MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3

[Display omitted] Increasing evidence showed that microRNAs (miRNAs) were abnormally expressed in cancers and made effects on the tumorigenesis. Aberrant expression of miR-20a-5p has been reported in human breast carcinoma. However, the functional mechanism of miR-20a-5p in human breast carcinoma, p...

Full description

Saved in:
Bibliographic Details
Published inBiomedicine & pharmacotherapy Vol. 103; pp. 1482 - 1489
Main Authors Bai, Xiangdong, Han, Guohui, Liu, Yang, Jiang, Hongchuan, He, Qiang
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Increasing evidence showed that microRNAs (miRNAs) were abnormally expressed in cancers and made effects on the tumorigenesis. Aberrant expression of miR-20a-5p has been reported in human breast carcinoma. However, the functional mechanism of miR-20a-5p in human breast carcinoma, particularly in triple-negative breast cancer (TNBC), required further investigations. Here, firstly, we determined that miR-20a-5p was highly expressed in both TNBC tissues and cell lines. Then, we explored that the overexpression of miR-20a-5p promoted the migration and invasion of TNBC cells in vitro. The tendency was significantly reversed after the depletion of miR-20a-5p. Consistent result could be obtained with the in vivo nude mice tumorigenesis. Thirdly, the underlying molecular mechanism was investigated. The Runt-related transcription factor 3 (RUNX3) was identified as a target of miR-20a-5p in TNBC cells. High expression of miR-20a-5p significantly decreased both the mRNA and protein levels of RUNX3, as well as its direct downstream targets Bim and p21. These results verified the significance of miR-20a-5p and explored its functional mechanisms in TNBC, suggesting the potential clinical applications of miR-20a-5p in TNBC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2018.04.165