The SP1/SIRT1/ACLY signaling axis mediates fatty acid oxidation in renal ischemia–reperfusion-induced renal fibrosis

•The expression of Sirt1 was decreased in renal fibrosis induced by renal ischemia–reperfusion.•Overexpression or knockout Sirt1 in vivo alleviated and aggravated renal fibrosis.•Sirt1 regulated the ACLY transcription by inhibited the enrich of H3K27ac in the promoter of ACLY.•Fatty acid oxidation m...

Full description

Saved in:
Bibliographic Details
Published inInternational immunopharmacology Vol. 132; p. 112002
Main Authors Wu, Huailiang, Wang, Liyan, Kang, Peng, Zhou, Xiangjun, Li, Wei, Xia, Zhongyuan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The expression of Sirt1 was decreased in renal fibrosis induced by renal ischemia–reperfusion.•Overexpression or knockout Sirt1 in vivo alleviated and aggravated renal fibrosis.•Sirt1 regulated the ACLY transcription by inhibited the enrich of H3K27ac in the promoter of ACLY.•Fatty acid oxidation mediated by ACLY was inhibited in renal fibrosis induced by renal ischemia–reperfusion. Renal ischemia–reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia–reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.
AbstractList Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis.BACKGROUNDRenal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis.The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay.METHODSThe IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay.RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression.RESULTSRNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression.Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.CONCLUSIONOur findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.
•The expression of Sirt1 was decreased in renal fibrosis induced by renal ischemia–reperfusion.•Overexpression or knockout Sirt1 in vivo alleviated and aggravated renal fibrosis.•Sirt1 regulated the ACLY transcription by inhibited the enrich of H3K27ac in the promoter of ACLY.•Fatty acid oxidation mediated by ACLY was inhibited in renal fibrosis induced by renal ischemia–reperfusion. Renal ischemia–reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia–reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.
Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.
ArticleNumber 112002
Author Li, Wei
Wang, Liyan
Kang, Peng
Xia, Zhongyuan
Zhou, Xiangjun
Wu, Huailiang
Author_xml – sequence: 1
  givenname: Huailiang
  surname: Wu
  fullname: Wu, Huailiang
  organization: Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
– sequence: 2
  givenname: Liyan
  surname: Wang
  fullname: Wang, Liyan
  organization: Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
– sequence: 3
  givenname: Peng
  surname: Kang
  fullname: Kang, Peng
  organization: Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
– sequence: 4
  givenname: Xiangjun
  surname: Zhou
  fullname: Zhou, Xiangjun
  organization: Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
– sequence: 5
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
– sequence: 6
  givenname: Zhongyuan
  orcidid: 0000-0001-7055-5210
  surname: Xia
  fullname: Xia, Zhongyuan
  email: xiazhongyuan2005@aliyun.com
  organization: Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38608473$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH_gDRDykk1m7Pw4MQukagSl0kigdliwshznur2jxBlsp2p3fYe-YZ8El0w3LOjGtny_c3XvOcfkwI0OCHnP2YIzLpbbBbqIw26Rs7xccJ4zlr8iR7ypm4zXrDpI70rUWVULeUiOQ9gylv5L_oYcFo1gTVkXR-Rmcw308gdfXp5fbPjydLX-RQNeOd2ju6L6FgMdoEMdIVCrY7yj2mBHx1vsdMTRUXTUQ8IpBnMNA-rH-wcPO_B2CqmeoesmA90estj6MWB4S15b3Qd4t79PyM-vXzarb9n6-9n56nSdmULkMZ1aCF02YNrOtLm1DBoNss2h0rKVktV5ZVlesFQWpRWy1FLrRjKQhZWdLk7Ix7nvzo-_JwhRDWlO6HvtYJyCKljRlEUtRJXQD3t0atPKaudx0P5OPXuVgE8zYNIKwYNVBuNfE6LX2CvO1FMwaqvmYNRTMGoOJonLf8TP_V-QfZ5lkEy6QfAqGASXDEUPJqpuxP83-AOiJqvG
