Electrostimulation in an autonomous culture lab-on-chip provides neuroprotection of a retinal explant from a retinitis pigmentosa mouse-model
•An autonomous culture system for electrostimulate organotypic cultures is presented.•The integration of microfluidic platforms together with sensors and actuators parts has been carried out successfully.•A protective effect on photoreceptor cell death in RP mouse retinal explants has been achieved....
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 288; pp. 337 - 346 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.06.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0925-4005 1873-3077 |
DOI | 10.1016/j.snb.2019.02.118 |
Cover
Loading…
Abstract | •An autonomous culture system for electrostimulate organotypic cultures is presented.•The integration of microfluidic platforms together with sensors and actuators parts has been carried out successfully.•A protective effect on photoreceptor cell death in RP mouse retinal explants has been achieved.
In this paper an autonomous culture system with the capability to electrostimulate organotypic cultures is described, and its utility is demonstrated by the neuroprotection achieved in retinal explants. The system is composed of a lab-on-chip (LOC), an electronic circuit and a data acquisition device. The LOC, in which the culture takes place, includes a microelectrode array (MEA), consisting of a PCB with a group of gold microelectrodes embedded in polydimethylsiloxane (PDMS), a microheater, a thermistor and a microfluidic circuit made of thermoplastic for feeding with culture medium. A plug made of PDMS has been included to facilitate the assembly of the culture LOC, the placement of the mouse retinas inside the MEA and the flow of culture medium. The transparency of the PDMS permits optical applications and a real time monitoring. An electronic circuit allows for a close monitoring of the experiment using a LabVIEW software specifically developed for this setting, including temperature control, heating and electrostimulation. In the experimental conditions, the retinal explants from retinitis pigmentosa mouse-models are dissected the day before neurodegeneration starts, when photoreceptor cell death is expected to progress along the following days, and cultured inside the LOC, using a fluorophore as a live-dead marker. The stimulation is a biphasic square signal of 0.5 Vpp and it is applied for five minutes every other day. Unstimulated RP explants and healthy retinas are used as controls. After seven days, a histological study is performed. We have demonstrated the applicability of this system as an organotypic culture LOC to test the effect of electrostimulation in retinal explants from different mouse models, and found a protective effect on photoreceptor cell death in the conditions tested. |
---|---|
AbstractList | In this paper an autonomous culture system with the capability to electrostimulate organotypic cultures is described, and its utility is demonstrated by the neuroprotection achieved in retinal explants. The system is composed of a lab-on-chip (LOC), an electronic circuit and a data acquisition device. The LOC, in which the culture takes place, includes a microelectrode array (MEA), consisting of a PCB with a group of gold microelectrodes embedded in polydimethylsiloxane (PDMS), a microheater, a thermistor and a microfluidic circuit made of thermoplastic for feeding with culture medium. A plug made of PDMS has been included to facilitate the assembly of the culture LOC, the placement of the mouse retinas inside the MEA and the flow of culture medium. The transparency of the PDMS permits optical applications and a real time monitoring. An electronic circuit allows for a close monitoring of the experiment using a LabVIEW software specifically developed for this setting, including temperature control, heating and electrostimulation. In the experimental conditions, the retinal explants from retinitis pigmentosa mouse-models are dissected the day before neurodegeneration starts, when photoreceptor cell death is expected to progress along the following days, and cultured inside the LOC, using a fluorophore as a live-dead marker. The stimulation is a biphasic square signal of 0.5 Vpp and it is applied for five minutes every other day. Unstimulated RP explants and healthy retinas are used as controls. After seven days, a histological study is performed. We have demonstrated the applicability of this system as an organotypic culture LOC to test the effect of electrostimulation in retinal explants from different mouse models, and found a protective effect on photoreceptor cell death in the conditions tested. •An autonomous culture system for electrostimulate organotypic cultures is presented.