Image denoising using deep CNN with batch renormalization

Deep convolutional neural networks (CNNs) have attracted great attention in the field of image denoising. However, there are two drawbacks: (1) it is very difficult to train a deeper CNN for denoising tasks, and (2) most of deeper CNNs suffer from performance saturation. In this paper, we report the...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 121; pp. 461 - 473
Main Authors Tian, Chunwei, Xu, Yong, Zuo, Wangmeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep convolutional neural networks (CNNs) have attracted great attention in the field of image denoising. However, there are two drawbacks: (1) it is very difficult to train a deeper CNN for denoising tasks, and (2) most of deeper CNNs suffer from performance saturation. In this paper, we report the design of a novel network called a batch-renormalization denoising network (BRDNet). Specifically, we combine two networks to increase the width of the network, and thus obtain more features. Because batch renormalization is fused into BRDNet, we can address the internal covariate shift and small mini-batch problems. Residual learning is also adopted in a holistic way to facilitate the network training. Dilated convolutions are exploited to extract more information for denoising tasks. Extensive experimental results show that BRDNet outperforms state-of-the-art image-denoising methods. The code of BRDNet is accessible at http://www.yongxu.org/lunwen.html.
AbstractList Deep convolutional neural networks (CNNs) have attracted great attention in the field of image denoising. However, there are two drawbacks: (1) it is very difficult to train a deeper CNN for denoising tasks, and (2) most of deeper CNNs suffer from performance saturation. In this paper, we report the design of a novel network called a batch-renormalization denoising network (BRDNet). Specifically, we combine two networks to increase the width of the network, and thus obtain more features. Because batch renormalization is fused into BRDNet, we can address the internal covariate shift and small mini-batch problems. Residual learning is also adopted in a holistic way to facilitate the network training. Dilated convolutions are exploited to extract more information for denoising tasks. Extensive experimental results show that BRDNet outperforms state-of-the-art image-denoising methods. The code of BRDNet is accessible at http://www.yongxu.org/lunwen.html.
Deep convolutional neural networks (CNNs) have attracted great attention in the field of image denoising. However, there are two drawbacks: (1) it is very difficult to train a deeper CNN for denoising tasks, and (2) most of deeper CNNs suffer from performance saturation. In this paper, we report the design of a novel network called a batch-renormalization denoising network (BRDNet). Specifically, we combine two networks to increase the width of the network, and thus obtain more features. Because batch renormalization is fused into BRDNet, we can address the internal covariate shift and small mini-batch problems. Residual learning is also adopted in a holistic way to facilitate the network training. Dilated convolutions are exploited to extract more information for denoising tasks. Extensive experimental results show that BRDNet outperforms state-of-the-art image-denoising methods. The code of BRDNet is accessible at http://www.yongxu.org/lunwen.html.Deep convolutional neural networks (CNNs) have attracted great attention in the field of image denoising. However, there are two drawbacks: (1) it is very difficult to train a deeper CNN for denoising tasks, and (2) most of deeper CNNs suffer from performance saturation. In this paper, we report the design of a novel network called a batch-renormalization denoising network (BRDNet). Specifically, we combine two networks to increase the width of the network, and thus obtain more features. Because batch renormalization is fused into BRDNet, we can address the internal covariate shift and small mini-batch problems. Residual learning is also adopted in a holistic way to facilitate the network training. Dilated convolutions are exploited to extract more information for denoising tasks. Extensive experimental results show that BRDNet outperforms state-of-the-art image-denoising methods. The code of BRDNet is accessible at http://www.yongxu.org/lunwen.html.
Author Xu, Yong
Zuo, Wangmeng
Tian, Chunwei
Author_xml – sequence: 1
  givenname: Chunwei
  surname: Tian
  fullname: Tian, Chunwei
  email: chunweitian@163.com
  organization: Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, Guangdong, China
– sequence: 2
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
  email: yongxu@ymail.com
  organization: Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, Guangdong, China
– sequence: 3
  givenname: Wangmeng
  surname: Zuo
  fullname: Zuo, Wangmeng
  email: wmzuo@hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31629201$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQhi1URMvHP0AoI0vC2Y4ShwEJVXxJVVnYLce-gKvEKbYDgl9PaIGBAZa75Xlf3T37ZOJ6h4QcU8go0OJslTkcHMaMAa0yEBkwtkNmVJRVykrBJmQGouJpAQKmZD-EFQAUIud7ZMppwaoxNyPVXaceMTHoehuse0yGzTSI62S-XCavNj4ltYr6KfEj4zvV2ncVbe8OyW6j2oBHX_uAPFxfPcxv08X9zd38cpFqXrCYGqNRKNWgVjWvtCoFV5RpzEsBBgXkeW2aQnFd1UDHo-rGcF4xbkpWF0zzA3K6rV37_nnAEGVng8a2VQ77IUjGoaR5zhkb0ZMvdKg7NHLtbaf8m_z-dgTyLaB9H4LH5gehID-lypXcSpWfUiUICZve818xbePGQfTKtv-FL7ZhHB29WPQyaItOo7EedZSmt38XfAADHpT3
CitedBy_id crossref_primary_10_1016_j_neunet_2020_06_010
crossref_primary_10_3390_app12126227
crossref_primary_10_1049_ipr2_13264
crossref_primary_10_1016_j_micron_2024_103615
crossref_primary_10_1142_S0219467825500093
crossref_primary_10_1109_ACCESS_2022_3160711
crossref_primary_10_3390_electronics11213535
crossref_primary_10_1007_s11071_022_07571_8
crossref_primary_10_1016_j_autcon_2021_103883
crossref_primary_10_1016_j_eswa_2023_120628
crossref_primary_10_1111_jfpe_14117