CitedBy_id crossref_primary_10_1096_fj_202401543R
crossref_primary_10_3390_biomedicines12091942
crossref_primary_10_1007_s11255_024_04162_x
crossref_primary_10_1016_j_cca_2025_120208
Cites_doi 10.1681/ASN.2017050581
10.1007/s10753-020-01242-9
10.1681/ASN.2020071003
10.1038/s41419-021-03508-y
10.1093/cvr/cvac026
10.1038/s41392-022-01257-8
10.1016/j.phrs.2021.105712
10.14348/molcells.2016.2318
10.1016/j.kint.2019.02.009
10.1016/j.kint.2022.01.029
10.1681/ASN.0000000000000156
10.1016/j.ebiom.2018.01.025
10.1016/j.pupt.2021.102000
10.1016/j.molcel.2022.06.031
10.1681/ASN.2020121723
10.1126/sciadv.adi2465
10.1016/j.isci.2021.103244
10.1016/j.kint.2018.10.009
10.1016/j.pharmthera.2015.05.008
10.4049/jimmunol.1900284
10.1016/j.cmet.2022.05.004
10.3390/ijms19123826
10.1016/j.kint.2022.03.024
10.1681/ASN.2020050717
10.7554/eLife.70672
10.1038/nrneph.2016.83
10.1681/ASN.2019010068
10.1016/j.tem.2013.12.001
10.1016/j.jgg.2021.11.005
10.1016/j.kint.2021.08.031
10.1016/j.plipres.2019.101006
10.1126/sciadv.abi6696
10.1038/nm.3762
10.1016/j.lfs.2021.119529
10.1096/fj.202200256R
10.7150/thno.70830
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.intimp.2024.112002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1878-1705
ExternalDocumentID 38608473
10_1016_j_intimp_2024_112002
S1567576924005204
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABBQC
ABFRF
ABJNI
ABMAC
ABMZM
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
C45
CJTIS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
L7B
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSI
SSP
SSZ
T5K
TEORI
UNMZH
~G-
.GJ
29J
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
R2-
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-c3a66a48ecbdcb2ff0e8ae9b2e5a9b990725f0230bdc64f694a9aa890e93f9da3
IEDL.DBID .~1
ISSN 1567-5769
1878-1705
IngestDate Fri Jul 11 08:55:44 EDT 2025
Thu Apr 03 07:04:10 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Tue Jul 01 05:26:48 EDT 2025
Sat Jul 06 15:30:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fatty acid oxidation
Histone acetylation
Renal ischemic-reperfusion injury
Renal fibrosis
SIRT1
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-c3a66a48ecbdcb2ff0e8ae9b2e5a9b990725f0230bdc64f694a9aa890e93f9da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7055-5210
PMID 38608473
PQID 3038437665
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3038437665
pubmed_primary_38608473
crossref_citationtrail_10_1016_j_intimp_2024_112002
crossref_primary_10_1016_j_intimp_2024_112002
elsevier_sciencedirect_doi_10_1016_j_intimp_2024_112002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-10
PublicationDateYYYYMMDD 2024-05-10
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International immunopharmacology
PublicationTitleAlternate Int Immunopharmacol
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Chen, Huang, Sun, Xie, Chen, Zhao, Huang, Li, Wu, Wu (b0070) 2020; 65
Xiang, Lv, Xing, Sun, Ma, Wu, Lv, Zong, Wang, Wu, Feng, Yang, Wang (b0125) 2023; 9
Piret, Attallah, Gu, Guo, Gujarati, Henein, Zollman, Hato, Ma'ayan, Revelo, Dickman, Chen, Shun, Rosenquist, He, Mallipattu (b0175) 2021; 100
Chen, Du, Cui, Fang, Zhao, Chen, Mai, Ai (b0060) 2021; 24
Wu, Zhang, Chen, Yu, Lv, Liu, Liu, Zheng, Zhao, Wei, Guo, Liu, Chang, Zhang, Liu, Zhao (b0035) 2022; 7
Zhao, Alam, Soo, George, Ma (b0005) 2018; 28
Wang, Chen, Han, Liu, Gao, Huang, Sun, Wang, Wang, Zhao (b0030) 2022; 12
Morrow, Batchuluun, Wu, Ahmadi (b0130) 2022; 34
Carney (b0100) 2016; 12
Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci. 20211;278:119529. doi: 10.1016/j.lfs.2021.119529.
Gu, Tan, Zhou, Sun, Lu, Wang, Jiang, Liang, Hou, Xue, Xu, Dai (b0180) 2022; 102
Ji, Liu, Qu (b0160) 2022; 49
Pefanis, Ierino, Murphy, Cowan (b0010) 2019; 96
Mac-Marcjanek, Zieleniak, Zurawska-Klis, Cypryk, Wozniak, Wojcik (b0080) 2018 Nov 30; 19
Hasegawa, Inoue, Nakamura (b0135) 2021; 32
Xu, Jia, Fang, Jin, Sun, Zhou, Li, Zhang, Wang, Ren, Zou, Ding (b0115) 2022; 101
Chiba, Cerqueira, Li (b0140) 2021; 32
Song, Nabeel-Shah, Pu, Lee, Braunschweig, Ni, Ahmed, Marcon, Zhong, Ray, Ha, Guo, Zhang, Hughes, Blencowe, Greenblatt (b0190) 2022; 82
Smith, Hosgood, Nicholson (b0015) 2019; 95
Sun, Li, Mao, Wu, Deng, He, An, Zeng, Huang, Chen (b0090) 2021; 14
Feng, Zhang, Xu, Shen (b0120) 2020; 77
Chang, Guarente (b0155) 2014; 25
Xu, Sharkey, Cantley (b0025) 2019; 30
Wu, Zhang, Zheng, Zhang, Cao, Sun, Wang (b0145) 2022; 1
Liu, Duan, Yang, Liu, Deng, Tiselius, Ye, Wang, Xing, Xu (b0170) 2023
Chen, Cui, Zhao, Xu, Liu, Shen, Chen, Mai, Ai (b0065) 2022 Jul; 36
Zhuang, Xia, Huang, Wu, Qu, Chen, Sun, Li, Wu, Zhang, Zhang, Yuan, Wang (b0150) 2021; 170
Hasegawa, Sakamaki, Tamaki, Wakino (b0185) 2023; 34
Tang (b0165) 2016; 39
Deng, Sun, Wu, Fang, Cai, An, Huang, Chen, Wu, Zhou, Hu, Zeng (b0095) 2021; 12
Kang, Ahn, Choi, Ko, Han, Chinga, Park, Tao, Sharma, Pullman, Bottinger, Goldberg, Susztak (b0110) 2015; 21
Vizcaíno, Mansilla, Portugal (b0195) 2015; 152
Singh, Ubaid (b0055) 2020; 43
Yang, Liu, Wang, Chao, Zhang, Jia, Tie, Hu (b0040) 2022; 11
Wu, Hua, Hsu, Suzuki, Chu, Lee, Takahata, Lee, Wu, Nikolic-Paterson, Ka, Chen (b0085) 2020; 205
Moreno-Yruela, Zhang, Wei, Bæk, Liu, Gao, Danková, Nielsen, Bolding, Yang, Jameson, Wong, Olsen, Zhao (b0045) 2022; 8
Kuno, Hosoda, Tsukamoto, Sato, Sakuragi, Ajima, Saga, Tada, Taniguchi, Iwahara, Horio (b0050) 2023; 118
Zhang, Zhong, Li, Li, Yuan, Liu, Wu, Wu, Wu, Liang, Xie, Kang, Liu, Lai, Xiao, Tang, Jin, Wang, Xiao, Zhang, Li, Liu, Sun, Zhong (b0075) 2021; 5
Yang, Lan, Dieudé, Sabo-Vatasescu, Karakeussian-Rimbaud, Turgeon, Qi, Gunaratnam, Patey, Hébert (b0020) 2018; 29
Bugarski, Ghazi, Polesel, Martins, Hall (b0105) 2021; 32
Moreno-Yruela (10.1016/j.intimp.2024.112002_b0045) 2022; 8
Sun (10.1016/j.intimp.2024.112002_b0090) 2021; 14
Piret (10.1016/j.intimp.2024.112002_b0175) 2021; 100
Smith (10.1016/j.intimp.2024.112002_b0015) 2019; 95
Bugarski (10.1016/j.intimp.2024.112002_b0105) 2021; 32
Mac-Marcjanek (10.1016/j.intimp.2024.112002_b0080) 2018; 19
Kang (10.1016/j.intimp.2024.112002_b0110) 2015; 21
Gu (10.1016/j.intimp.2024.112002_b0180) 2022; 102
Wu (10.1016/j.intimp.2024.112002_b0085) 2020; 205
Chen (10.1016/j.intimp.2024.112002_b0065) 2022; 36
Zhao (10.1016/j.intimp.2024.112002_b0005) 2018; 28
Pefanis (10.1016/j.intimp.2024.112002_b0010) 2019; 96
Wu (10.1016/j.intimp.2024.112002_b0145) 2022; 1
Yang (10.1016/j.intimp.2024.112002_b0020) 2018; 29
Kuno (10.1016/j.intimp.2024.112002_b0050) 2023; 118
Feng (10.1016/j.intimp.2024.112002_b0120) 2020; 77
10.1016/j.intimp.2024.112002_b0200
Hasegawa (10.1016/j.intimp.2024.112002_b0135) 2021; 32
Zhang (10.1016/j.intimp.2024.112002_b0075) 2021; 5
Deng (10.1016/j.intimp.2024.112002_b0095) 2021; 12
Xiang (10.1016/j.intimp.2024.112002_b0125) 2023; 9
Xu (10.1016/j.intimp.2024.112002_b0025) 2019; 30
Yang (10.1016/j.intimp.2024.112002_b0040) 2022; 11
Xu (10.1016/j.intimp.2024.112002_b0115) 2022; 101
Song (10.1016/j.intimp.2024.112002_b0190) 2022; 82
Morrow (10.1016/j.intimp.2024.112002_b0130) 2022; 34
Vizcaíno (10.1016/j.intimp.2024.112002_b0195) 2015; 152
Liu (10.1016/j.intimp.2024.112002_b0170) 2023
Hasegawa (10.1016/j.intimp.2024.112002_b0185) 2023; 34
Carney (10.1016/j.intimp.2024.112002_b0100) 2016; 12
Singh (10.1016/j.intimp.2024.112002_b0055) 2020; 43
Zhuang (10.1016/j.intimp.2024.112002_b0150) 2021; 170
Wang (10.1016/j.intimp.2024.112002_b0030) 2022; 12
Wu (10.1016/j.intimp.2024.112002_b0035) 2022; 7
Chang (10.1016/j.intimp.2024.112002_b0155) 2014; 25
Ji (10.1016/j.intimp.2024.112002_b0160) 2022; 49
Chiba (10.1016/j.intimp.2024.112002_b0140) 2021; 32
Chen (10.1016/j.intimp.2024.112002_b0060) 2021; 24
Chen (10.1016/j.intimp.2024.112002_b0070) 2020; 65
Tang (10.1016/j.intimp.2024.112002_b0165) 2016; 39
39799025 - Int Immunopharmacol. 2025 Jan 10:113963. doi: 10.1016/j.intimp.2024.113963
References_xml – volume: 43
  start-page: 1589
  year: 2020
  end-page: 1598
  ident: b0055
  article-title: Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation
  publication-title: Inflammation
– volume: 12
  start-page: 3882
  year: 2022
  end-page: 3895
  ident: b0030
  article-title: Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway
  publication-title: Theranostics
– volume: 32
  start-page: 553
  year: 2021
  end-page: 562
  ident: b0140
  article-title: Endothelial-derived miR-17∼92 promotes angiogenesis to protect against renal ischemia-reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
– volume: 96
  start-page: 291
  year: 2019
  end-page: 301
  ident: b0010
  article-title: Regulated necrosis in kidney ischemia-reperfusion injury
  publication-title: Kidney Int.
– volume: 32
  start-page: 1599
  year: 2021
  end-page: 1615
  ident: b0135
  article-title: Activation of sympathetic signaling in macrophages blocks systemic inflammation and protects against renal ischemia-reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
– volume: 25
  start-page: 138
  year: 2014
  end-page: 145
  ident: b0155
  article-title: SIRT1 and other sirtuins in metabolism
  publication-title: Trends Endocrinol. Metab.
– volume: 7
  start-page: 402
  year: 2022
  ident: b0035
  article-title: The sirtuin family in health and disease
  publication-title: Signal Transduct. Target. Ther.
– volume: 101
  start-page: 987
  year: 2022
  end-page: 1002
  ident: b0115
  article-title: Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation
  publication-title: Kidney Int.
– volume: 205
  start-page: 202
  year: 2020
  end-page: 212
  ident: b0085
  article-title: IgA nephropathy benefits from compound K treatment by inhibiting NF-κB/NLRP3 inflammasome and enhancing autophagy and SIRT1
  publication-title: J. Immunol.
– volume: 34
  start-page: 919
  year: 2022
  end-page: 936.e8
  ident: b0130
  article-title: Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia
  publication-title: Cell Metab.
– year: 2023
  ident: b0170
  article-title: Metformin suppresses calcium oxalate crystal-induced kidney injury by promoting Sirt1 and M2 macrophage-mediated anti-inflammatory activation
  publication-title: Signal Transduct. Target. Ther.
– volume: 77
  year: 2020
  ident: b0120
  article-title: ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review
  publication-title: Prog. Lipid Res.
– volume: 28
  start-page: 31
  year: 2018
  end-page: 42
  ident: b0005
  article-title: Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond
  publication-title: EBioMedicine
– volume: 36
  start-page: e22418
  year: 2022 Jul
  ident: b0065
  article-title: LPS stimulation stabilizes HIF-1α by enhancing HIF-1α acetylation via the PARP1-SIRT1 and ACLY-Tip60 pathways in macrophages
  publication-title: FASEB J.
– volume: 65
  year: 2020
  ident: b0070
  article-title: Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB pathway
  publication-title: Pulm. Pharmacol. Ther.
– volume: 1
  year: 2022
  ident: b0145
  article-title: Identification of renal ischemia reperfusion injury subtypes and predictive strategies for delayed graft function and graft survival based on neutrophil extracellular trap-related genes
  publication-title: Front. Immunol.
– volume: 19
  start-page: 3826
  year: 2018 Nov 30
  ident: b0080
  article-title: Expression profile of diabetes-related genes associated with leukocyte sirtuin 1 overexpression in gestational diabetes
  publication-title: Int. J. Mol. Sci.
– volume: 82
  start-page: 3135
  year: 2022
  end-page: 3150.e9
  ident: b0190
  article-title: Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1
  publication-title: Mol. Cell
– volume: 9
  year: 2023
  ident: b0125
  article-title: Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation
  publication-title: Sci. Adv.
– volume: 152
  start-page: 111
  year: 2015
  end-page: 124
  ident: b0195
  article-title: Sp1 transcription factor: a long-standing target in cancer chemotherapy
  publication-title: Pharmacol. Ther.
– volume: 5
  start-page: e70672
  year: 2021
  ident: b0075
  article-title: The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis
  publication-title: Elife
– volume: 24
  year: 2021
  ident: b0060
  article-title: Acetyl-CoA derived from hepatic mitochondrial fatty acid β-oxidation aggravates inflammation by enhancing p65 acetylation
  publication-title: Iscience
– volume: 170
  year: 2021
  ident: b0150
  article-title: Targeting P2RX1 alleviates renal ischemia/reperfusion injury by preserving mitochondrial dynamics
  publication-title: Pharmacol. Res.
– volume: 8
  year: 2022
  ident: b0045
  article-title: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases
  publication-title: Sci. Adv.
– reference: Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci. 20211;278:119529. doi: 10.1016/j.lfs.2021.119529.
– volume: 14
  year: 2021
  ident: b0090
  article-title: p53 deacetylation alleviates sepsis-induced acute kidney injury by promoting autophagy
  publication-title: Front. Immunol.
– volume: 11
  year: 2022
  ident: b0040
  article-title: Regulation of SIRT1 and its roles in inflammation
  publication-title: Front. Immunol.
– volume: 12
  start-page: 443
  year: 2016
  ident: b0100
  article-title: Metabolism: energy-efficient transport in the kidney
  publication-title: Nat. Rev. Nephrol.
– volume: 49
  start-page: 287
  year: 2022
  end-page: 298
  ident: b0160
  article-title: Mitochondrial sirtuins, metabolism, and aging
  publication-title: J. Genet. Genomics
– volume: 34
  start-page: 1343
  year: 2023
  end-page: 1365
  ident: b0185
  article-title: PCK1 protects against Mitoribosomal defects in diabetic nephropathy in mouse models
  publication-title: J Am. Soc. Nephrol.
– volume: 12
  start-page: 217
  year: 2021
  ident: b0095
  article-title: SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation
  publication-title: Cell Death Dis.
– volume: 102
  start-page: 321
  year: 2022
  end-page: 336
  ident: b0180
  article-title: Protein phosphatase 2Acα modulates fatty acid oxidation and glycolysis to determine tubular cell fate and kidney injury
  publication-title: Kidney Int.
– volume: 30
  start-page: 1825
  year: 2019
  end-page: 1840
  ident: b0025
  article-title: Tubular GM-CSF promotes late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
– volume: 21
  start-page: 37
  year: 2015
  end-page: 46
  ident: b0110
  article-title: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development
  publication-title: Nat. Med.
– volume: 39
  start-page: 87
  year: 2016
  end-page: 95
  ident: b0165
  article-title: Sirt1 and the mitochondria
  publication-title: Mol. Cells
– volume: 29
  start-page: 1900
  year: 2018
  end-page: 1916
  ident: b0020
  article-title: Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
– volume: 118
  start-page: 3360
  year: 2023
  end-page: 3373
  ident: b0050
  article-title: SIRT1 in the cardiomyocyte counteracts doxorubicin-induced cardiotoxicity via regulating histone H2AX
  publication-title: Cardiovasc. Res.
– volume: 100
  start-page: 1250
  year: 2021
  end-page: 1267
  ident: b0175
  article-title: Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation
  publication-title: Kidney Int.
– volume: 95
  start-page: 50
  year: 2019
  end-page: 56
  ident: b0015
  article-title: Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells
  publication-title: Kidney Int.
– volume: 32
  start-page: 342
  year: 2021
  end-page: 356
  ident: b0105
  article-title: Changes in NAD and lipid metabolism drive acidosis-induced acute kidney injury
  publication-title: J Am. Soc. Nephrol.
– volume: 29
  start-page: 1900
  issue: 7
  year: 2018
  ident: 10.1016/j.intimp.2024.112002_b0020
  article-title: Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2017050581
– volume: 43
  start-page: 1589
  issue: 5
  year: 2020
  ident: 10.1016/j.intimp.2024.112002_b0055
  article-title: Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation
  publication-title: Inflammation
  doi: 10.1007/s10753-020-01242-9
– volume: 32
  start-page: 342
  issue: 2
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0105
  article-title: Changes in NAD and lipid metabolism drive acidosis-induced acute kidney injury
  publication-title: J Am. Soc. Nephrol.
  doi: 10.1681/ASN.2020071003
– volume: 12
  start-page: 217
  issue: 2
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0095
  article-title: SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-021-03508-y
– volume: 118
  start-page: 3360
  issue: 17
  year: 2023
  ident: 10.1016/j.intimp.2024.112002_b0050
  article-title: SIRT1 in the cardiomyocyte counteracts doxorubicin-induced cardiotoxicity via regulating histone H2AX
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvac026
– volume: 7
  start-page: 402
  issue: 1
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0035
  article-title: The sirtuin family in health and disease
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-01257-8
– volume: 170
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0150
  article-title: Targeting P2RX1 alleviates renal ischemia/reperfusion injury by preserving mitochondrial dynamics
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2021.105712
– volume: 39
  start-page: 87
  issue: 2
  year: 2016
  ident: 10.1016/j.intimp.2024.112002_b0165
  article-title: Sirt1 and the mitochondria
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2016.2318
– volume: 96
  start-page: 291
  issue: 2
  year: 2019
  ident: 10.1016/j.intimp.2024.112002_b0010
  article-title: Regulated necrosis in kidney ischemia-reperfusion injury
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2019.02.009
– volume: 101
  start-page: 987
  issue: 5
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0115
  article-title: Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2022.01.029
– volume: 34
  start-page: 1343
  issue: 8
  year: 2023
  ident: 10.1016/j.intimp.2024.112002_b0185
  article-title: PCK1 protects against Mitoribosomal defects in diabetic nephropathy in mouse models
  publication-title: J Am. Soc. Nephrol.
  doi: 10.1681/ASN.0000000000000156
– volume: 28
  start-page: 31
  year: 2018
  ident: 10.1016/j.intimp.2024.112002_b0005
  article-title: Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.01.025
– volume: 65
  year: 2020
  ident: 10.1016/j.intimp.2024.112002_b0070
  article-title: Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB pathway
  publication-title: Pulm. Pharmacol. Ther.
  doi: 10.1016/j.pupt.2021.102000
– volume: 82
  start-page: 3135
  issue: 17
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0190
  article-title: Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.06.031
– volume: 32
  start-page: 1599
  issue: 7
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0135
  article-title: Activation of sympathetic signaling in macrophages blocks systemic inflammation and protects against renal ischemia-reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2020121723
– volume: 9
  issue: 49
  year: 2023
  ident: 10.1016/j.intimp.2024.112002_b0125
  article-title: Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adi2465
– volume: 11
  issue: 13
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0040
  article-title: Regulation of SIRT1 and its roles in inflammation
  publication-title: Front. Immunol.
– volume: 24
  issue: 11
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0060
  article-title: Acetyl-CoA derived from hepatic mitochondrial fatty acid β-oxidation aggravates inflammation by enhancing p65 acetylation
  publication-title: Iscience
  doi: 10.1016/j.isci.2021.103244
– volume: 95
  start-page: 50
  issue: 1
  year: 2019
  ident: 10.1016/j.intimp.2024.112002_b0015
  article-title: Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2018.10.009
– volume: 152
  start-page: 111
  year: 2015
  ident: 10.1016/j.intimp.2024.112002_b0195
  article-title: Sp1 transcription factor: a long-standing target in cancer chemotherapy
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2015.05.008
– volume: 205
  start-page: 202
  issue: 1
  year: 2020
  ident: 10.1016/j.intimp.2024.112002_b0085
  article-title: IgA nephropathy benefits from compound K treatment by inhibiting NF-κB/NLRP3 inflammasome and enhancing autophagy and SIRT1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1900284
– volume: 34
  start-page: 919
  issue: 6
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0130
  article-title: Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2022.05.004
– volume: 19
  start-page: 3826
  issue: 12
  year: 2018
  ident: 10.1016/j.intimp.2024.112002_b0080
  article-title: Expression profile of diabetes-related genes associated with leukocyte sirtuin 1 overexpression in gestational diabetes
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19123826
– volume: 102
  start-page: 321
  issue: 2
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0180
  article-title: Protein phosphatase 2Acα modulates fatty acid oxidation and glycolysis to determine tubular cell fate and kidney injury
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2022.03.024
– volume: 32
  start-page: 553
  issue: 3
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0140
  article-title: Endothelial-derived miR-17∼92 promotes angiogenesis to protect against renal ischemia-reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2020050717
– year: 2023
  ident: 10.1016/j.intimp.2024.112002_b0170
  article-title: Metformin suppresses calcium oxalate crystal-induced kidney injury by promoting Sirt1 and M2 macrophage-mediated anti-inflammatory activation
  publication-title: Signal Transduct. Target. Ther.
– volume: 14
  issue: 12
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0090
  article-title: p53 deacetylation alleviates sepsis-induced acute kidney injury by promoting autophagy
  publication-title: Front. Immunol.
– volume: 5
  start-page: e70672
  issue: 10
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0075
  article-title: The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis
  publication-title: Elife
  doi: 10.7554/eLife.70672
– volume: 1
  issue: 13
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0145
  article-title: Identification of renal ischemia reperfusion injury subtypes and predictive strategies for delayed graft function and graft survival based on neutrophil extracellular trap-related genes
  publication-title: Front. Immunol.
– volume: 12
  start-page: 443
  issue: 8
  year: 2016
  ident: 10.1016/j.intimp.2024.112002_b0100
  article-title: Metabolism: energy-efficient transport in the kidney
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2016.83
– volume: 30
  start-page: 1825
  issue: 10
  year: 2019
  ident: 10.1016/j.intimp.2024.112002_b0025
  article-title: Tubular GM-CSF promotes late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2019010068
– volume: 25
  start-page: 138
  issue: 3
  year: 2014
  ident: 10.1016/j.intimp.2024.112002_b0155
  article-title: SIRT1 and other sirtuins in metabolism
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2013.12.001
– volume: 49
  start-page: 287
  issue: 4
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0160
  article-title: Mitochondrial sirtuins, metabolism, and aging
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2021.11.005
– volume: 100
  start-page: 1250
  issue: 6
  year: 2021
  ident: 10.1016/j.intimp.2024.112002_b0175
  article-title: Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2021.08.031
– volume: 77
  year: 2020
  ident: 10.1016/j.intimp.2024.112002_b0120
  article-title: ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2019.101006
– volume: 8
  issue: 3
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0045
  article-title: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abi6696
– volume: 21
  start-page: 37
  issue: 1
  year: 2015
  ident: 10.1016/j.intimp.2024.112002_b0110
  article-title: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development
  publication-title: Nat. Med.
  doi: 10.1038/nm.3762
– ident: 10.1016/j.intimp.2024.112002_b0200
  doi: 10.1016/j.lfs.2021.119529
– volume: 36
  start-page: e22418
  issue: 7
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0065
  article-title: LPS stimulation stabilizes HIF-1α by enhancing HIF-1α acetylation via the PARP1-SIRT1 and ACLY-Tip60 pathways in macrophages
  publication-title: FASEB J.
  doi: 10.1096/fj.202200256R
– volume: 12
  start-page: 3882
  issue: 8
  year: 2022
  ident: 10.1016/j.intimp.2024.112002_b0030
  article-title: Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway
  publication-title: Theranostics
  doi: 10.7150/thno.70830
– reference: 39799025 - Int Immunopharmacol. 2025 Jan 10:113963. doi: 10.1016/j.intimp.2024.113963
SSID ssj0017041
Score 2.4347103
Snippet •The expression of Sirt1 was decreased in renal fibrosis induced by renal ischemia–reperfusion.•Overexpression or knockout Sirt1 in vivo alleviated and...
Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112002
SubjectTerms Acute Kidney Injury - genetics
Acute Kidney Injury - metabolism
Acute Kidney Injury - pathology
Animals
Disease Models, Animal
Fatty acid oxidation
Fatty Acids - metabolism
Fibrosis
Histone acetylation
Humans
Kidney - metabolism
Kidney - pathology
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Oxidation-Reduction
Renal fibrosis
Renal ischemic-reperfusion injury
Reperfusion Injury - metabolism
Reperfusion Injury - pathology
Signal Transduction
SIRT1
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Sp1 Transcription Factor - genetics
Sp1 Transcription Factor - metabolism
Title The SP1/SIRT1/ACLY signaling axis mediates fatty acid oxidation in renal ischemia–reperfusion-induced renal fibrosis
URI https://dx.doi.org/10.1016/j.intimp.2024.112002
https://www.ncbi.nlm.nih.gov/pubmed/38608473
https://www.proquest.com/docview/3038437665
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBLadPX9hFUKDnF9UuWreOyNGz6CEt3A-lJjGwJFBrvsvaW7KX0P_Qf9pd0ZNkbCi2BXgy2JCw045lv5JlPhLyBohJRmYugQjgdMIhMAEUBgVJlHPMqBtXVV3w649Nz9v4iu9gjk6EWxqVV9rbf2_TOWvdPwn41w5W14RwjjxzRsnBZkFnScYIyljstf_t9l-YR5xHznKloEFzvoXyuy_GydWuvHGtlwlwtzbC58hf39C_42bmhkwfkfo8f6dhP8SHZ0_UBuetPlNwekKOZp6LeHtPFTWVVc0yP6OyGpHr7iHzDZjqfxeH89PMiDseTj1-oy-UAV55O4do2tCsqQSRKDbTtlkJpK7q8tv4QJmprutZuKhbjY31l4dePn2u90muzcRtwAcb6qDVV38lgVL5sbPOYnJ-8W0ymQX8GQ1Cia2vxCpwDK3SpqlIlxkS6AC1UojMQCl1ZnmTGxTHYzJnhgoEAKESkRWpEBekTsl8va_2MUK4VQ4uSKRzNiiQGAwi-Kl7GLE5MWo5IOiy9LHuCcndOxlc5ZKJdSi8w6QQmvcBGJNiNWnmCjlv654NU5R-KJtGH3DLy9aAEEr9B92MFar3cNBJhQMHQUvNsRJ567djNJS14hAggff7f731B7rm7oKOMfUn22_VGv0Ik1KrDTtUPyZ3x6Yfp2W-YWQpK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKEYINgvIankaCrhrycl4LFlWhmqHTasRMpbIy14ktGdHMaJKBZoP4Bz6FP-JLuI6TqZBAlZC6ySK2E8f3-vjYuQ9CXkBaZF6eZE6BdNph4CkH0hQcIXLfjwsfROtfcXgUD4_Zu5PoZIP87H1hjFllh_0W01u07u643Wi6C63dKe48EmTLmbGCjAKPdZaVB7L5ivu26vXoDQr5ZRDsv53tDZ0utYCTI2LXeIU4BpbKXBS5CJTyZAoyE4GMIBOI0EkQKUPPsThmKs4YZABp5sksVFkBIT73CrnKEC5M2oRX39Z2JX7iMRukFRHIdK_312uNynRZ61MTJjNgxnmnP835y3r4L77brnv7t8jNjrDSXTsmt8mGLLfINZvCstki2xMb-7rZobNzV65qh27TyXlU7OYO-YLFdDrx3eno_cx3d_fGH6gxHgHjD0_hTFe09WJB6ksV1HVDIdcFnZ9pm_WJ6pIupemKxg25PNXw6_uPpVzIpVqZEz9HlwWqadFVUlrg9-rqLjm-FMncI5vlvJQPCI2lYAhhkcDWLA18UIBsr4hzn_mBCvMBCfuh53kXEd0k5vjMe9O3T9wKjBuBcSuwAXHWrRY2IsgF9ZNeqvwPzea4aF3Q8nmvBBwnvfmTA6WcryqOvCNluDTE0YDct9qx7kuYxh5SjvDhf7_3Gbk-nB2O-Xh0dPCI3DAlThuv9jHZrJcr-QRpWC2etmpPycfLnme_AdLaSAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+SP1%2FSIRT1%2FACLY+signaling+axis+mediates+fatty+acid+oxidation+in+renal+ischemia%E2%80%93reperfusion-induced+renal+fibrosis&rft.jtitle=International+immunopharmacology&rft.au=Wu%2C+Huailiang&rft.au=Wang%2C+Liyan&rft.au=Kang%2C+Peng&rft.au=Zhou%2C+Xiangjun&rft.date=2024-05-10&rft.pub=Elsevier+B.V&rft.issn=1567-5769&rft.eissn=1878-1705&rft.volume=132&rft_id=info:doi/10.1016%2Fj.intimp.2024.112002&rft.externalDocID=S1567576924005204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-5769&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-5769&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-5769&client=summon