•The integration of microfluidic platforms together with sensors and actuators parts has been carried out successfully.•A protective effect on photoreceptor cell death in RP mouse retinal explants has been achieved. In this paper an autonomous culture system with the capability to electrostimulate organotypic cultures is described, and its utility is demonstrated by the neuroprotection achieved in retinal explants. The system is composed of a lab-on-chip (LOC), an electronic circuit and a data acquisition device. The LOC, in which the culture takes place, includes a microelectrode array (MEA), consisting of a PCB with a group of gold microelectrodes embedded in polydimethylsiloxane (PDMS), a microheater, a thermistor and a microfluidic circuit made of thermoplastic for feeding with culture medium. A plug made of PDMS has been included to facilitate the assembly of the culture LOC, the placement of the mouse retinas inside the MEA and the flow of culture medium. The transparency of the PDMS permits optical applications and a real time monitoring. An electronic circuit allows for a close monitoring of the experiment using a LabVIEW software specifically developed for this setting, including temperature control, heating and electrostimulation. In the experimental conditions, the retinal explants from retinitis pigmentosa mouse-models are dissected the day before neurodegeneration starts, when photoreceptor cell death is expected to progress along the following days, and cultured inside the LOC, using a fluorophore as a live-dead marker. The stimulation is a biphasic square signal of 0.5 Vpp and it is applied for five minutes every other day. Unstimulated RP explants and healthy retinas are used as controls. After seven days, a histological study is performed. We have demonstrated the applicability of this system as an organotypic culture LOC to test the effect of electrostimulation in retinal explants from different mouse models, and found a protective effect on photoreceptor cell death in the conditions tested. |
Author | Cabello, Miguel la Cerda, Berta De Perdigones, Francisco Diaz-Corrales, Francisco J. Aracil, Carmen Mozo, Marta Quero, Jose Manuel Relimpio, Isabel Bhattacharya, Shom S. Valdes-Sanchez, Lourdes |
Author_xml | – sequence: 1 givenname: Miguel surname: Cabello fullname: Cabello, Miguel email: mcabellov@gte.esi.us.es organization: Department of Electronic Engineering, University of Seville, Seville, Spain – sequence: 2 givenname: Marta surname: Mozo fullname: Mozo, Marta organization: Department of Electronic Engineering, University of Seville, Seville, Spain – sequence: 3 givenname: Berta De surname: la Cerda fullname: la Cerda, Berta De email: berta.delacerda@cabimer.es organization: Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain – sequence: 4 givenname: Carmen surname: Aracil fullname: Aracil, Carmen organization: Department of Electronic Engineering, University of Seville, Seville, Spain – sequence: 5 givenname: Francisco J. surname: Diaz-Corrales fullname: Diaz-Corrales, Francisco J. organization: Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain – sequence: 6 givenname: Francisco surname: Perdigones fullname: Perdigones, Francisco organization: Department of Electronic Engineering, University of Seville, Seville, Spain – sequence: 7 givenname: Lourdes surname: Valdes-Sanchez fullname: Valdes-Sanchez, Lourdes organization: Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain – sequence: 8 givenname: Isabel surname: Relimpio fullname: Relimpio, Isabel organization: University Hospital Virgen Macarena, Seville, Spain; RETICS Oftared, Carlos III Institute of Health (Spain), Ministry of Health RD16/0008/0010 – sequence: 9 givenname: Shom S. surname: Bhattacharya fullname: Bhattacharya, Shom S. organization: Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain – sequence: 10 givenname: Jose Manuel surname: Quero fullname: Quero, Jose Manuel email: quero@us.es organization: Department of Electronic Engineering, University of Seville, Seville, Spain |
BookMark | eNp9kM1q3DAQgEVJoZu0D9CbIGe7I2kt7dJTCOkPBHJJz0KWxq0WWXIlOSQP0XeutttccggMiBHzzc93Ts5iikjIRwY9AyY_HfoSx54D2_fAe8Z2b8iG7ZToBCh1Rjaw50O3BRjekfNSDgCwFRI25M9NQFtzKtXPazDVp0h9pKbFWlNMc1oLtWuoa0YazNil2NlffqFLTg_eYaER15xaVlufI50mamjG6qMJFB-XYGKlU07z87evvtDF_5wx1lQMPY7Abk4Ow3vydjKh4If_7wX58eXm_vpbd3v39fv11W1nheS1c9vRCDfuYWBSMJDArFF8NxnlphEH0Q53nA07DpN0RnA1KGnYZCzfGsnYKC7I5alv2_v3iqXqQ1pzW7hozjlTeykEtCp1qrLNT8k4aevrP0U1Gx80A310rw-6uddH9xq4bu4byV6QS_azyU-vMp9PDLbDHzxmXazHaNH53NRql_wr9F_Q6aIx |
CitedBy_id | crossref_primary_10_1063_5_0156704 crossref_primary_10_3390_mi12121469 crossref_primary_10_3390_mi12091071 crossref_primary_10_1007_s00542_020_05206_9 crossref_primary_10_1038_s41378_020_0164_0 crossref_primary_10_1039_D1LC00669J crossref_primary_10_1088_1758_5090_aba500 crossref_primary_10_1039_C9AY01576K crossref_primary_10_1116_1_5142012 crossref_primary_10_1016_j_sna_2019_111568 crossref_primary_10_3390_mi12020175 |
Cites_doi | 10.1007/s00216-003-2435-7 10.1016/j.bios.2014.07.029 10.5402/2012/601458 10.1021/ac002800y 10.1038/s41746-017-0014-0 10.1136/bjo.2010.179622 10.1083/jcb.119.3.493 10.1167/iovs.08-2321 10.1016/j.preteyeres.2016.05.002 10.1098/rsos.150031 10.1038/srep10192 10.1001/2013.jamaophthalmol.221 10.1016/j.mattod.2017.11.002 10.1016/j.bios.2010.07.086 10.1039/C3JA50281C 10.1109/TBME.2007.908310 10.1088/0960-1317/17/5/R01 10.1016/j.snb.2017.11.026 10.1007/s10544-015-0019-x 10.1021/acsnano.7b06703 10.1167/iovs.12-9612 10.1016/j.carbon.2005.11.022 10.1128/JCM.01824-15 10.3390/s19010139 10.1039/b820557b 10.1167/iovs.10-6932 10.1109/IEMBS.2011.6092073 10.1371/journal.pone.0106148 10.1167/iovs.15-17901 10.1016/S0042-6989(99)00052-8 10.1038/s41598-017-13848-5 10.1039/C4LC00502C 10.1117/12.2245443 10.1016/j.jneumeth.2015.05.001 10.1088/1741-2560/12/6/066029 10.1016/S0140-6736(06)69740-7 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Jun 1, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jun 1, 2019 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2019.02.118 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
EndPage | 346 |
ExternalDocumentID | 10_1016_j_snb_2019_02_118 S0925400519303417 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c362t-d4ba3db90516310601ca728fa7dfbe53187d215820f6da327576a1fac24a611b3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Mon Jul 14 10:44:20 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Tue Jul 01 01:27:28 EDT 2025 Fri Feb 23 02:31:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Retinitis-Pigmentosa Neuroprotection Organotypic-culture Lab-on-chip Electrostimulation Micro-incubator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-d4ba3db90516310601ca728fa7dfbe53187d215820f6da327576a1fac24a611b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2221796330 |
PQPubID | 2047454 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2221796330 crossref_citationtrail_10_1016_j_snb_2019_02_118 crossref_primary_10_1016_j_snb_2019_02_118 elsevier_sciencedirect_doi_10_1016_j_snb_2019_02_118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Romao, Martins, Germano, Cardoso, Cardoso, Freitas (bib0015) 2017; 11 Hare, George, Bray, Volitakis, Vais, Ryan, Cherny, Bush, Masters, Adlard (bib0145) 2014; 29 K. Kooragayala, N. Gotoh, T. Cogliati, J. Nellissery, T. R. Kaden, S. French, R. Balaban, W. Li, R. Covian, A. Swaroop, Quantification of oxygen consumption in retina ex vivo demonstrates limited reserve capacity of photoreceptor mitochondria, Investigative ophthalmology & visual science 56(13)(2015)8428-8436. Dorn, Ahuja, Caspi, Da Cruz, Dagnelie, Sahel, Greenberg, McMahon, Group (bib0140) 2013; 131 Halldorsson, Lucumi, Gómez-Sjöberg, Fleming (bib0050) 2015; 63 Yue, Weiland, Roska, Humayun (bib0130) 2016; 53 Wu, Dong, Rigatto, Liu, Lin (bib0035) 2018; 1 Abgrall, Gue (bib0010) 2007; 17 Ahuja, Dorn, Caspi, McMahon, Dagnelie, Stanga, Humayun, Greenberg, Group (bib0110) 2011; 95 Gardeniers, Van den Berg (bib0025) 2004; 378 Hartong, Berson, Dryja (bib0105) 2006; 368 Figeys, Pinto (bib0020) 2000; 72 Kim, Kim, Kim, Han, Chung, Jung (bib0090) 2015; 12 A. Takano, T. Ogawa, M. Tanaka, N. Futai, On-chip incubation system for long-term microfluidic cell culture, in: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, IEEE, 2011, pp. 8404-8407. Chłopek, Czajkowska, Szaraniec, Frackowiak, Szostak, Beguin (bib0085) 2006; 44 