crossref_primary_10_1093_bib_bbab248
crossref_primary_10_1016_j_eswa_2022_118705
crossref_primary_10_1016_j_jvcir_2020_103015
crossref_primary_10_1007_s11042_024_18418_2
crossref_primary_10_1016_j_neunet_2023_12_003
crossref_primary_10_1109_TMM_2023_3240880
crossref_primary_10_1016_j_nima_2023_168505
crossref_primary_10_1109_TII_2023_3316184
crossref_primary_10_1007_s11554_020_01060_0
crossref_primary_10_1049_ipr2_13156
crossref_primary_10_1016_j_dsp_2023_104332
crossref_primary_10_1016_j_cviu_2023_103725
crossref_primary_10_2139_ssrn_4473320
crossref_primary_10_1016_j_neunet_2022_06_009
crossref_primary_10_3390_rs15020445
crossref_primary_10_1007_s00530_022_01035_0
crossref_primary_10_1016_j_dsp_2024_104835
crossref_primary_10_1109_TGRS_2024_3432601
crossref_primary_10_1515_bmt_2022_0180
crossref_primary_10_51354_mjen_852312
crossref_primary_10_1093_bib_bbab001
crossref_primary_10_1007_s11633_023_1466_0
crossref_primary_10_1007_s00371_021_02271_7
crossref_primary_10_7717_peerj_cs_1817
crossref_primary_10_1109_LGRS_2022_3145992
crossref_primary_10_1007_s11042_020_09018_x
crossref_primary_10_1016_j_jclepro_2021_130101
crossref_primary_10_3788_IRLA20210957
crossref_primary_10_1016_j_dsp_2020_102898
crossref_primary_10_1016_j_eswa_2021_116016
crossref_primary_10_1109_TCSVT_2020_2997856
crossref_primary_10_1007_s11760_023_02674_0
crossref_primary_10_1093_mnras_stac281
crossref_primary_10_1142_S0219467824500578
crossref_primary_10_2139_ssrn_4185499
crossref_primary_10_1109_TCSVT_2022_3190516
crossref_primary_10_1109_TMM_2020_2999182
crossref_primary_10_1016_j_patrec_2024_01_006
crossref_primary_10_1142_S0218126625500690
crossref_primary_10_4018_IJITSA_321456
crossref_primary_10_1007_s11263_021_01466_8
crossref_primary_10_1186_s13634_021_00800_z
crossref_primary_10_1007_s11063_022_10934_2
crossref_primary_10_3934_mbe_2020182
crossref_primary_10_1007_s10489_024_05394_1
crossref_primary_10_1109_TIP_2020_2980116
crossref_primary_10_3389_fpls_2023_1154176
crossref_primary_10_3389_fgene_2024_1349546
crossref_primary_10_1016_j_inffus_2022_12_015
crossref_primary_10_1109_ACCESS_2020_2999750
crossref_primary_10_1109_TII_2020_3024187
crossref_primary_10_1088_1742_6596_2216_1_012071
crossref_primary_10_3233_JIFS_232371
crossref_primary_10_1109_TSMC_2024_3429345
crossref_primary_10_1016_j_iswa_2023_200211
crossref_primary_10_1142_S0219467821500030
crossref_primary_10_1016_j_inffus_2023_102043
crossref_primary_10_1109_TMM_2024_3407656
crossref_primary_10_1007_s10723_022_09601_6
crossref_primary_10_1016_j_matpr_2021_01_790
crossref_primary_10_1111_1365_2478_13355
crossref_primary_10_1016_j_compbiomed_2023_107515
crossref_primary_10_3847_1538_4365_ad5c66
crossref_primary_10_1007_s11042_023_16209_9
crossref_primary_10_3390_rs14246300
crossref_primary_10_3390_electronics14020353
crossref_primary_10_1088_1361_6560_ad7e78
crossref_primary_10_1016_j_inffus_2022_03_006
crossref_primary_10_1007_s00034_023_02349_8
crossref_primary_10_11834_jig_211020
crossref_primary_10_1016_j_knosys_2023_111320
crossref_primary_10_1109_TMM_2020_3008028
crossref_primary_10_3390_electronics13010194
crossref_primary_10_1007_s00521_021_05920_z
crossref_primary_10_1007_s12530_022_09419_3
crossref_primary_10_1016_j_engappai_2024_109558
crossref_primary_10_1016_j_knosys_2020_106235
crossref_primary_10_3847_1538_4357_acbfb4
crossref_primary_10_1109_TNNLS_2020_3048031
crossref_primary_10_1016_j_neunet_2020_07_025
crossref_primary_10_1016_j_neunet_2024_106218
crossref_primary_10_1007_s00521_020_05349_w
crossref_primary_10_1016_j_jvcir_2020_102882
crossref_primary_10_1016_j_imavis_2024_105194
crossref_primary_10_1371_journal_pone_0254051
crossref_primary_10_1109_TCSVT_2023_3249796
crossref_primary_10_1016_j_neunet_2019_12_024
crossref_primary_10_1016_j_patcog_2024_110291
crossref_primary_10_1109_ACCESS_2019_2960578
crossref_primary_10_1007_s00530_021_00838_x
crossref_primary_10_1109_TSP_2025_3534177
crossref_primary_10_1109_TGRS_2020_3034752
crossref_primary_10_1007_s11227_024_06646_0
crossref_primary_10_1016_j_neunet_2023_08_056
crossref_primary_10_3390_electronics11050757
crossref_primary_10_1016_j_neucom_2019_12_020
crossref_primary_10_1109_TGRS_2025_3534199
crossref_primary_10_1155_2021_5541134
crossref_primary_10_1007_s10044_022_01064_5
crossref_primary_10_1016_j_dsp_2022_103702
crossref_primary_10_3390_app14167044
crossref_primary_10_1016_j_phycom_2024_102577
crossref_primary_10_1007_s00521_024_09440_4
crossref_primary_10_1016_j_sigpro_2025_109886
crossref_primary_10_1016_j_imavis_2023_104709
crossref_primary_10_1038_s41598_023_38335_y
crossref_primary_10_1080_01431161_2022_2066961
crossref_primary_10_1109_TMM_2024_3358962
crossref_primary_10_1109_TSP_2022_3154969
crossref_primary_10_1016_j_neunet_2020_07_035
crossref_primary_10_1109_TNNLS_2023_3274290
crossref_primary_10_1007_s11517_022_02731_9
crossref_primary_10_1016_j_engappai_2025_110275
crossref_primary_10_1007_s00530_024_01469_8
crossref_primary_10_1007_s11042_023_16346_1
crossref_primary_10_1016_j_procs_2024_04_204
crossref_primary_10_1016_j_compbiomed_2022_106385
crossref_primary_10_1016_j_neucom_2024_129044
crossref_primary_10_1049_ipr2_12536
crossref_primary_10_1109_ACCESS_2021_3084951
crossref_primary_10_3390_s21051810
crossref_primary_10_1109_JSEN_2021_3088840
crossref_primary_10_1088_1361_6501_ac4a19
crossref_primary_10_1007_s10845_023_02152_x
crossref_primary_10_1007_s11063_023_11359_1
crossref_primary_10_1007_s11042_023_14334_z
crossref_primary_10_1109_TSMC_2021_3069265
crossref_primary_10_1109_ACCESS_2020_3003375
crossref_primary_10_1038_s41524_023_01011_w
crossref_primary_10_1016_j_image_2023_117077
crossref_primary_10_1007_s11042_023_16336_3
crossref_primary_10_1016_j_bspc_2020_102396
crossref_primary_10_1109_TCYB_2022_3170472
crossref_primary_10_1111_coin_70005
crossref_primary_10_1016_j_ijleo_2022_169089
crossref_primary_10_1080_13682199_2023_2229040
crossref_primary_10_3390_s23187713
crossref_primary_10_1109_ACCESS_2022_3222826
crossref_primary_10_1109_ACCESS_2021_3092425
crossref_primary_10_3390_app132011560
crossref_primary_10_1109_TMM_2021_3094058
crossref_primary_10_1016_j_neunet_2025_107270
crossref_primary_10_1016_j_neunet_2020_12_014
crossref_primary_10_1109_TPAMI_2024_3432812
crossref_primary_10_1007_s11760_024_03093_5
crossref_primary_10_1016_j_knosys_2023_111116
crossref_primary_10_3390_electronics13061075
crossref_primary_10_3390_s23125607
crossref_primary_10_1007_s10044_024_01313_9
crossref_primary_10_1109_ACCESS_2022_3162608
crossref_primary_10_1016_j_bspc_2021_102463
crossref_primary_10_3390_e25081176
crossref_primary_10_1016_j_inffus_2020_08_020
crossref_primary_10_1109_JSTARS_2021_3086139
crossref_primary_10_47836_pjst_30_1_01
crossref_primary_10_25046_aj050482
crossref_primary_10_1007_s00521_020_05313_8
crossref_primary_10_1038_s41598_021_95480_y
crossref_primary_10_1016_j_ins_2023_119247
crossref_primary_10_1016_j_patcog_2024_111223
crossref_primary_10_1109_TCSVT_2020_3007723
crossref_primary_10_1002_nbm_5268
crossref_primary_10_1109_ACCESS_2020_2964271
crossref_primary_10_7717_peerj_cs_873
crossref_primary_10_1016_j_inffus_2021_07_001
crossref_primary_10_1109_TRS_2025_3527209
crossref_primary_10_1016_j_compbiomed_2022_105424
crossref_primary_10_1016_j_knosys_2021_106949
crossref_primary_10_1109_TSMC_2023_3289873
crossref_primary_10_3788_AI_2024_20001
crossref_primary_10_5909_JBE_2023_28_4_410
crossref_primary_10_1155_2023_6660715
crossref_primary_10_1049_bme2_5576927
crossref_primary_10_48175_IJARSCT_8524
crossref_primary_10_1016_j_neucom_2021_04_114
crossref_primary_10_3390_s21217024
crossref_primary_10_1007_s10278_024_01254_z
crossref_primary_10_1016_j_neunet_2024_106378
crossref_primary_10_1088_1361_6560_ad8c93
crossref_primary_10_1109_TMM_2021_3079697
crossref_primary_10_1049_cit2_12110
crossref_primary_10_1016_j_isatra_2021_11_028
crossref_primary_10_1109_TMM_2020_3013408
crossref_primary_10_3390_s23041764
crossref_primary_10_1016_j_dsp_2023_104052
crossref_primary_10_1109_TIP_2020_2994443
crossref_primary_10_1016_j_imu_2020_100335
crossref_primary_10_1109_ACCESS_2020_2997072
crossref_primary_10_32604_cmc_2023_041195
crossref_primary_10_2139_ssrn_4189339
crossref_primary_10_1109_ACCESS_2020_2976826
crossref_primary_10_1007_s10044_024_01346_0
crossref_primary_10_1109_ACCESS_2020_3011989
crossref_primary_10_1007_s11042_022_12565_0
crossref_primary_10_15407_jai2022_01_288
crossref_primary_10_1109_ACCESS_2022_3169131
crossref_primary_10_12677_csa_2025_152043
crossref_primary_10_1007_s11042_022_12406_0
crossref_primary_10_1155_2020_8964321
crossref_primary_10_32604_cmc_2023_033111
crossref_primary_10_1016_j_neunet_2023_06_036
crossref_primary_10_1007_s12204_022_2453_2
crossref_primary_10_1007_s00138_024_01573_9
crossref_primary_10_1109_ACCESS_2022_3170490
crossref_primary_10_1109_TIV_2023_3327501
crossref_primary_10_1016_j_compeleceng_2024_109976
crossref_primary_10_1016_j_knosys_2025_113159
crossref_primary_10_3390_jmse10101383
crossref_primary_10_1109_ACCESS_2023_3264604
crossref_primary_10_1007_s00034_024_02892_y
crossref_primary_10_1007_s00034_021_01883_7
crossref_primary_10_1016_j_ins_2020_06_032
crossref_primary_10_1016_j_neucom_2024_127473
crossref_primary_10_1109_TIP_2024_3456583
crossref_primary_10_1088_1742_6596_1854_1_012040
crossref_primary_10_1088_1755_1315_905_1_012059
crossref_primary_10_1109_TMM_2022_3179926
crossref_primary_10_1016_j_image_2022_116848
crossref_primary_10_1109_TNNLS_2022_3231917
crossref_primary_10_1016_j_engappai_2023_106755
crossref_primary_10_1016_j_jestch_2021_06_010
crossref_primary_10_1109_JLT_2024_3366294
crossref_primary_10_1109_TNNLS_2020_3016321
crossref_primary_10_1016_j_compscitech_2025_111050
crossref_primary_10_1007_s11063_021_10501_1
crossref_primary_10_1364_AO_419871
crossref_primary_10_1371_journal_pone_0274308
crossref_primary_10_48175_IJARSCT_4873
crossref_primary_10_3934_era_2025055
crossref_primary_10_1109_ACCESS_2023_3239835
crossref_primary_10_1016_j_eswa_2023_121666
crossref_primary_10_1007_s11517_024_03111_1
crossref_primary_10_1080_17538947_2024_2407519
crossref_primary_10_1109_TFUZZ_2024_3362792
crossref_primary_10_1016_j_engappai_2025_110017
crossref_primary_10_1007_s11063_023_11286_1
crossref_primary_10_1016_j_patcog_2023_110176
crossref_primary_10_3390_electronics13234613
crossref_primary_10_1080_0954898X_2024_2358950
crossref_primary_10_1049_ipr2_12499
crossref_primary_10_1109_TFUZZ_2023_3287734
crossref_primary_10_1007_s12065_021_00627_5
crossref_primary_10_1080_13682199_2023_2198350
crossref_primary_10_1109_ACCESS_2020_3040939
crossref_primary_10_7240_jeps_938188
crossref_primary_10_1109_ACCESS_2020_3006346
crossref_primary_10_1190_geo2021_0459_1
crossref_primary_10_7717_peerj_cs_2449
crossref_primary_10_1007_s10489_023_04660_y
crossref_primary_10_3390_s23031486
crossref_primary_10_1016_j_asoc_2020_106884
crossref_primary_10_3390_technologies11040111
crossref_primary_10_1007_s00530_022_00960_4
crossref_primary_10_1007_s13721_022_00379_x
crossref_primary_10_1111_exsy_13102
crossref_primary_10_1371_journal_pcbi_1012192
crossref_primary_10_1007_s10489_022_03717_8
crossref_primary_10_1371_journal_pone_0254586
crossref_primary_10_1109_JSEN_2024_3403856
crossref_primary_10_1016_j_camwa_2021_03_029
crossref_primary_10_1038_s41598_024_74777_8
crossref_primary_10_1016_j_knosys_2020_105526
crossref_primary_10_1140_epjp_s13360_021_01693_5
crossref_primary_10_1049_ipr2_12138
crossref_primary_10_1109_ACCESS_2021_3059477
crossref_primary_10_1049_ipr2_12394
crossref_primary_10_1088_1361_6560_ad6ede
crossref_primary_10_3390_s25020317
crossref_primary_10_1007_s11042_021_11162_x
crossref_primary_10_7717_peerj_cs_970
crossref_primary_10_1155_2020_4303725
crossref_primary_10_1016_j_infrared_2023_104761
crossref_primary_10_1007_s00371_021_02281_5
crossref_primary_10_1016_j_compeleceng_2024_109814
crossref_primary_10_3390_app13010028
crossref_primary_10_1007_s11063_023_11235_y
crossref_primary_10_3788_AOS231120
crossref_primary_10_1007_s11042_022_13096_4
crossref_primary_10_1186_s13640_023_00617_w
crossref_primary_10_1016_j_neunet_2020_10_014
crossref_primary_10_1016_j_patcog_2023_109603
crossref_primary_10_1109_ACCESS_2021_3091971
crossref_primary_10_1109_TCYB_2020_3043520
crossref_primary_10_1007_s00521_023_09314_1
crossref_primary_10_3390_s23135915
crossref_primary_10_1088_1755_1315_924_1_012022
crossref_primary_10_1016_j_inffus_2025_103013
crossref_primary_10_1109_TII_2022_3165869
crossref_primary_10_1109_TCSVT_2024_3429557
crossref_primary_10_1007_s11042_021_10754_x
crossref_primary_10_1088_1755_1315_924_1_012009
crossref_primary_10_1016_j_patcog_2024_110563
crossref_primary_10_1364_AO_461967
crossref_primary_10_1016_j_jvcir_2023_103994
crossref_primary_10_1016_j_knosys_2020_105554
crossref_primary_10_1007_s00530_024_01284_1
crossref_primary_10_1109_TCSVT_2024_3402095
crossref_primary_10_1007_s00371_022_02749_y
crossref_primary_10_14801_jkiit_2021_19_9_1
crossref_primary_10_1109_TDSC_2022_3140899
crossref_primary_10_1142_S0219467820500369
crossref_primary_10_1016_j_image_2025_117286
crossref_primary_10_3390_electronics11203375
crossref_primary_10_1016_j_dsp_2022_103407
crossref_primary_10_1016_j_dsp_2022_103528
crossref_primary_10_1007_s11760_021_01969_4
crossref_primary_10_1109_LSP_2021_3057544
crossref_primary_10_1007_s10462_021_09977_z
Cites_doi 10.1109/ICCV.2015.123
10.1109/TIP.2012.2235847
10.1109/MSP.2017.2717489
10.1016/j.neunet.2018.02.002
10.1109/ICCV.2015.50
10.1109/TIP.2007.901238
10.1109/TIP.2009.2028254
10.1109/CVPR.2016.181
10.1109/TIP.2017.2662206
10.5201/ipol.2015.125
10.1109/LSP.2018.2829766
10.1016/0167-2789(92)90242-F
10.1109/TIP.2016.2631888
10.1016/j.trit.2017.03.001
10.1109/TCYB.2016.2536638
10.1109/CVPR.2014.366
10.1109/CVPR.2016.90
10.1007/s11263-008-0197-6
10.1109/TIP.2014.2316423
10.1109/83.563320
10.1109/TPAMI.2015.2439281
10.1109/TIP.2018.2811546
10.1109/TGRS.2019.2903875
10.1109/CVPR.2014.349
10.14419/ijet.v7i2.3.9964
10.1109/TIP.2018.2855433
10.1109/CVPR.2018.00262
10.1109/TIP.2015.2439041
10.1109/CVPR.2016.186
10.1109/CVPR.2015.7298594
10.1109/TBME.2012.2217493
10.1109/TPAMI.2016.2596743
10.1109/CVPR.2015.7298965
10.1016/j.neunet.2018.08.007
10.1109/TIP.2009.2028250
10.1109/CVPR.2018.00333
10.1109/CVPR.2017.294
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2019.08.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 473
ExternalDocumentID 31629201
10_1016_j_neunet_2019_08_022
S0893608019302394
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-ddce8aafecab39ca783a12ce4780de8044bdf6a3c9b01292bfd33923d72b62c3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Fri Jul 11 11:22:08 EDT 2025
Wed Feb 19 02:30:51 EST 2025
Thu Apr 24 22:52:48 EDT 2025
Tue Jul 01 01:24:34 EDT 2025
Fri Feb 23 02:49:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Batch renormalization
Dilated convolution
CNN
Residual learning
Image denoising
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-ddce8aafecab39ca783a12ce4780de8044bdf6a3c9b01292bfd33923d72b62c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31629201
PQID 2307144322
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2307144322
pubmed_primary_31629201
crossref_primary_10_1016_j_neunet_2019_08_022
crossref_citationtrail_10_1016_j_neunet_2019_08_022
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_08_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Wu, Xu (b20) 2017; 2
Lebrun, Colom, Morel (b36) 2015; 5
Nam, S., Hwang, Y., Matsushita, Y., & Joo Kim, S. (2016). A holistic approach to cross-channel image noise modeling and its application to image denoising. In
Zhang, Zuo, Gu, Zhang (b65) 2017; Vol. 2
Dong, Loy, He, Tang (b12) 2016; 38
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint
Chambolle (b5) 2004; 20
Dabov, Foi, Katkovnik, Egiazarian (b11) 2007; 16
Wang, T., Sun, M., & Hu, K. (2017). Dilated residual network for image denoising. arXiv preprint
Wen, Xu, Li, Ma, Xu (b57) 2018; 102
Kokkinos, F., & Lefkimmiatis, S. (2018). Iterative residual network for deep joint image demosaicking and denoising. arXiv preprint
Xu, J., Li, H., Liang, Z., Zhang, D., & Zhang, L. (2018). Real-world noisy image denoising: A new benchmark. arXiv preprint
Chen, J., Chen, J., Chao, H., & Yang, M. (2018). Image blind denoising with generative adversarial network based noise modeling. In
Du, Xiong, Wu, Zhang, Zhang, Tao (b16) 2017; 47
(pp. 1586–1595).
Kim, J., Kwon Lee, J., & Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In
Chu, Wu, Gu, Xu (b9) 2017
(pp. 3431–3440).
Franzen (b18) 1999
Beck, Teboulle (b3) 2009; 18
Rudin, Osher, Fatemi (b49) 1992; 60
Wang, Z., Liu, D., Yang, J., Han, W., & Huang, T. (2015). Deep networks for image super-resolution with sparse prior. In
Du, Wei, Liu (b15) 2019
Xu, Zhang, Zhang (b59) 2018; 27
Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. arXiv preprint
Li, Yin, Fang (b37) 2012; 59
He, Zhang, Ren, Sun (b21) 2014
Zhang, Zuo (b63) 2017; 34
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Jiao, Tu, He, Lau (b26) 2017
.
Ioffe (b24) 2017
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Zhang, Wu, Buades, Li (b62) 2011; 20
Kingma, Ba (b29) 2014
Zhang, Zuo, Zhang (b67) 2018; 6
Burger, Schuler, Harmeling (b4) 2012
Dong, W., Wang, P., Yin, W., Shi, G., Wu, F., & Lu, X. (2018). Denoising prior driven deep neural network for image restoration. arXiv preprint
Zuo, Zhang, Song, Zhang, Gao (b69) 2014; 23
Chollet (b8) 2015
Dong, Zhang, Shi, Li (b14) 2013; 22
Zhang, Zuo, Chen, Meng, Zhang (b64) 2017; 26
Chen, Pock (b7) 2017; 39
Lai, Huang, Ahuja, Yang (b33) 2017; vol. 2
Fei, Lu, Jia, Teng, Zhang (b17) 2018
Krizhevsky, Sutskever, Hinton (b32) 2012
Lebrun, Colom, Morel (b35) 2015; 24
Roth, Black (b48) 2009; 82
(pp. 1026–1034),.
(pp. 1310–1318).
Wen, Fang, Xu, Tian, Fei (b56) 2018
Kligvasser, I., Shaham, T. R., & Michaeli, T. (2017). xUnit: Learning a Spatial activation function for efficient image restoration. arXiv preprint
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
(pp. 2862–2869).
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., & Fu, Y. (2018). Residual dense network for image super-resolution. In
Barbu (b1) 2009
Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. arXiv preprint
Lu, Yuan, Zhu, Li (b40) 2018; 27
Malfait, Roose (b43) 1997; 6
Kim, J., Kwon Lee, J., & Mu Lee, K. (2016). Deeply-recursive convolutional network for image super-resolution. In
(pp. 770–778).
Barbu (b2) 2009; 18
Schmidt, U., & Roth, S. (2014). Shrinkage fields for effective image restoration. In
(pp. 2774–2781).
Gu, S., Zhang, L., Zuo, W., & Feng, X. (2014). Weighted nuclear norm minimization with application to image denoising. In
(pp. 1637–1645).
Mairal, Bach, Ponce, Sapiro, Zisserman (b42) 2009
Zhang, Zuo, Zhang (b66) 2018
Zoran, Weiss (b68) 2011
(pp. 1683–1691).
Lin, Milan, Shen, Reid (b38) 2017; Vol. 1
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D., et al. (2015). Going deeper with convolutions. In
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In
Ma, Duanmu, Wu, Wang, Yong, Li (b41) 2017; 26
Ren, He, Pu (b47) 2018; 25
(pp. 1–9).
Plotz, T., & Roth, S. (2017). Benchmarking denoising algorithms with real photographs. In
(pp. 1646–1654).
(pp. 3155–3164).
Si-Yao, L., Ren, D., Hu, Z., Li, J., Yin, Q., & Guo, P. (2018). A concatenated residual network for image deblurring. arXiv preprint
(pp. 370–378).
Tai, Yang, Liu (b53) 2017; 1
Latif, Iskandar, Alghazo, Butt, Khan (b34) 2018; 7
Ma (10.1016/j.neunet.2019.08.022_b41) 2017; 26
10.1016/j.neunet.2019.08.022_b46
10.1016/j.neunet.2019.08.022_b44
10.1016/j.neunet.2019.08.022_b45
Lai (10.1016/j.neunet.2019.08.022_b33) 2017; vol. 2
Mairal (10.1016/j.neunet.2019.08.022_b42) 2009
Dong (10.1016/j.neunet.2019.08.022_b12) 2016; 38
Beck (10.1016/j.neunet.2019.08.022_b3) 2009; 18
Kingma (10.1016/j.neunet.2019.08.022_b29) 2014
Franzen (10.1016/j.neunet.2019.08.022_b18) 1999
Rudin (10.1016/j.neunet.2019.08.022_b49) 1992; 60
Zhang (10.1016/j.neunet.2019.08.022_b62) 2011; 20
Wen (10.1016/j.neunet.2019.08.022_b57) 2018; 102
Li (10.1016/j.neunet.2019.08.022_b37) 2012; 59
Du (10.1016/j.neunet.2019.08.022_b15) 2019
10.1016/j.neunet.2019.08.022_b39
Roth (10.1016/j.neunet.2019.08.022_b48) 2009; 82
Malfait (10.1016/j.neunet.2019.08.022_b43) 1997; 6
10.1016/j.neunet.2019.08.022_b31
Zhang (10.1016/j.neunet.2019.08.022_b66) 2018
10.1016/j.neunet.2019.08.022_b30
Burger (10.1016/j.neunet.2019.08.022_b4) 2012
Guo (10.1016/j.neunet.2019.08.022_b20) 2017; 2
Chambolle (10.1016/j.neunet.2019.08.022_b5) 2004; 20
Zhang (10.1016/j.neunet.2019.08.022_b67) 2018; 6
He (10.1016/j.neunet.2019.08.022_b21) 2014
Lu (10.1016/j.neunet.2019.08.022_b40) 2018; 27
Wen (10.1016/j.neunet.2019.08.022_b56) 2018
Lin (10.1016/j.neunet.2019.08.022_b38) 2017; Vol. 1
10.1016/j.neunet.2019.08.022_b28
10.1016/j.neunet.2019.08.022_b27
10.1016/j.neunet.2019.08.022_b25
Dong (10.1016/j.neunet.2019.08.022_b14) 2013; 22
10.1016/j.neunet.2019.08.022_b22
10.1016/j.neunet.2019.08.022_b23
Zuo (10.1016/j.neunet.2019.08.022_b69) 2014; 23
Lebrun (10.1016/j.neunet.2019.08.022_b36) 2015; 5
Xu (10.1016/j.neunet.2019.08.022_b59) 2018; 27
Zhang (10.1016/j.neunet.2019.08.022_b65) 2017; Vol. 2
Lebrun (10.1016/j.neunet.2019.08.022_b35) 2015; 24
10.1016/j.neunet.2019.08.022_b60
10.1016/j.neunet.2019.08.022_b61
Latif (10.1016/j.neunet.2019.08.022_b34) 2018; 7
Tai (10.1016/j.neunet.2019.08.022_b53) 2017; 1
10.1016/j.neunet.2019.08.022_b6
Du (10.1016/j.neunet.2019.08.022_b16) 2017; 47
Dabov (10.1016/j.neunet.2019.08.022_b11) 2007; 16
10.1016/j.neunet.2019.08.022_b19
Krizhevsky (10.1016/j.neunet.2019.08.022_b32) 2012
Fei (10.1016/j.neunet.2019.08.022_b17) 2018
Chu (10.1016/j.neunet.2019.08.022_b9) 2017
10.1016/j.neunet.2019.08.022_b13
10.1016/j.neunet.2019.08.022_b58
Zhang (10.1016/j.neunet.2019.08.022_b64) 2017; 26
Barbu (10.1016/j.neunet.2019.08.022_b1) 2009
10.1016/j.neunet.2019.08.022_b55
10.1016/j.neunet.2019.08.022_b10
10.1016/j.neunet.2019.08.022_b54
10.1016/j.neunet.2019.08.022_b51
10.1016/j.neunet.2019.08.022_b52
Zhang (10.1016/j.neunet.2019.08.022_b63) 2017; 34
10.1016/j.neunet.2019.08.022_b50
Jiao (10.1016/j.neunet.2019.08.022_b26) 2017
Chollet (10.1016/j.neunet.2019.08.022_b8) 2015
Barbu (10.1016/j.neunet.2019.08.022_b2) 2009; 18
Ioffe (10.1016/j.neunet.2019.08.022_b24) 2017
Zoran (10.1016/j.neunet.2019.08.022_b68) 2011
Ren (10.1016/j.neunet.2019.08.022_b47) 2018; 25
Chen (10.1016/j.neunet.2019.08.022_b7) 2017; 39
References_xml – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
– volume: Vol. 1
  start-page: 5
  year: 2017
  ident: b38
  article-title: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation
  publication-title: CVPR
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
– reference: (pp. 1646–1654).
– volume: 102
  start-page: 36
  year: 2018
  end-page: 47
  ident: b57
  article-title: Inter-class sparsity based discriminative least square regression
  publication-title: Neural Networks
– year: 2009
  ident: b1
  article-title: Learning real-time MRF inference for image denoising
– start-page: 1945
  year: 2017
  end-page: 1953
  ident: b24
  article-title: Batch renormalization: Towards reducing minibatch dependence in batch-normalized models
  publication-title: Advances in neural information processing systems
– reference: Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: b64
  article-title: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising
  publication-title: IEEE Transactions on Image Processing
– volume: 23
  start-page: 2459
  year: 2014
  end-page: 2472
  ident: b69
  article-title: Gradient histogram estimation and preservation for texture enhanced image denoising
  publication-title: IEEE Transactions on Image Processing
– reference: Nam, S., Hwang, Y., Matsushita, Y., & Joo Kim, S. (2016). A holistic approach to cross-channel image noise modeling and its application to image denoising. In
– year: 2018
  ident: b56
  article-title: Low-rank representation with adaptive graph regularization
  publication-title: Neural Networks
– volume: 22
  start-page: 1620
  year: 2013
  end-page: 1630
  ident: b14
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Transactions on Image Processing
– volume: 18
  start-page: 2451
  year: 2009
  end-page: 2462
  ident: b2
  article-title: Training an active random field for real-time image denoising
  publication-title: IEEE Transactions on Image Processing
– reference: (pp. 2862–2869).
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b32
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– reference: (pp. 2774–2781).
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D., et al. (2015). Going deeper with convolutions. In
– reference: Chen, J., Chen, J., Chao, H., & Yang, M. (2018). Image blind denoising with generative adversarial network based noise modeling. In
– volume: 27
  start-page: 2996
  year: 2018
  end-page: 3010
  ident: b59
  article-title: External prior guided internal prior learning for real-world noisy image denoising
  publication-title: IEEE Transactions on Image Processing
– reference: (pp. 1310–1318).
– year: 1999
  ident: b18
  article-title: Kodak lossless true color image suite
– reference: Kim, J., Kwon Lee, J., & Mu Lee, K. (2016). Deeply-recursive convolutional network for image super-resolution. In
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: b12
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 59
  start-page: 3450
  year: 2012
  end-page: 3459
  ident: b37
  article-title: Group-sparse representation with dictionary learning for medical image denoising and fusion
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 24
  start-page: 3149
  year: 2015
  end-page: 3161
  ident: b35
  article-title: Multiscale image blind denoising
  publication-title: IEEE Transactions on Image Processing
– year: 2019
  ident: b15
  article-title: An improved quantum-behaved particle swarm optimization for endmember extraction
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 25
  start-page: 916
  year: 2018
  end-page: 920
  ident: b47
  article-title: Nonlocal similarity modeling and deep CNN gradient prior for super resolution
  publication-title: IEEE Signal Processing Letters
– reference: Kligvasser, I., Shaham, T. R., & Michaeli, T. (2017). xUnit: Learning a Spatial activation function for efficient image restoration. arXiv preprint
– volume: 5
  start-page: 1
  year: 2015
  end-page: 54
  ident: b36
  article-title: The noise clinic: a blind image denoising algorithm
  publication-title: Image Processing on Line
– reference: (pp. 370–378).
– reference: (pp. 1026–1034),.
– reference: Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint
– volume: 47
  start-page: 1017
  year: 2017
  end-page: 1027
  ident: b16
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Transactions on Cybernetics
– start-page: 2272
  year: 2009
  end-page: 2279
  ident: b42
  article-title: Non-local sparse models for image restoration
  publication-title: Computer vision, 2009 IEEE 12th international conference on
– reference: Schmidt, U., & Roth, S. (2014). Shrinkage fields for effective image restoration. In
– volume: 27
  start-page: 5248
  year: 2018
  end-page: 5260
  ident: b40
  article-title: Structurally incoherent low-rank nonnegative matrix factorization for image classification
  publication-title: IEEE Transactions on Image Processing
– volume: 26
  start-page: 1004
  year: 2017
  end-page: 1016
  ident: b41
  article-title: Waterloo exploration database: New challenges for image quality assessment models
  publication-title: IEEE Transactions on Image Processing
– start-page: 605
  year: 2017
  end-page: 614
  ident: b9
  article-title: Rich features and precise localization with region proposal network for object detection
  publication-title: Chinese conference on biometric recognition
– volume: vol. 2
  start-page: 5
  year: 2017
  ident: b33
  article-title: Deep laplacian pyramid networks for fast and accurate superresolution
  publication-title: IEEE conference on computer vision and pattern recognition
– year: 2018
  ident: b66
  article-title: FFDNet: Toward a fast and flexible solution for CNN based image denoising
  publication-title: IEEE Transactions on Image Processing
– volume: 39
  start-page: 1256
  year: 2017
  end-page: 1272
  ident: b7
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 18
  start-page: 2419
  year: 2009
  end-page: 2434
  ident: b3
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Transactions on Image Processing
– reference: (pp. 3155–3164).
– volume: 6
  year: 2018
  ident: b67
  article-title: Learning a single convolutional super-resolution network for multiple degradations
  publication-title: IEEE conference on computer vision and pattern recognition
– year: 2018
  ident: b17
  article-title: Feature extraction methods for palmprint recognition: A survey and evaluation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– reference: (pp. 1683–1691).
– volume: 82
  start-page: 205
  year: 2009
  ident: b48
  article-title: Fields of experts
  publication-title: International Journal of Computer Vision
– reference: Xu, J., Li, H., Liang, Z., Zhang, D., & Zhang, L. (2018). Real-world noisy image denoising: A new benchmark. arXiv preprint
– volume: 6
  start-page: 549
  year: 1997
  end-page: 565
  ident: b43
  article-title: Wavelet-based image denoising using a Markov random field a priori model
  publication-title: IEEE Transactions on Image Processing
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: b11
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Transactions on Image Processing
– reference: (pp. 1586–1595).
– start-page: 479
  year: 2011
  end-page: 486
  ident: b68
  article-title: From learning models of natural image patches to whole image restoration
  publication-title: Computer vision, 2011 IEEE international conference on
– start-page: 2392
  year: 2012
  end-page: 2399
  ident: b4
  article-title: Image denoising: Can plain neural networks compete with BM3D?
  publication-title: Computer vision and pattern recognition, 2012 IEEE conference on
– reference: (pp. 1–9).
– reference: Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. arXiv preprint
– volume: 7
  start-page: 37
  year: 2018
  end-page: 42
  ident: b34
  article-title: Deep CNN based MR image denoising for tumor segmentation using watershed transform
  publication-title: International Journal of Engineering & Technology
– reference: Wang, T., Sun, M., & Hu, K. (2017). Dilated residual network for image denoising. arXiv preprint
– reference: Si-Yao, L., Ren, D., Hu, Z., Li, J., Yin, Q., & Guo, P. (2018). A concatenated residual network for image deblurring. arXiv preprint
– reference: Dong, W., Wang, P., Yin, W., Shi, G., Wu, F., & Lu, X. (2018). Denoising prior driven deep neural network for image restoration. arXiv preprint
– reference: Kim, J., Kwon Lee, J., & Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In
– reference: Plotz, T., & Roth, S. (2017). Benchmarking denoising algorithms with real photographs. In
– volume: 2
  start-page: 39
  year: 2017
  end-page: 47
  ident: b20
  article-title: Face recognition using both visible light image and near-infrared image and a deep network
  publication-title: CAAI Transactions on Intelligence Technology
– volume: 20
  start-page: 89
  year: 2004
  end-page: 97
  ident: b5
  article-title: An algorithm for total variation minimization and applications
  publication-title: Journal of Mathematical Imaging and Vision
– reference: Gu, S., Zhang, L., Zuo, W., & Feng, X. (2014). Weighted nuclear norm minimization with application to image denoising. In
– reference: (pp. 770–778).
– year: 2015
  ident: b8
  article-title: Keras: Deep learning library for theano and tensorflow
– reference: .
– reference: (pp. 1637–1645).
– volume: Vol. 2
  year: 2017
  ident: b65
  article-title: Learning deep CNN denoiser prior for image restoration
  publication-title: IEEE conference on computer vision and pattern recognition
– year: 2014
  ident: b29
  article-title: Adam: A method for stochastic optimization
  publication-title: Computer Science
– volume: 1
  start-page: 5
  year: 2017
  ident: b53
  article-title: Image super-resolution via deep recursive residual network
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 1034
  year: 2017
  end-page: 1042
  ident: b26
  article-title: Formresnet: formatted residual learning for image restoration
  publication-title: Computer vision and pattern recognition workshops. 2017 ieee conference on
– reference: .
– volume: 60
  start-page: 259
  year: 1992
  end-page: 268
  ident: b49
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D. Nonlinear Phenomena
– reference: Wang, Z., Liu, D., Yang, J., Han, W., & Huang, T. (2015). Deep networks for image super-resolution with sparse prior. In
– volume: 20
  year: 2011
  ident: b62
  article-title: Color demosaicking by local directional interpolation and nonlocal adaptive thresholding
  publication-title: Journal of Electronic Imaging
– reference: (pp. 3431–3440).
– start-page: 346
  year: 2014
  end-page: 361
  ident: b21
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: European conference on computer vision
– volume: 34
  start-page: 172
  year: 2017
  end-page: 179
  ident: b63
  article-title: Image restoration: From sparse and low-rank priors to deep priors [lecture notes]
  publication-title: IEEE Signal Processing Magazine
– reference: Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. arXiv preprint
– reference: Kokkinos, F., & Lefkimmiatis, S. (2018). Iterative residual network for deep joint image demosaicking and denoising. arXiv preprint
– reference: Zhang, Y., Tian, Y., Kong, Y., Zhong, B., & Fu, Y. (2018). Residual dense network for image super-resolution. In
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
– volume: 6
  year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b67
  article-title: Learning a single convolutional super-resolution network for multiple degradations
– start-page: 605
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b9
  article-title: Rich features and precise localization with region proposal network for object detection
– ident: 10.1016/j.neunet.2019.08.022_b22
  doi: 10.1109/ICCV.2015.123
– volume: 22
  start-page: 1620
  issue: 4
  year: 2013
  ident: 10.1016/j.neunet.2019.08.022_b14
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2235847
– volume: 34
  start-page: 172
  issue: 5
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b63
  article-title: Image restoration: From sparse and low-rank priors to deep priors [lecture notes]
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2717489
– volume: 102
  start-page: 36
  year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b57
  article-title: Inter-class sparsity based discriminative least square regression
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.02.002
– ident: 10.1016/j.neunet.2019.08.022_b54
  doi: 10.1109/ICCV.2015.50
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.neunet.2019.08.022_b11
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.901238
– start-page: 2272
  year: 2009
  ident: 10.1016/j.neunet.2019.08.022_b42
  article-title: Non-local sparse models for image restoration
– volume: 18
  start-page: 2451
  issue: 11
  year: 2009
  ident: 10.1016/j.neunet.2019.08.022_b2
  article-title: Training an active random field for real-time image denoising
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2009.2028254
– ident: 10.1016/j.neunet.2019.08.022_b27
  doi: 10.1109/CVPR.2016.181
– ident: 10.1016/j.neunet.2019.08.022_b10
– year: 2014
  ident: 10.1016/j.neunet.2019.08.022_b29
  article-title: Adam: A method for stochastic optimization
  publication-title: Computer Science
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b64
  article-title: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2017.2662206
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2019.08.022_b36
  article-title: The noise clinic: a blind image denoising algorithm
  publication-title: Image Processing on Line
  doi: 10.5201/ipol.2015.125
– volume: 25
  start-page: 916
  issue: 7
  year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b47
  article-title: Nonlocal similarity modeling and deep CNN gradient prior for super resolution
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2018.2829766
– volume: 60
  start-page: 259
  issue: 1–4
  year: 1992
  ident: 10.1016/j.neunet.2019.08.022_b49
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D. Nonlinear Phenomena
  doi: 10.1016/0167-2789(92)90242-F
– year: 2015
  ident: 10.1016/j.neunet.2019.08.022_b8
– volume: 26
  start-page: 1004
  issue: 2
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b41
  article-title: Waterloo exploration database: New challenges for image quality assessment models
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2016.2631888
– volume: 2
  start-page: 39
  issue: 1
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b20
  article-title: Face recognition using both visible light image and near-infrared image and a deep network
  publication-title: CAAI Transactions on Intelligence Technology
  doi: 10.1016/j.trit.2017.03.001
– year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b17
  article-title: Feature extraction methods for palmprint recognition: A survey and evaluation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– start-page: 2392
  year: 2012
  ident: 10.1016/j.neunet.2019.08.022_b4
  article-title: Image denoising: Can plain neural networks compete with BM3D?
– ident: 10.1016/j.neunet.2019.08.022_b28
– year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b66
  article-title: FFDNet: Toward a fast and flexible solution for CNN based image denoising
  publication-title: IEEE Transactions on Image Processing
– volume: 47
  start-page: 1017
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b16
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2536638
– ident: 10.1016/j.neunet.2019.08.022_b45
– volume: 1
  start-page: 5
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b53
  article-title: Image super-resolution via deep recursive residual network
– ident: 10.1016/j.neunet.2019.08.022_b55
– ident: 10.1016/j.neunet.2019.08.022_b30
– ident: 10.1016/j.neunet.2019.08.022_b19
  doi: 10.1109/CVPR.2014.366
– ident: 10.1016/j.neunet.2019.08.022_b13
– ident: 10.1016/j.neunet.2019.08.022_b23
  doi: 10.1109/CVPR.2016.90
– volume: Vol. 2
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b65
  article-title: Learning deep CNN denoiser prior for image restoration
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  ident: 10.1016/j.neunet.2019.08.022_b48
  article-title: Fields of experts
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-008-0197-6
– volume: Vol. 1
  start-page: 5
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b38
  article-title: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation
– ident: 10.1016/j.neunet.2019.08.022_b51
– volume: 23
  start-page: 2459
  issue: 6
  year: 2014
  ident: 10.1016/j.neunet.2019.08.022_b69
  article-title: Gradient histogram estimation and preservation for texture enhanced image denoising
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2014.2316423
– volume: 20
  start-page: 89
  issue: 1–2
  year: 2004
  ident: 10.1016/j.neunet.2019.08.022_b5
  article-title: An algorithm for total variation minimization and applications
  publication-title: Journal of Mathematical Imaging and Vision
– volume: 6
  start-page: 549
  issue: 4
  year: 1997
  ident: 10.1016/j.neunet.2019.08.022_b43
  article-title: Wavelet-based image denoising using a Markov random field a priori model
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.563320
– ident: 10.1016/j.neunet.2019.08.022_b25
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neunet.2019.08.022_b32
  article-title: Imagenet classification with deep convolutional neural networks
– year: 2009
  ident: 10.1016/j.neunet.2019.08.022_b1
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 10.1016/j.neunet.2019.08.022_b12
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2439281
– ident: 10.1016/j.neunet.2019.08.022_b31
– start-page: 1945
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b24
  article-title: Batch renormalization: Towards reducing minibatch dependence in batch-normalized models
– start-page: 1034
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b26
  article-title: Formresnet: formatted residual learning for image restoration
– volume: 27
  start-page: 2996
  issue: 6
  year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b59
  article-title: External prior guided internal prior learning for real-world noisy image denoising
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2811546
– year: 2019
  ident: 10.1016/j.neunet.2019.08.022_b15
  article-title: An improved quantum-behaved particle swarm optimization for endmember extraction
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2903875
– start-page: 346
  year: 2014
  ident: 10.1016/j.neunet.2019.08.022_b21
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
– ident: 10.1016/j.neunet.2019.08.022_b50
  doi: 10.1109/CVPR.2014.349
– ident: 10.1016/j.neunet.2019.08.022_b58
– start-page: 479
  year: 2011
  ident: 10.1016/j.neunet.2019.08.022_b68
  article-title: From learning models of natural image patches to whole image restoration
– volume: 7
  start-page: 37
  issue: 2.3
  year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b34
  article-title: Deep CNN based MR image denoising for tumor segmentation using watershed transform
  publication-title: International Journal of Engineering & Technology
  doi: 10.14419/ijet.v7i2.3.9964
– volume: 27
  start-page: 5248
  issue: 11
  year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b40
  article-title: Structurally incoherent low-rank nonnegative matrix factorization for image classification
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2855433
– year: 1999
  ident: 10.1016/j.neunet.2019.08.022_b18
– ident: 10.1016/j.neunet.2019.08.022_b61
  doi: 10.1109/CVPR.2018.00262
– ident: 10.1016/j.neunet.2019.08.022_b60
– volume: 24
  start-page: 3149
  issue: 10
  year: 2015
  ident: 10.1016/j.neunet.2019.08.022_b35
  article-title: Multiscale image blind denoising
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2439041
– ident: 10.1016/j.neunet.2019.08.022_b44
  doi: 10.1109/CVPR.2016.186
– ident: 10.1016/j.neunet.2019.08.022_b52
  doi: 10.1109/CVPR.2015.7298594
– volume: vol. 2
  start-page: 5
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b33
  article-title: Deep laplacian pyramid networks for fast and accurate superresolution
– volume: 59
  start-page: 3450
  issue: 12
  year: 2012
  ident: 10.1016/j.neunet.2019.08.022_b37
  article-title: Group-sparse representation with dictionary learning for medical image denoising and fusion
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2012.2217493
– volume: 39
  start-page: 1256
  issue: 6
  year: 2017
  ident: 10.1016/j.neunet.2019.08.022_b7
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2596743
– ident: 10.1016/j.neunet.2019.08.022_b39
  doi: 10.1109/CVPR.2015.7298965
– year: 2018
  ident: 10.1016/j.neunet.2019.08.022_b56
  article-title: Low-rank representation with adaptive graph regularization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.08.007
– volume: 20
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2019.08.022_b62
  article-title: Color demosaicking by local directional interpolation and nonlocal adaptive thresholding
  publication-title: Journal of Electronic Imaging
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  ident: 10.1016/j.neunet.2019.08.022_b3
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2009.2028250
– ident: 10.1016/j.neunet.2019.08.022_b6
  doi: 10.1109/CVPR.2018.00333
– ident: 10.1016/j.neunet.2019.08.022_b46
  doi: 10.1109/CVPR.2017.294
SSID ssj0006843
Score 2.6888144
Snippet Deep convolutional neural networks (CNNs) have attracted great attention in the field of image denoising. However, there are two drawbacks: (1) it is very...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 461
SubjectTerms Batch renormalization
CNN
Deep Learning - standards
Dilated convolution
Image denoising
Pattern Recognition, Automated - methods
Residual learning
Signal-To-Noise Ratio
Title Image denoising using deep CNN with batch renormalization
URI https://dx.doi.org/10.1016/j.neunet.2019.08.022
https://www.ncbi.nlm.nih.gov/pubmed/31629201
https://www.proquest.com/docview/2307144322
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4fqwvInit2yZ95SiLsqvYiyvsLeRVXNHusm6v_nZn0lbxIIJQeigTWibJN5PpNzOEXEZKJLlJdOCiyAYxhqzA7tjAGoXFQHiqfImNhyIdPcV302TaI8MuFwZplS32N5ju0bp9Mmi1OVjMZoPHEExtCg4PuCC-wTdmsMcZrvKrj2-aR5o3zDkQDlC6S5_zHK_K1ZVDRmUkfCFPxn4zT7-5n94M3W6TzdZ_pNfNJ-6Qnqt2yVbXm4G2W3WPiPEbIAUFVJnPMBxAa3-3zi3osCgoxl-pBhx-pkuQAXh-bTMy98nk9mYyHAVtm4TAgPVZBdYalytVOqM0F0ZlOVcRMy7O8tC6PIxjbctUcSM0Rp2YLi0Hr4jbjOmUGX5A1qp55Y4IFZlQcCU2t0msQq1DGyrHMgOnqqgUok94pxxp2hLi2MniVXZcsRfZqFSiSiU2uGSsT4KvUYumhMYf8lmnd_ljKUhA-T9GXnTTJGGX4K8PVbl5_S6R7g5HR44yh838fX0Lj1Js2RUd__u9J2SD4THcR2ZOydpqWbsz8FVW-twvxnOyfj2-HxWfahjoeA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aD3rx_X5F8Lp2N9lXjlIsrY9erNBbyKtYqdui7dXf7kx2V_FQCsKyh2XChknyzWTyZYaQ60iJJDeJDlwU2SDGkBXYHRtYozAZCE-VT7Hx1Es7L_H9IBmskFZ9FwZplRX2l5ju0br60qy02ZyORs3nEExtCg4PuCC-wPcqWYth-WIZg5uvX55HmpfUOZAOULy-P-dJXoWbFw4plZHwmTwZW2SfFvmf3g61t8lm5UDS27KPO2TFFbtkqy7OQKu1ukdE9x2gggKsTEYYD6Bz_7bOTWmr16MYgKUagPiVfoAM4PO4upK5T_rtu36rE1R1EgID5mcWWGtcrtTQGaW5MCrLuYqYcXGWh9blYRxrO0wVN0Jj2InpoeXgFnGbMZ0yww9Io5gU7ohQkQkFT2Jzm8Qq1Dq0oXIsM7CtioZCHBNeK0eaKoc4lrIYy5os9iZLlUpUqcQKl4wdk-Cn1bTMobFEPqv1Lv_MBQkwv6TlVT1MEpYJnn2owk3mnxL57rB35ChzWI7fT194lGLNrujk3_-9JOud_tOjfOz2Hk7JBsM9uQ_TnJHG7GPuzsFxmekLPzG_Acj36gY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+denoising+using+deep+CNN+with+batch+renormalization&rft.jtitle=Neural+networks&rft.au=Tian%2C+Chunwei&rft.au=Xu%2C+Yong&rft.au=Zuo%2C+Wangmeng&rft.date=2020-01-01&rft.eissn=1879-2782&rft.volume=121&rft.spage=461&rft_id=info:doi/10.1016%2Fj.neunet.2019.08.022&rft_id=info%3Apmid%2F31629201&rft.externalDocID=31629201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon