (bib4) 2018; 296
Moon, Hammer, Horton (bib27) 2009; 50
Li, Zhang, Xue, Yang, Dong, Sha, Lei, Zhang, Zhu, Wang, Li, Wang, Liu, Dong, He (bib19) 2019; 10
Ramos-Romero, Hereu, Molinar-Toribio, Almajano, Méndez, Medina, Taltavull, Romeu, Nogués, Torres (bib32) 2017; 97
Hereu, Ramos-Romero, Marín-Valls, Amézqueta, Miralles-Pérez, Romeu, Méndez, Medina, Torres (bib12) 2019; 11
Huang, Pang, Li, You, Zhao, Cheung, Zhang, Liu (bib14) 2019; 10
Yu, Yu, Huang, Li, Tang, Wang, Shen (bib42) 2019; 45
Miyamoto, Igarashi, Watanabe, Karaki, Mukouyama, Kishino, Li, Ichimura, Irie, Sugimoto, Mizutani, Sugawara, Miki, Ogawa, Drucker, Arita, Itoh, Kimura (bib25) 2019; 10
Yang, Zhang, Xu, Luo, Ge, Jiang, Shi, Sun, Le (bib41) 2019; 10
Molinaro, Wahlström, Marschall (bib26) 2018; 29
Wan, Hu, Jacoby, Liu, Zhang, Yu (bib37) 2017; 8
Patterson, O’ Doherty, Murphy, Wall, O’ Sullivan, Nilaweera, Fitzgerald, Cotter, Ross, Stanton (bib29) 2014; 111
Metherel, Bazinet (bib24) 2019; 76
Kok, Rusli, van der Lugt, Lute, Laghi, Salvioli, Picone, Franceschi, Smidt, Vervoort, Kampman, Müller, Steegenga (bib17) 2018; 56
Song, Cai, Lao, Wang, Lin, Cui, Kalavagunta, Liao, Jin, Shang, Li (bib35) 2019; 7
Cho, Yamanishi, Cox, Methé, Zavadil, Li, Gao, Mahana, Raju, Teitler, Li, Alekseyenko, Blaser (bib6) 2012; 488
Horigome, Okubo, Hamazaki, Kinoshita, Katsumata, Uezono, Xiao, Matsuoka (bib13) 2019; 10
Peng, Huang, Yang, Zhang, Yu, Fayyaz, Zhang, Qin (bib31) 2019; 10
Jin, Wu, Zeng, Jin, Wu, Wang, Fu (bib16) 2016; 154
Andersen, Mølbak, Michaelsen, Lauritzen (bib2) 2011; 53
Liu, Shao, Zhang, Xu, Wang, Liu, Sun, Jiang, Gu (bib21) 2017; 226
Pauter, Olsson, Asadi, Herslöf, Csikasz, Zadravec, Jacobsson (bib30) 2014; 55
Menni, Zierer, Pallister, Jackson, Long, Mohney, Steves, Spector, Valdes (bib23) 2017; 7
Zheng, Zhou, Zhang, Han, Zhao, Liu, Qu, Ge, Huang, Hernandez, Yu, Panee, Chen, Jia, Jia (bib45) 2018; 32
Xu, Nie, Yang, Lu (bib40) 2016; 11
Zhang, Wu, Li, Xin, Liu (bib43) 2019; 63
Zhang, Xie, Nichols, Chan, Jiang, Hao, Smith, Cai, Simons, Hatzakis, Maranas, Gonzalez, Patterson (bib44) 2016; 1
Liu, Liu, Fu, Zhang, Zhu, Zheng, Liu (bib20) 2018; 10
Ghaffarzadegan, Essén, Verbrugghe, Marungruang, Hållenius, Nyman, Sandahl (bib9) 2019; 9
Willing, Russell, Finlay (bib39) 2011; 9
Hantsoo, Jašarević, Criniti, McGeehan, Tanes, Sammel, Elovitz, Compher, Wu, Epperson (bib11) 2019; 75
Huang, Wang, Li, Kang (bib15) 2015; 41
Salazar, Neyrinck, Bindels, Druart, Ruas-Madiedo, Cani, de Los Reyes-Gavilán, Delzenne (bib33) 2019; 10
Costantini, Molinari, Farinon, Merendino (bib7) 2017; 18
Do, Lee, Oh, Kim, Park (bib8) 2018; 10
Pathak, Xie, Nichols, Ferrell, Boehme, Krausz, Patterson, Gonzalez, Chiang (bib28) 2018; 68
Cao, Wang, Chin, Chen, Gao, Yuan, Xue, Wang, Tang (bib5) 2019; 10
Beaugerie, Petit (bib3) 2004; 18
Zhou, Wang, Jacoby, Jiang, Zhang, Yu (bib46) 2017; 65
Song, Tian, Kwok, Wang, Shang, Menghe, Wang (bib34) 2017; 118
Alam, Bittoun, Bhagwat, Valkonen, Saari, Jaakkola, Eerola, Huovinen, Hänninen (bib1) 2011; 54
Marra, Svegliati-Baroni (bib22) 2018; 68
Granado-Serrano, Martín-Garí, Sánchez, Riart Solans, Berdún, Ludwig, Rubió, Vilaprinyó, Portero-Otín, Serrano (bib10) 2019; 9
Andersen (10.1016/j.ejphar.2021.173885_bib2) 2011; 53
Granado-Serrano (10.1016/j.ejphar.2021.173885_bib10) 2019; 9
Xu (10.1016/j.ejphar.2021.173885_bib40) 2016; 11
Song (10.1016/j.ejphar.2021.173885_bib35) 2019; 7
Salazar (10.1016/j.ejphar.2021.173885_bib33) 2019; 10
Costantini (10.1016/j.ejphar.2021.173885_bib7) 2017; 18
Hereu (10.1016/j.ejphar.2021.173885_bib12) 2019; 11
Ghaffarzadegan (10.1016/j.ejphar.2021.173885_bib9) 2019; 9
Marra (10.1016/j.ejphar.2021.173885_bib22) 2018; 68
Horigome (10.1016/j.ejphar.2021.173885_bib13) 2019; 10
Peng (10.1016/j.ejphar.2021.173885_bib31) 2019; 10
Miyamoto (10.1016/j.ejphar.2021.173885_bib25) 2019; 10
Kok (10.1016/j.ejphar.2021.173885_bib17) 2018; 56
Yu (10.1016/j.ejphar.2021.173885_bib42) 2019; 45
Molinaro (10.1016/j.ejphar.2021.173885_bib26) 2018; 29
Cho (10.1016/j.ejphar.2021.173885_bib6) 2012; 488
Alam (10.1016/j.ejphar.2021.173885_bib1) 2011; 54
Behr (10.1016/j.ejphar.2021.173885_bib4) 2018; 296
Liu (10.1016/j.ejphar.2021.173885_bib21) 2017; 226
Ramos-Romero (10.1016/j.ejphar.2021.173885_bib32) 2017; 97
Hantsoo (10.1016/j.ejphar.2021.173885_bib11) 2019; 75
Pauter (10.1016/j.ejphar.2021.173885_bib30) 2014; 55
Wan (10.1016/j.ejphar.2021.173885_bib37) 2017; 8
Pathak (10.1016/j.ejphar.2021.173885_bib28) 2018; 68
Beaugerie (10.1016/j.ejphar.2021.173885_bib3) 2004; 18
Yang (10.1016/j.ejphar.2021.173885_bib41) 2019; 10
Huang (10.1016/j.ejphar.2021.173885_bib15) 2015; 41
Zhou (10.1016/j.ejphar.2021.173885_bib46) 2017; 65
Patterson (10.1016/j.ejphar.2021.173885_bib29) 2014; 111
Liu (10.1016/j.ejphar.2021.173885_bib20) 2018; 10
Do (10.1016/j.ejphar.2021.173885_bib8) 2018; 10
Huang (10.1016/j.ejphar.2021.173885_bib14) 2019; 10
Menni (10.1016/j.ejphar.2021.173885_bib23) 2017; 7
Zheng (10.1016/j.ejphar.2021.173885_bib45) 2018; 32
Moon (10.1016/j.ejphar.2021.173885_bib27) 2009; 50
Zhang (10.1016/j.ejphar.2021.173885_bib44) 2016; 1
Li (10.1016/j.ejphar.2021.173885_bib19) 2019; 10
Cao (10.1016/j.ejphar.2021.173885_bib5) 2019; 10
Metherel (10.1016/j.ejphar.2021.173885_bib24) 2019; 76
Turnbaugh (10.1016/j.ejphar.2021.173885_bib36) 2006; 444
Willing (10.1016/j.ejphar.2021.173885_bib39) 2011; 9
Zhang (10.1016/j.ejphar.2021.173885_bib43) 2019; 63
Jin (10.1016/j.ejphar.2021.173885_bib16) 2016; 154
Song (10.1016/j.ejphar.2021.173885_bib34) 2017; 118
References_xml – volume: 55
  start-page: 718
  year: 2014
  end-page: 728
  ident: bib30
  article-title: Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice
  publication-title: J. Lipid Res.
– volume: 1
  year: 2016
  ident: bib44
  article-title: Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism
  publication-title: mSystems
– volume: 488
  start-page: 621
  year: 2012
  end-page: 626
  ident: bib6
  article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity
  publication-title: Nature
– volume: 154
  start-page: 140
  year: 2016
  end-page: 152
  ident: bib16
  article-title: From the cover: exposure to oral antibiotics induces gut microbiota dysbiosis associated with lipid metabolism dysfunction and low-grade inflammation in mice
  publication-title: Toxicol. Sci.
– volume: 10
  start-page: 5952
  year: 2019
  end-page: 5968
  ident: bib41
  article-title: Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice
  publication-title: Food Funct.
– volume: 63
  year: 2019
  ident: bib43
  article-title: Daily supplementation with fresh angelica keiskei juice alleviates high-fat diet-induced obesity in mice by modulating gut microbiota composition
  publication-title: Mol. Nutr. Food Res.
– volume: 226
  start-page: 268
  year: 2017
  end-page: 276
  ident: bib21
  article-title: Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice
  publication-title: Environ. Pollut.
– volume: 10
  start-page: 3141
  year: 2019
  ident: bib31
  article-title: Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic goto-kakizaki rats
  publication-title: Front. Microbiol.
– volume: 296
  start-page: 139
  year: 2018
  end-page: 151
  ident: bib4
  article-title: Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces
  publication-title: Toxicol. Lett.
– volume: 76
  start-page: 101008
  year: 2019
  ident: bib24
  article-title: Updates to the n-3 polyunsaturated fatty acid biosynthesis pathway: DHA synthesis rates, tetracosahexaenoic acid and (minimal) retroconversion
  publication-title: Prog. Lipid Res.
– volume: 32
  start-page: 4878
  year: 2018
  end-page: 4888
  ident: bib45
  article-title: Food withdrawal alters the gut microbiota and metabolome in mice
  publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.
– volume: 68
  start-page: 1574
  year: 2018
  end-page: 1588
  ident: bib28
  article-title: Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism
  publication-title: Hepatology
– volume: 56
  start-page: 152
  year: 2018
  end-page: 164
  ident: bib17
  article-title: Lifelong calorie restriction affects indicators of colonic health in aging C57Bl/6J mice
  publication-title: J. Nutr. Biochem.
– volume: 10
  start-page: 1809
  year: 2019
  ident: bib33
  article-title: Functional effects of EPS-producing Bifidobacterium administration on energy metabolic alterations of diet-induced obese mice
  publication-title: Front. Microbiol.
– volume: 7
  start-page: 11079
  year: 2017
  ident: bib23
  article-title: Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women
  publication-title: Sci. Rep.
– volume: 10
  start-page: 4007
  year: 2019
  ident: bib25
  article-title: Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids
  publication-title: Nat. Commun.
– volume: 45
  start-page: 439
  year: 2019
  end-page: 449
  ident: bib42
  article-title: Gut microbiota signatures and lipids metabolism profiles by exposure to polyene phosphatidylcholine
  publication-title: Biofactors
– volume: 54
  start-page: 1398
  year: 2011
  end-page: 1406
  ident: bib1
  article-title: Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice
  publication-title: Diabetologia
– volume: 75
  start-page: 240
  year: 2019
  end-page: 250
  ident: bib11
  article-title: Childhood adversity impact on gut microbiota and inflammatory response to stress during pregnancy
  publication-title: Brain Behav. Immun.
– volume: 97
  start-page: 364
  year: 2017
  end-page: 371
  ident: bib32
  article-title: Effects of the combination of ω-3 PUFAs and proanthocyanidins on the gut microbiota of healthy rats
  publication-title: Food Res. Int.
– volume: 10
  start-page: 3224
  year: 2019
  end-page: 3236
  ident: bib14
  article-title: A sulfated polysaccharide from Gracilaria Lemaneiformis regulates cholesterol and bile acid metabolism in high-fat diet mice
  publication-title: Food Funct.
– volume: 41
  start-page: 453
  year: 2015
  end-page: 462
  ident: bib15
  article-title: Endogenously elevated n-3 polyunsaturated fatty acids alleviate acute ethanol-induced liver steatosis
  publication-title: Biofactors
– volume: 18
  year: 2017
  ident: bib7
  article-title: Impact of omega-3 fatty acids on the gut microbiota
  publication-title: Int. J. Mol. Sci.
– volume: 9
  start-page: 233
  year: 2011
  end-page: 243
  ident: bib39
  article-title: Shifting the balance: antibiotic effects on host-microbiota mutualism
  publication-title: Nat. Rev. Microbiol.
– volume: 10
  start-page: 751
  year: 2019
  end-page: 758
  ident: bib13
  article-title: Association between blood omega-3 polyunsaturated fatty acids and the gut microbiota among breast cancer survivors
  publication-title: Benef. Microbes
– volume: 10
  year: 2018
  ident: bib20
  article-title: Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota
  publication-title: Nutrients
– volume: 8
  start-page: 1793
  year: 2017
  end-page: 1802
  ident: bib37
  article-title: The impact of dietary sn-2 palmitic triacylglycerols in combination with docosahexaenoic acid or arachidonic acid on lipid metabolism and host faecal microbiota composition in Sprague Dawley rats
  publication-title: Food Funct.
– volume: 118
  start-page: 481
  year: 2017
  end-page: 492
  ident: bib34
  article-title: Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats
  publication-title: Br. J. Nutr.
– volume: 11
  year: 2019
  ident: bib12
  article-title: Combined buckwheat d-fagomine and fish omega-3 PUFAs stabilize the populations of gut prevotella and Bacteroides while reducing weight gain in rats
  publication-title: Nutrients
– volume: 53
  start-page: 303
  year: 2011
  end-page: 309
  ident: bib2
  article-title: Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation
  publication-title: J. Pediatr. Gastroenterol. Nutr.
– volume: 18
  start-page: 337
  year: 2004
  end-page: 352
  ident: bib3
  article-title: Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea
  publication-title: Best Pract. Res. Clin. Gastroenterol.
– volume: 444
  start-page: 1027
  year: 2006
  end-page: 1031
  ident: bib36
  article-title: An obesity-associated gut microbiome with increased capacity for energy harvest
  publication-title: Nature
– volume: 9
  start-page: 3800
  year: 2019
  ident: bib9
  article-title: Determination of free and conjugated bile acids in serum of Apoe(-/-) mice fed different lingonberry fractions by UHPLC-MS
  publication-title: Sci. Rep.
– volume: 10
  year: 2018
  ident: bib8
  article-title: High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change
  publication-title: Nutrients
– volume: 9
  start-page: 1772
  year: 2019
  ident: bib10
  article-title: Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia
  publication-title: Sci. Rep.
– volume: 10
  year: 2019
  ident: bib19
  article-title: Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice
  publication-title: Food Funct.
– volume: 68
  start-page: 280
  year: 2018
  end-page: 295
  ident: bib22
  article-title: Lipotoxicity and the gut-liver axis in NASH pathogenesis
  publication-title: J. Hepatol.
– volume: 50
  start-page: 412
  year: 2009
  end-page: 423
  ident: bib27
  article-title: Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice
  publication-title: J. Lipid Res.
– volume: 111
  start-page: 1905
  year: 2014
  end-page: 1917
  ident: bib29
  article-title: Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice
  publication-title: Br. J. Nutr.
– volume: 7
  start-page: 9
  year: 2019
  ident: bib35
  article-title: Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome
  publication-title: Microbiome
– volume: 29
  start-page: 31
  year: 2018
  end-page: 41
  ident: bib26
  article-title: Role of bile acids in metabolic control
  publication-title: Trends Endocrinol. Metabol.
– volume: 11
  start-page: 825
  year: 2016
  end-page: 836
  ident: bib40
  article-title: The crosstalk between gut microbiota and obesity and related metabolic disorders
  publication-title: Future Microbiol.
– volume: 65
  start-page: 6599
  year: 2017
  end-page: 6607
  ident: bib46
  article-title: Effects of medium- and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in C57BL/6J mice
  publication-title: J. Agric. Food Chem.
– volume: 10
  start-page: 277
  year: 2019
  end-page: 288
  ident: bib5
  article-title: DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress
  publication-title: Food Funct.
– volume: 9
  start-page: 3800
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib9
  article-title: Determination of free and conjugated bile acids in serum of Apoe(-/-) mice fed different lingonberry fractions by UHPLC-MS
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40272-8
– volume: 97
  start-page: 364
  year: 2017
  ident: 10.1016/j.ejphar.2021.173885_bib32
  article-title: Effects of the combination of ω-3 PUFAs and proanthocyanidins on the gut microbiota of healthy rats
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2017.04.024
– volume: 45
  start-page: 439
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib42
  article-title: Gut microbiota signatures and lipids metabolism profiles by exposure to polyene phosphatidylcholine
  publication-title: Biofactors
  doi: 10.1002/biof.1495
– volume: 488
  start-page: 621
  year: 2012
  ident: 10.1016/j.ejphar.2021.173885_bib6
  article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity
  publication-title: Nature
  doi: 10.1038/nature11400
– volume: 9
  start-page: 233
  year: 2011
  ident: 10.1016/j.ejphar.2021.173885_bib39
  article-title: Shifting the balance: antibiotic effects on host-microbiota mutualism
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2536
– volume: 63
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib43
  article-title: Daily supplementation with fresh angelica keiskei juice alleviates high-fat diet-induced obesity in mice by modulating gut microbiota composition
  publication-title: Mol. Nutr. Food Res.
– volume: 10
  start-page: 277
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib5
  article-title: DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress
  publication-title: Food Funct.
  doi: 10.1039/C8FO01404C
– volume: 10
  year: 2018
  ident: 10.1016/j.ejphar.2021.173885_bib8
  article-title: High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change
  publication-title: Nutrients
  doi: 10.3390/nu10060761
– volume: 32
  start-page: 4878
  year: 2018
  ident: 10.1016/j.ejphar.2021.173885_bib45
  article-title: Food withdrawal alters the gut microbiota and metabolome in mice
  publication-title: FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.
– volume: 10
  start-page: 5952
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib41
  article-title: Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice
  publication-title: Food Funct.
  doi: 10.1039/C9FO00766K
– volume: 1
  year: 2016
  ident: 10.1016/j.ejphar.2021.173885_bib44
  article-title: Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism
  publication-title: mSystems
  doi: 10.1128/mSystems.00070-16
– volume: 10
  start-page: 3224
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib14
  article-title: A sulfated polysaccharide from Gracilaria Lemaneiformis regulates cholesterol and bile acid metabolism in high-fat diet mice
  publication-title: Food Funct.
  doi: 10.1039/C9FO00263D
– volume: 10
  start-page: 4007
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib25
  article-title: Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11978-0
– volume: 10
  start-page: 1809
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib33
  article-title: Functional effects of EPS-producing Bifidobacterium administration on energy metabolic alterations of diet-induced obese mice
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01809
– volume: 55
  start-page: 718
  year: 2014
  ident: 10.1016/j.ejphar.2021.173885_bib30
  article-title: Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M046151
– volume: 76
  start-page: 101008
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib24
  article-title: Updates to the n-3 polyunsaturated fatty acid biosynthesis pathway: DHA synthesis rates, tetracosahexaenoic acid and (minimal) retroconversion
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2019.101008
– volume: 29
  start-page: 31
  year: 2018
  ident: 10.1016/j.ejphar.2021.173885_bib26
  article-title: Role of bile acids in metabolic control
  publication-title: Trends Endocrinol. Metabol.
  doi: 10.1016/j.tem.2017.11.002
– volume: 8
  start-page: 1793
  year: 2017
  ident: 10.1016/j.ejphar.2021.173885_bib37
  article-title: The impact of dietary sn-2 palmitic triacylglycerols in combination with docosahexaenoic acid or arachidonic acid on lipid metabolism and host faecal microbiota composition in Sprague Dawley rats
  publication-title: Food Funct.
  doi: 10.1039/C7FO00094D
– volume: 54
  start-page: 1398
  year: 2011
  ident: 10.1016/j.ejphar.2021.173885_bib1
  article-title: Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2097-5
– volume: 10
  start-page: 3141
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib31
  article-title: Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic goto-kakizaki rats
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.03141
– volume: 9
  start-page: 1772
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib10
  article-title: Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38874-3
– volume: 11
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib12
  article-title: Combined buckwheat d-fagomine and fish omega-3 PUFAs stabilize the populations of gut prevotella and Bacteroides while reducing weight gain in rats
  publication-title: Nutrients
  doi: 10.3390/nu11112606
– volume: 56
  start-page: 152
  year: 2018
  ident: 10.1016/j.ejphar.2021.173885_bib17
  article-title: Lifelong calorie restriction affects indicators of colonic health in aging C57Bl/6J mice
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2018.01.001
– volume: 65
  start-page: 6599
  year: 2017
  ident: 10.1016/j.ejphar.2021.173885_bib46
  article-title: Effects of medium- and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in C57BL/6J mice
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b01803
– volume: 7
  start-page: 9
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib35
  article-title: Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0628-3
– volume: 75
  start-page: 240
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib11
  article-title: Childhood adversity impact on gut microbiota and inflammatory response to stress during pregnancy
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2018.11.005
– volume: 18
  start-page: 337
  year: 2004
  ident: 10.1016/j.ejphar.2021.173885_bib3
  article-title: Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea
  publication-title: Best Pract. Res. Clin. Gastroenterol.
  doi: 10.1016/j.bpg.2003.10.002
– volume: 111
  start-page: 1905
  year: 2014
  ident: 10.1016/j.ejphar.2021.173885_bib29
  article-title: Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114514000117
– volume: 11
  start-page: 825
  year: 2016
  ident: 10.1016/j.ejphar.2021.173885_bib40
  article-title: The crosstalk between gut microbiota and obesity and related metabolic disorders
  publication-title: Future Microbiol.
  doi: 10.2217/fmb-2015-0024
– volume: 18
  year: 2017
  ident: 10.1016/j.ejphar.2021.173885_bib7
  article-title: Impact of omega-3 fatty acids on the gut microbiota
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18122645
– volume: 118
  start-page: 481
  year: 2017
  ident: 10.1016/j.ejphar.2021.173885_bib34
  article-title: Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114517002380
– volume: 10
  year: 2018
  ident: 10.1016/j.ejphar.2021.173885_bib20
  article-title: Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota
  publication-title: Nutrients
  doi: 10.3390/nu10091298
– volume: 10
  start-page: 751
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib13
  article-title: Association between blood omega-3 polyunsaturated fatty acids and the gut microbiota among breast cancer survivors
  publication-title: Benef. Microbes
  doi: 10.3920/BM2019.0034
– volume: 296
  start-page: 139
  year: 2018
  ident: 10.1016/j.ejphar.2021.173885_bib4
  article-title: Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2018.08.002
– volume: 53
  start-page: 303
  year: 2011
  ident: 10.1016/j.ejphar.2021.173885_bib2
  article-title: Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation
  publication-title: J. Pediatr. Gastroenterol. Nutr.
  doi: 10.1097/MPG.0b013e31821d298f
– volume: 10
  year: 2019
  ident: 10.1016/j.ejphar.2021.173885_bib19
  article-title: Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice
  publication-title: Food Funct.
– volume: 226
  start-page: 268
  year: 2017
  ident: 10.1016/j.ejphar.2021.173885_bib21
  article-title: Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.03.068
– volume: 68
  start-page: 280
  year: 2018
  ident: 10.1016/j.ejphar.2021.173885_bib22
  article-title: Lipotoxicity and the gut-liver axis in NASH pathogenesis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.11.014
– volume: 7
  start-page: 11079
  year: 2017
  ident: 10.1016/j.ejphar.2021.173885_bib23
  article-title: Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10382-2
– volume: 154
  start-page: 140
  year: 2016
  ident: 10.1016/j.ejphar.2021.173885_bib16
  article-title: From the cover: exposure to oral antibiotics induces gut microbiota dysbiosis associated with lipid metabolism dysfunction and low-grade inflammation in mice
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfw150
– volume: 41
  start-page: 453
  year: 2015
  ident: 10.1016/j.ejphar.2021.173885_bib15
  article-title: Endogenously elevated n-3 polyunsaturated fatty acids alleviate acute ethanol-induced liver steatosis
  publication-title: Biofactors
  doi: 10.1002/biof.1246
– volume: 50
  start-page: 412
  year: 2009
  ident: 10.1016/j.ejphar.2021.173885_bib27
  article-title: Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M800383-JLR200
– volume: 444
  start-page: 1027
  year: 2006
  ident: 10.1016/j.ejphar.2021.173885_bib36
  article-title: An obesity-associated gut microbiome with increased capacity for energy harvest
  publication-title: Nature
  doi: 10.1038/nature05414
– volume: 68
  start-page: 1574
  year: 2018
  ident: 10.1016/j.ejphar.2021.173885_bib28
  article-title: Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism
  publication-title: Hepatology
  doi: 10.1002/hep.29857
SSID ssj0005925
Score 2.3827846
Snippet Huge of previous reports recommended that gut microbiome have a crucial role in the human health and its change was profound impact for the metabolic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 173885
SubjectTerms Animals
Anti-Bacterial Agents - toxicity
Bacteria - drug effects
Bacteria - growth & development
Bacteria - metabolism
Bile acids
Bile Acids and Salts - metabolism
Biomarkers - blood
DHA
Docosahexaenoic Acids - metabolism
Docosahexaenoic Acids - pharmacology
Dysbiosis
Fatty acids
Fatty Acids - blood
Feces - chemistry
Female
Gastrointestinal Microbiome - drug effects
Gut microbiome
High-Throughput Screening Assays
Intestines - microbiology
Lipid Metabolism - drug effects
Lipidomics
Lipids metabolism
Liver - drug effects
Liver - metabolism
Male
Metabolome - drug effects
Mice
Mice, Inbred BALB C
Title The relevance of DHA with modulating of host-gut microbiome signatures alterations and repairing of lipids metabolism shifts
URI https://dx.doi.org/10.1016/j.ejphar.2021.173885
https://www.ncbi.nlm.nih.gov/pubmed/33482183
https://www.proquest.com/docview/2480250504
Volume 895
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL17Eb-cXEcSTmUua2vU41DEVxg4Ku4W0TbSydsV2B0H8281L2k0PIgi9NE3akPf63i95XwidMS6lQfUJkTpQhFMagn2XEc168sqTLIki6-U7uho-8fuJP2mh6yYWBtwqa9nvZLqV1nXLZb2al0WaQowvBWEaMmrtWxDwy3kAXN75_ObmEbK6igEn0LsJn7M-Xuq1eJGQFZTRDg3MO_zf1NNv8NOqocEGWq_xI-67KW6ilsq30PnYJaB-v8CPy3iq8gKf4_EyNfX7NvowjzGUSbGGfzzT-GbYx3AWi7NZYit55c_QDLEf5Hle4Sx1mZoyhcHVw6YBLbG1sbuzPizzxLyykOlbPXaaFmlS4kxVhsGmaZnh8iXVVbmDnga3j9dDUtdfILFRaxVRnuY-TUIa6kh7ScC1r2PmKT-W5mI9zRMGBf4Uk2ZXp3tUBjQ2-6OIAW4PfW8XreSzXO0j3JVxEBuErLWBm0yGkdlVSul3vSiIICNMG3nNsou4Tk4ONTKmovFCexWOWAKIJRyx2ogsRhUuOccf_YOGouIHkwmjP_4YedowgDD_HxhVZK5m81Iw3rMwssvbaM9xxmIuEOUMEPTg3989RGtwB05v1D9CK9XbXB0bFFRFJ5bNT9Bq_-5hOPoCYRkIKg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgvVemLLS11pYoTLmvHJslxxUOh0BWHReJmOYkNQZtsRLIHJH58PbbDqgeEVCknO3Ysz8T-7Jn5BqGfjCtlUX1JlIk14ZSmYN9lxLBEHUaKlXnuvHxnh9kV_30trjfQ0RALA26VYe33a7pbrUPJQZjNg7aqIMaXwmKaMursW8krtAnsVGKENqdn59ls7emRspDIgBNoMETQOTcvfdfeKiAGZfQXjW034rkd6jkE6nai03fobYCQeOpHuYU2dPMe7V16DuqHfTxfh1R1-3gPX67ZqR8-oEdbjSFTirP946XBx9kUw3UsrpelS-bV3EAxhH-Qm1WP68qTNdUag7eHYwLtsDOz--s-rJrSdtmq6j60XVRtVXa41r3VsUXV1bi7rUzffURXpyfzo4yEFAyksDtbT3RkuKBlSlOTm6iMuRGmYJEWhbIPSwwvGeT400zZg51JqIppYY9IOQPonoroExo1y0ZvIzxRRVxYkGyMRZxMpbk9WColJlEe50AKM0bRMO2yCPzkkCZjIQdHtDvphSVBWNILa4zIU6vW83O88H48SFT-o2fSbiEvtPwxKIC0vyDYVVSjl6tOMp44JDnhY_TZa8bTWCDQGVDol__-7nf0Opv_uZAXZ7PzHfQGasAHjoqvaNTfr_Q3C4r6fDco_V9h-grb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+relevance+of+DHA+with+modulating+of+host-gut+microbiome+signatures+alterations+and+repairing+of+lipids+metabolism+shifts&rft.jtitle=European+journal+of+pharmacology&rft.au=Yu%2C+Haining&rft.au=Fang%2C+Chengjie&rft.au=Li%2C+Peng&rft.au=Wu%2C+Manman&rft.date=2021-03-15&rft.eissn=1879-0712&rft.volume=895&rft.spage=173885&rft_id=info:doi/10.1016%2Fj.ejphar.2021.173885&rft_id=info%3Apmid%2F33482183&rft.externalDocID=33482183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2999&client=summon