A. Schatz, T. Röck, L. Naycheva, G. Willmann, B. Wilhelm, T. Peters, K. U. Bartz-Schmidt, E. Zrenner, A. Messias, F. Gekeler, Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study, Investigative ophthalmology & visual science 52(7)(2011)4485-4496. Cornaglia, Mouchiroud, Marette, Narasimhan, Lehnert, Jovaisaite, Auwerx, Gijs (bib0040) 2015; 5 Cabello, Ge, Aracil, Moschou, Estela, Quero, Pascu, Rocha (bib0075) 2019; 19 R. M. Sappington, T. Sidorova, D. J. Long, D. J. Calkins, Trpv1: contribution to retinal ganglion cell apoptosis and increased intracellular ca2+ with exposure to hydrostatic pressure, Investigative ophthalmology & visual science 50(2)(2009)717-728. Gorczyca, Gong, Ardelt, Traganos, Darzynkiewicz (bib0185) 1993; 53 Yu, Yu, Chen, Fan, Chou, Yang (bib0065) 2014; 14 Reinhard, Tikidji-Hamburyan, Seitter, Idrees, Mutter, Benkner, Münch (bib0150) 2014; 9 D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chemical Society Reviews 39(3)(2010)1153-1182. Dodson, Echevarria, Li, Sappington, Edd (bib0160) 2015; 17 E. Clasen, K. Land, T.-H. Joubert, Micro-incubator for bacterial biosensing applications, in: Fourth Conference on Sensors, MEMS, and Electro-Optic Systems, Vol. 10036, International Society for Optics and Photonics, 2017, p. 100360G. Vendruscolo, Rossi, Schmidell, Ninow (bib0175) 2012; 2012 Humayun, de Juan, Weiland, Dagnelie, Katona, Greenberg, Suzuki (bib0115) 1999; 39 Cabibbe, Miotto, Moure, Alcaide, Feuerriegel, Pozzi, Nikolayevskyy, Drobniewski, Niemann, Reither (bib0030) 2015; 53 L. Naycheva, A. Schatz, T. Röck, G. Willmann, A. Messias, K. U. Bartz-Schmidt, E. Zrenner, F. Gekeler, Phosphene thresholds elicited by transcorneal electrical stimulation in healthy subjects and patients with retinal diseases, Investigative ophthalmology & visual science 53(12)(2012)7440-7448. Saalfrank, Konduri, Latifi, Habibey, Golabchi, Martiniuc, Knoll, Ingebrandt, Blau (bib0070) 2015; 2 Yu, Deng, Tong, Huan, Way, IslamBadhan, Iliescu, Yu (bib0060) 2017; 7 Butterwick, Vankov, Huie, Freyvert, Palanker (bib0135) 2007; 54 Gavrieli, Sherman, Ben-Sasson (bib0180) 1992; 119 Sriram, Alberti, Dancik, Wu, Wu, Feng, Ramasamy, Bigliardi, Bigliardi-Qi, Wang (bib0055) 2017; 21 Cabello, Aracil, Perdigones, Mozo, de la Cerda, Quero (bib0100) 2018; 257 Braeken, Huys, Loo, Bartic, Borghs, Callewaert, Eberle (bib0080) 2010; 26 Wardyn, Sanderson, Swan, Stagi (bib0095) 2015; 251 Yu (10.1016/j.snb.2019.02.118_bib0060) 2017; 7 10.1016/j.snb.2019.02.118_bib0155 Gardeniers (10.1016/j.snb.2019.02.118_bib0025) 2004; 378 Cabibbe (10.1016/j.snb.2019.02.118_bib0030) 2015; 53 Ahuja (10.1016/j.snb.2019.02.118_bib0110) 2011; 95 Cabello (10.1016/j.snb.2019.02.118_bib0100) 2018; 257 Dodson (10.1016/j.snb.2019.02.118_bib0160) 2015; 17 10.1016/j.snb.2019.02.118_bib0170 Yue (10.1016/j.snb.2019.02.118_bib0130) 2016; 53 Saalfrank (10.1016/j.snb.2019.02.118_bib0070) 2015; 2 Abgrall (10.1016/j.snb.2019.02.118_bib0010) 2007; 17 Figeys (10.1016/j.snb.2019.02.118_bib0020) 2000; 72 Cabello (10.1016/j.snb.2019.02.118_bib0075) 2019; 19 Hartong (10.1016/j.snb.2019.02.118_bib0105) 2006; 368 Wardyn (10.1016/j.snb.2019.02.118_bib0095) 2015; 251 Butterwick (10.1016/j.snb.2019.02.118_bib0135) 2007; 54 Kim (10.1016/j.snb.2019.02.118_bib0090) 2015; 12 Gavrieli (10.1016/j.snb.2019.02.118_bib0180) 1992; 119 Vendruscolo (10.1016/j.snb.2019.02.118_bib0175) 2012; 2012 Wu (10.1016/j.snb.2019.02.118_bib0035) 2018; 1 10.1016/j.snb.2019.02.118_bib0045 10.1016/j.snb.2019.02.118_bib0120 Humayun (10.1016/j.snb.2019.02.118_bib0115) 1999; 39 10.1016/j.snb.2019.02.118_bib0165 10.1016/j.snb.2019.02.118_bib0005 Hare (10.1016/j.snb.2019.02.118_bib0145) 2014; 29 10.1016/j.snb.2019.02.118_bib0125 Romao (10.1016/j.snb.2019.02.118_bib0015) 2017; 11 Gorczyca (10.1016/j.snb.2019.02.118_bib0185) 1993; 53 Chłopek (10.1016/j.snb.2019.02.118_bib0085) 2006; 44 Braeken (10.1016/j.snb.2019.02.118_bib0080) 2010; 26 Halldorsson (10.1016/j.snb.2019.02.118_bib0050) 2015; 63 Dorn (10.1016/j.snb.2019.02.118_bib0140) 2013; 131 Yu (10.1016/j.snb.2019.02.118_bib0065) 2014; 14 Cornaglia (10.1016/j.snb.2019.02.118_bib0040) 2015; 5 Reinhard (10.1016/j.snb.2019.02.118_bib0150) 2014; 9 Sriram (10.1016/j.snb.2019.02.118_bib0055) 2017; 21 |
References_xml | – volume: 54 start-page: 2261 year: 2007 end-page: 2267 ident: bib0135 article-title: Tissue damage by pulsed electrical stimulation publication-title: IEEE Trans. Biomed. Eng. – volume: 131 start-page: 183 year: 2013 end-page: 189 ident: bib0140 article-title: The detection of motion by blind subjects with the epiretinal 60-electrode (argus ii) retinal prosthesis publication-title: JAMA Ophthalmol. – reference: D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chemical Society Reviews 39(3)(2010)1153-1182. – volume: 53 start-page: 3876 year: 2015 end-page: 3880 ident: bib0030 article-title: Lab-on-chip-based platform for fast molecular diagnosis of multidrug-resistant tuberculosis publication-title: J. Clin. Microbiol. – reference: A. Takano, T. Ogawa, M. Tanaka, N. Futai, On-chip incubation system for long-term microfluidic cell culture, in: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, IEEE, 2011, pp. 8404-8407. – volume: 63 start-page: 218 year: 2015 end-page: 231 ident: bib0050 article-title: Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices publication-title: Biosens. Bioelectron. – reference: E. Clasen, K. Land, T.-H. Joubert, Micro-incubator for bacterial biosensing applications, in: Fourth Conference on Sensors, MEMS, and Electro-Optic Systems, Vol. 10036, International Society for Optics and Photonics, 2017, p. 100360G. – volume: 119 start-page: 493 year: 1992 end-page: 501 ident: bib0180 article-title: Identification of programmed cell death in situ via specific labeling of nuclear dna fragmentation publication-title: J. Cell Biol. – volume: 11 start-page: 10659 year: 2017 end-page: 10664 ident: bib0015 article-title: Lab-on-chip devices: Gaining ground losing size publication-title: ACS Nano – volume: 5 start-page: 10192 year: 2015 ident: bib0040 article-title: An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long-term live imaging publication-title: Scientific reports – volume: 19 start-page: 139 year: 2019 ident: bib0075 article-title: Extracellular electrophysiology in the prostate cancer cell model pc-3 publication-title: Sensors – reference: R. M. Sappington, T. Sidorova, D. J. Long, D. J. Calkins, Trpv1: contribution to retinal ganglion cell apoptosis and increased intracellular ca2+ with exposure to hydrostatic pressure, Investigative ophthalmology & visual science 50(2)(2009)717-728. – volume: 2 start-page: 150031 year: 2015 ident: bib0070 article-title: Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging publication-title: Royal Society Open Sci. – volume: 1 start-page: 7 year: 2018 ident: bib0035 article-title: Lab-on-chip technology for chronic disease diagnosis publication-title: NPJ Digital Med. – volume: 29 start-page: 565 year: 2014 end-page: 570 ident: bib0145 article-title: The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue publication-title: J. Anal. At. Spectrom. – volume: 53 start-page: 21 year: 2016 end-page: 47 ident: bib0130 article-title: Retinal stimulation strategies to restore vision: Fundamentals and systems publication-title: Prog. Retin. Eye Res. – volume: 257 start-page: 954 year: 2018 end-page: 962 ident: bib0100 article-title: Gold microelectrodes array embedded in pdms for electrical stimulation and signal detection publication-title: Sens. Actuators B Chem. – volume: 9 start-page: e106148 year: 2014 ident: bib0150 article-title: Step-by-step instructions for retina recordings with perforated multi electrode arrays publication-title: PLoS One – volume: 2012 start-page: 1 year: 2012 end-page: 5 ident: bib0175 article-title: Determination of oxygen solubility in liquid media publication-title: ISRN Chem. Eng. – volume: 53 start-page: 3186 year: 1993 end-page: 3192 ident: bib0185 article-title: The cell cycle related differences in susceptibility of hl-60 cells to apoptosis induced by various antitumor agents publication-title: Cancer Res. – volume: 39 start-page: 2569 year: 1999 end-page: 2576 ident: bib0115 article-title: Pattern electrical stimulation of the human retina publication-title: Vision Res. – reference: L. Naycheva, A. Schatz, T. Röck, G. Willmann, A. Messias, K. U. Bartz-Schmidt, E. Zrenner, F. Gekeler, Phosphene thresholds elicited by transcorneal electrical stimulation in healthy subjects and patients with retinal diseases, Investigative ophthalmology & visual science 53(12)(2012)7440-7448. – volume: 95 start-page: 539 year: 2011 end-page: 543 ident: bib0110 article-title: Blind subjects implanted with the argus ii retinal prosthesis are able to improve performance in a spatial-motor task publication-title: Br. J. Ophthalmol. – volume: 21 start-page: 326 year: 2017 end-page: 340 ident: bib0055 article-title: Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function publication-title: Mater. Today – volume: 7 start-page: 14528 year: 2017 ident: bib0060 article-title: A perfusion incubator liver chip for 3d cell culture with application on chronic hepatotoxicity testing publication-title: Scientific Reports – volume: 17 start-page: 114 year: 2015 ident: bib0160 article-title: Retina-on-a-chip: a microfluidic platform for point access signaling studies publication-title: Biomed. Microdevices – reference: A. Schatz, T. Röck, L. Naycheva, G. Willmann, B. Wilhelm, T. Peters, K. U. Bartz-Schmidt, E. Zrenner, A. Messias, F. Gekeler, Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study, Investigative ophthalmology & visual science 52(7)(2011)4485-4496. – volume: 44 start-page: 1106 year: 2006 end-page: 1111 ident: bib0085 article-title: In vitro studies of carbon nanotubes biocompatibility publication-title: Carbon – volume: 368 start-page: 1795 year: 2006 end-page: 1809 ident: bib0105 article-title: Retinitis pigmentosa publication-title: The Lancet – volume: 72 start-page: 330 year: 2000 end-page: A ident: bib0020 article-title: Lab-on-a-chip: a revolution in biological and medical sciences publication-title: Anal. Chem. – volume: 378 start-page: 1700 year: 2004 end-page: 1703 ident: bib0025 article-title: Lab-on-a-chip systems for biomedical and environmental monitoring publication-title: Anal. Bioanal. Chem. – volume: 17 start-page: R15 year: 2007 ident: bib0010 article-title: Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review publication-title: J. Micromech. Microeng. – reference: K. Kooragayala, N. Gotoh, T. Cogliati, J. Nellissery, T. R. Kaden, S. French, R. Balaban, W. Li, R. Covian, A. Swaroop, Quantification of oxygen consumption in retina ex vivo demonstrates limited reserve capacity of photoreceptor mitochondria, Investigative ophthalmology & visual science 56(13)(2015)8428-8436. – volume: 251 start-page: 17 year: 2015 end-page: 23 ident: bib0095 article-title: Low cost production of 3d-printed devices and electrostimulation chambers for the culture of primary neurons publication-title: J. Neurosci. Methods – volume: 14 start-page: 3621 year: 2014 end-page: 3628 ident: bib0065 article-title: A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and co2 publication-title: Lab on a Chip – volume: 12 start-page: 066029 year: 2015 ident: bib0090 article-title: In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays publication-title: J. Neural Eng. – volume: 26 start-page: 1474 year: 2010 end-page: 1477 ident: bib0080 article-title: Localized electrical stimulation of in vitro neurons using an array of sub-cellular sized electrodes publication-title: Biosens. Bioelectron. – volume: 378 start-page: 1700 issue: 7 year: 2004 ident: 10.1016/j.snb.2019.02.118_bib0025 article-title: Lab-on-a-chip systems for biomedical and environmental monitoring publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-003-2435-7 – volume: 63 start-page: 218 year: 2015 ident: 10.1016/j.snb.2019.02.118_bib0050 article-title: Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.07.029 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.snb.2019.02.118_bib0175 article-title: Determination of oxygen solubility in liquid media publication-title: ISRN Chem. Eng. doi: 10.5402/2012/601458 – volume: 72 start-page: 330 issue: 9 year: 2000 ident: 10.1016/j.snb.2019.02.118_bib0020 article-title: Lab-on-a-chip: a revolution in biological and medical sciences publication-title: Anal. Chem. doi: 10.1021/ac002800y – volume: 1 start-page: 7 issue: 1 year: 2018 ident: 10.1016/j.snb.2019.02.118_bib0035 article-title: Lab-on-chip technology for chronic disease diagnosis publication-title: NPJ Digital Med. doi: 10.1038/s41746-017-0014-0 – volume: 95 start-page: 539 issue: 4 year: 2011 ident: 10.1016/j.snb.2019.02.118_bib0110 article-title: Blind subjects implanted with the argus ii retinal prosthesis are able to improve performance in a spatial-motor task publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.2010.179622 – volume: 119 start-page: 493 issue: 3 year: 1992 ident: 10.1016/j.snb.2019.02.118_bib0180 article-title: Identification of programmed cell death in situ via specific labeling of nuclear dna fragmentation publication-title: J. Cell Biol. doi: 10.1083/jcb.119.3.493 – ident: 10.1016/j.snb.2019.02.118_bib0155 doi: 10.1167/iovs.08-2321 – volume: 53 start-page: 21 year: 2016 ident: 10.1016/j.snb.2019.02.118_bib0130 article-title: Retinal stimulation strategies to restore vision: Fundamentals and systems publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2016.05.002 – volume: 2 start-page: 150031 year: 2015 ident: 10.1016/j.snb.2019.02.118_bib0070 article-title: Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging publication-title: Royal Society Open Sci. doi: 10.1098/rsos.150031 – volume: 5 start-page: 10192 year: 2015 ident: 10.1016/j.snb.2019.02.118_bib0040 article-title: An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long-term live imaging publication-title: Scientific reports doi: 10.1038/srep10192 – volume: 131 start-page: 183 issue: 2 year: 2013 ident: 10.1016/j.snb.2019.02.118_bib0140 article-title: The detection of motion by blind subjects with the epiretinal 60-electrode (argus ii) retinal prosthesis publication-title: JAMA Ophthalmol. doi: 10.1001/2013.jamaophthalmol.221 – volume: 21 start-page: 326 issue: 4 year: 2017 ident: 10.1016/j.snb.2019.02.118_bib0055 article-title: Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function publication-title: Mater. Today doi: 10.1016/j.mattod.2017.11.002 – volume: 26 start-page: 1474 issue: 4 year: 2010 ident: 10.1016/j.snb.2019.02.118_bib0080 article-title: Localized electrical stimulation of in vitro neurons using an array of sub-cellular sized electrodes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.07.086 – volume: 29 start-page: 565 issue: 3 year: 2014 ident: 10.1016/j.snb.2019.02.118_bib0145 article-title: The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue publication-title: J. Anal. At. Spectrom. doi: 10.1039/C3JA50281C – volume: 53 start-page: 3186 issue: 13 year: 1993 ident: 10.1016/j.snb.2019.02.118_bib0185 article-title: The cell cycle related differences in susceptibility of hl-60 cells to apoptosis induced by various antitumor agents publication-title: Cancer Res. – volume: 54 start-page: 2261 issue: 12 year: 2007 ident: 10.1016/j.snb.2019.02.118_bib0135 article-title: Tissue damage by pulsed electrical stimulation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.908310 – volume: 17 start-page: R15 issue: 5 year: 2007 ident: 10.1016/j.snb.2019.02.118_bib0010 article-title: Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/5/R01 – volume: 257 start-page: 954 year: 2018 ident: 10.1016/j.snb.2019.02.118_bib0100 article-title: Gold microelectrodes array embedded in pdms for electrical stimulation and signal detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.11.026 – volume: 17 start-page: 114 issue: 6 year: 2015 ident: 10.1016/j.snb.2019.02.118_bib0160 article-title: Retina-on-a-chip: a microfluidic platform for point access signaling studies publication-title: Biomed. Microdevices doi: 10.1007/s10544-015-0019-x – volume: 11 start-page: 10659 issue: 11 year: 2017 ident: 10.1016/j.snb.2019.02.118_bib0015 article-title: Lab-on-chip devices: Gaining ground losing size publication-title: ACS Nano doi: 10.1021/acsnano.7b06703 – ident: 10.1016/j.snb.2019.02.118_bib0120 doi: 10.1167/iovs.12-9612 – volume: 44 start-page: 1106 issue: 6 year: 2006 ident: 10.1016/j.snb.2019.02.118_bib0085 article-title: In vitro studies of carbon nanotubes biocompatibility publication-title: Carbon doi: 10.1016/j.carbon.2005.11.022 – volume: 53 start-page: 3876 issue: 12 year: 2015 ident: 10.1016/j.snb.2019.02.118_bib0030 article-title: Lab-on-chip-based platform for fast molecular diagnosis of multidrug-resistant tuberculosis publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01824-15 – volume: 19 start-page: 139 year: 2019 ident: 10.1016/j.snb.2019.02.118_bib0075 article-title: Extracellular electrophysiology in the prostate cancer cell model pc-3 publication-title: Sensors doi: 10.3390/s19010139 – ident: 10.1016/j.snb.2019.02.118_bib0005 doi: 10.1039/b820557b – ident: 10.1016/j.snb.2019.02.118_bib0125 doi: 10.1167/iovs.10-6932 – ident: 10.1016/j.snb.2019.02.118_bib0165 doi: 10.1109/IEMBS.2011.6092073 – volume: 9 start-page: e106148 issue: 8 year: 2014 ident: 10.1016/j.snb.2019.02.118_bib0150 article-title: Step-by-step instructions for retina recordings with perforated multi electrode arrays publication-title: PLoS One doi: 10.1371/journal.pone.0106148 – ident: 10.1016/j.snb.2019.02.118_bib0170 doi: 10.1167/iovs.15-17901 – volume: 39 start-page: 2569 issue: 15 year: 1999 ident: 10.1016/j.snb.2019.02.118_bib0115 article-title: Pattern electrical stimulation of the human retina publication-title: Vision Res. doi: 10.1016/S0042-6989(99)00052-8 – volume: 7 start-page: 14528 issue: 1 year: 2017 ident: 10.1016/j.snb.2019.02.118_bib0060 article-title: A perfusion incubator liver chip for 3d cell culture with application on chronic hepatotoxicity testing publication-title: Scientific Reports doi: 10.1038/s41598-017-13848-5 – volume: 14 start-page: 3621 year: 2014 ident: 10.1016/j.snb.2019.02.118_bib0065 article-title: A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and co2 publication-title: Lab on a Chip doi: 10.1039/C4LC00502C – ident: 10.1016/j.snb.2019.02.118_bib0045 doi: 10.1117/12.2245443 – volume: 251 start-page: 17 year: 2015 ident: 10.1016/j.snb.2019.02.118_bib0095 article-title: Low cost production of 3d-printed devices and electrostimulation chambers for the culture of primary neurons publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.05.001 – volume: 12 start-page: 066029 issue: 6 year: 2015 ident: 10.1016/j.snb.2019.02.118_bib0090 article-title: In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/6/066029 – volume: 368 start-page: 1795 issue: 9549 year: 2006 ident: 10.1016/j.snb.2019.02.118_bib0105 article-title: Retinitis pigmentosa publication-title: The Lancet doi: 10.1016/S0140-6736(06)69740-7 |
SSID | ssj0004360 |
Score | 2.3618753 |
Snippet | •An autonomous culture system for electrostimulate organotypic cultures is presented.•The integration of microfluidic platforms together with sensors and... In this paper an autonomous culture system with the capability to electrostimulate organotypic cultures is described, and its utility is demonstrated by the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 337 |
SubjectTerms | Apoptosis Cell death Circuit boards Circuits Culture Electronic circuits Electrostimulation Gold Lab-on-a-chip Lab-on-chip Micro-incubator Microelectrodes Microfluidics Monitoring Neuroprotection Organotypic-culture Photoreceptors Polydimethylsiloxane Printed circuits Retina Retinitis-Pigmentosa Silicone resins Temperature control Thermistors |
Title | Electrostimulation in an autonomous culture lab-on-chip provides neuroprotection of a retinal explant from a retinitis pigmentosa mouse-model |
URI | https://dx.doi.org/10.1016/j.snb.2019.02.118 https://www.proquest.com/docview/2221796330 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuJ0Sg6ehLi2ybruOMbGVNxFB7uFtEm1MttiN_Dkf-D_7Htt6heyg9BLQ9KUvOR9tO_3e4Sce1yDFfQ440jcKpQSLNDChYPXF57RJvJixDvfTv3JTFzPu_MGGdZYGEyrtLq_0umltrYtHbuanTxJOndOH4KbygVxQBcjohzZ62BPX759pXkIXiKFsTPD3vWfzTLHq0hDzO7qI22ni3U__rZNv7R0aXrGO2Tb-ox0UL3WLmmYdI9sfWMS3Cfvo6qcDRzYZ1uQiyYpVXCtlohbgACfViwbhoLgWZay6DHJqUXiFbQktrSsDTg6i6miCHHEqc1rvgARUASj1M1IhkTz5AE_L2aFojiFYWVlnQMyG4_uhxNmKy2wCAzYkmkRKq5D5Orywd-DIC1SPS-IVU_HoYFjGvQ0-AbgLcS-VtzrQZSi3FhFnlC-64b8kDTTLDVHhLqxj2hf4fPIAWmEWFC9qyNXYUZp7PdbxKnXWEaWhhyrYSxknW_2JEEsEsUiHQ8ilKBFLj6H5BUHx7rOohac_LGRJNiIdcPatZClPcWFBN8J9JXPuXP8v6eekE28q1LL2qS5fFmZU3BiluFZuUvPyMbg6mYy_QBazvKI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RSPAh6YkKwmsZu0I6qKCqVdKBKb5cQOBEEa0SLxJ_jP3CUOLyEGpEyOHUc--x7Jfd8BnATCoBUMBBdE3Cq1lrxjpI8HrysDa2wSpIR3Ho3DwY28vG3fLkCvxsJQWqXT_ZVOL7W1a2m51WwVWda69roY3FQuiIe6OFqEJWKnkg1YOrsYDsaf8EhRgoWpP6cB9c_NMs1rlseU4NUl5k6fSn_8bp5-KOrS-pyvw5pzG9lZ9WYbsGDzTVj9Qia4BW_9qqINntknV5OLZTnTeL3MCbqAMT6riDYsQ9nzac6T-6xgDow3YyW3pSNuoNHTlGlGKEea2r4WjygFRniUupn4kFiR3dEXxulMM5rC8rK4zjbcnPcnvQF3xRZ4gjZszo2MtTAx0XWF6PJhnJboKOikOjJpbPGkdiKD7gE6DGlotAgiDFS0n-okkDr0_VjsQCOf5nYXmJ-GBPiVoUg8GbVjqqneNomvKak0Dbt74NVrrBLHRE4FMR5VnXL2oFAsisSivACDlM4enH4MKSoajr86y1pw6tteUmgm_hrWrIWs3EGeKXSfUGWFQnj7_3vqMSwPJqMrdXUxHh7ACt2pMs2a0Jg_v9hD9Gnm8ZHbs--nB_U5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostimulation+in+an+autonomous+culture+lab-on-chip+provides+neuroprotection+of+a+retinal+explant+from+a+retinitis+pigmentosa+mouse-model&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Cabello%2C+Miguel&rft.au=Mozo%2C+Marta&rft.au=la+Cerda%2C+Berta+De&rft.au=Aracil%2C+Carmen&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=288&rft.spage=337&rft.epage=346&rft_id=info:doi/10.1016%2Fj.snb.2019.02.118&rft.externalDocID=S0925400519303417 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |