The SP1/SIRT1/ACLY signaling axis mediates fatty acid oxidation in renal ischemia–reperfusion-induced renal fibrosis
•The expression of Sirt1 was decreased in renal fibrosis induced by renal ischemia–reperfusion.•Overexpression or knockout Sirt1 in vivo alleviated and aggravated renal fibrosis.•Sirt1 regulated the ACLY transcription by inhibited the enrich of H3K27ac in the promoter of ACLY.•Fatty acid oxidation m...
Saved in:
Published in | International immunopharmacology Vol. 132; p. 112002 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The expression of Sirt1 was decreased in renal fibrosis induced by renal ischemia–reperfusion.•Overexpression or knockout Sirt1 in vivo alleviated and aggravated renal fibrosis.•Sirt1 regulated the ACLY transcription by inhibited the enrich of H3K27ac in the promoter of ACLY.•Fatty acid oxidation mediated by ACLY was inhibited in renal fibrosis induced by renal ischemia–reperfusion.
Renal ischemia–reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia–reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis.
The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay.
RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression.
Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI. |
---|---|
AbstractList | Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis.BACKGROUNDRenal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis.The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay.METHODSThe IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay.RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression.RESULTSRNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression.Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.CONCLUSIONOur findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI. •The expression of Sirt1 was decreased in renal fibrosis induced by renal ischemia–reperfusion.•Overexpression or knockout Sirt1 in vivo alleviated and aggravated renal fibrosis.•Sirt1 regulated the ACLY transcription by inhibited the enrich of H3K27ac in the promoter of ACLY.•Fatty acid oxidation mediated by ACLY was inhibited in renal fibrosis induced by renal ischemia–reperfusion. Renal ischemia–reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia–reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI. Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI. |
ArticleNumber | 112002 |
Author | Li, Wei Wang, Liyan Kang, Peng Xia, Zhongyuan Zhou, Xiangjun Wu, Huailiang |
Author_xml | – sequence: 1 givenname: Huailiang surname: Wu fullname: Wu, Huailiang organization: Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China – sequence: 2 givenname: Liyan surname: Wang fullname: Wang, Liyan organization: Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China – sequence: 3 givenname: Peng surname: Kang fullname: Kang, Peng organization: Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China – sequence: 4 givenname: Xiangjun surname: Zhou fullname: Zhou, Xiangjun organization: Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China – sequence: 5 givenname: Wei surname: Li fullname: Li, Wei organization: Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China – sequence: 6 givenname: Zhongyuan orcidid: 0000-0001-7055-5210 surname: Xia fullname: Xia, Zhongyuan email: xiazhongyuan2005@aliyun.com organization: Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38608473$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH_gDRDykk1m7Pw4MQukagSl0kigdliwshznur2jxBlsp2p3fYe-YZ8El0w3LOjGtny_c3XvOcfkwI0OCHnP2YIzLpbbBbqIw26Rs7xccJ4zlr8iR7ypm4zXrDpI70rUWVULeUiOQ9gylv5L_oYcFo1gTVkXR-Rmcw308gdfXp5fbPjydLX-RQNeOd2ju6L6FgMdoEMdIVCrY7yj2mBHx1vsdMTRUXTUQ8IpBnMNA-rH-wcPO_B2CqmeoesmA90estj6MWB4S15b3Qd4t79PyM-vXzarb9n6-9n56nSdmULkMZ1aCF02YNrOtLm1DBoNss2h0rKVktV5ZVlesFQWpRWy1FLrRjKQhZWdLk7Ix7nvzo-_JwhRDWlO6HvtYJyCKljRlEUtRJXQD3t0atPKaudx0P5OPXuVgE8zYNIKwYNVBuNfE6LX2CvO1FMwaqvmYNRTMGoOJonLf8TP_V-QfZ5lkEy6QfAqGASXDEUPJqpuxP83-AOiJqvG |
CitedBy_id | crossref_primary_10_1096_fj_202401543R crossref_primary_10_3390_biomedicines12091942 crossref_primary_10_1007_s11255_024_04162_x crossref_primary_10_1016_j_cca_2025_120208 |
Cites_doi | 10.1681/ASN.2017050581 10.1007/s10753-020-01242-9 10.1681/ASN.2020071003 10.1038/s41419-021-03508-y 10.1093/cvr/cvac026 10.1038/s41392-022-01257-8 10.1016/j.phrs.2021.105712 10.14348/molcells.2016.2318 10.1016/j.kint.2019.02.009 10.1016/j.kint.2022.01.029 10.1681/ASN.0000000000000156 10.1016/j.ebiom.2018.01.025 10.1016/j.pupt.2021.102000 10.1016/j.molcel.2022.06.031 10.1681/ASN.2020121723 10.1126/sciadv.adi2465 10.1016/j.isci.2021.103244 10.1016/j.kint.2018.10.009 10.1016/j.pharmthera.2015.05.008 10.4049/jimmunol.1900284 10.1016/j.cmet.2022.05.004 10.3390/ijms19123826 10.1016/j.kint.2022.03.024 10.1681/ASN.2020050717 10.7554/eLife.70672 10.1038/nrneph.2016.83 10.1681/ASN.2019010068 10.1016/j.tem.2013.12.001 10.1016/j.jgg.2021.11.005 10.1016/j.kint.2021.08.031 10.1016/j.plipres.2019.101006 10.1126/sciadv.abi6696 10.1038/nm.3762 10.1016/j.lfs.2021.119529 10.1096/fj.202200256R 10.7150/thno.70830 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.intimp.2024.112002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1878-1705 |
ExternalDocumentID | 38608473 10_1016_j_intimp_2024_112002 S1567576924005204 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABBQC ABFRF ABJNI ABMAC ABMZM ABZDS ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 CJTIS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM L7B LUGTX M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSH SSI SSP SSZ T5K TEORI UNMZH ~G- .GJ 29J 53G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ R2- VH1 ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c362t-c3a66a48ecbdcb2ff0e8ae9b2e5a9b990725f0230bdc64f694a9aa890e93f9da3 |
IEDL.DBID | .~1 |
ISSN | 1567-5769 1878-1705 |
IngestDate | Fri Jul 11 08:55:44 EDT 2025 Thu Apr 03 07:04:10 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Tue Jul 01 05:26:48 EDT 2025 Sat Jul 06 15:30:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fatty acid oxidation Histone acetylation Renal ischemic-reperfusion injury Renal fibrosis SIRT1 |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-c3a66a48ecbdcb2ff0e8ae9b2e5a9b990725f0230bdc64f694a9aa890e93f9da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7055-5210 |
PMID | 38608473 |
PQID | 3038437665 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3038437665 pubmed_primary_38608473 crossref_citationtrail_10_1016_j_intimp_2024_112002 crossref_primary_10_1016_j_intimp_2024_112002 elsevier_sciencedirect_doi_10_1016_j_intimp_2024_112002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-10 |
PublicationDateYYYYMMDD | 2024-05-10 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International immunopharmacology |
PublicationTitleAlternate | Int Immunopharmacol |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Chen, Huang, Sun, Xie, Chen, Zhao, Huang, Li, Wu, Wu (b0070) 2020; 65 Xiang, Lv, Xing, Sun, Ma, Wu, Lv, Zong, Wang, Wu, Feng, Yang, Wang (b0125) 2023; 9 Piret, Attallah, Gu, Guo, Gujarati, Henein, Zollman, Hato, Ma'ayan, Revelo, Dickman, Chen, Shun, Rosenquist, He, Mallipattu (b0175) 2021; 100 Chen, Du, Cui, Fang, Zhao, Chen, Mai, Ai (b0060) 2021; 24 Wu, Zhang, Chen, Yu, Lv, Liu, Liu, Zheng, Zhao, Wei, Guo, Liu, Chang, Zhang, Liu, Zhao (b0035) 2022; 7 Zhao, Alam, Soo, George, Ma (b0005) 2018; 28 Wang, Chen, Han, Liu, Gao, Huang, Sun, Wang, Wang, Zhao (b0030) 2022; 12 Morrow, Batchuluun, Wu, Ahmadi (b0130) 2022; 34 Carney (b0100) 2016; 12 Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci. 20211;278:119529. doi: 10.1016/j.lfs.2021.119529. Gu, Tan, Zhou, Sun, Lu, Wang, Jiang, Liang, Hou, Xue, Xu, Dai (b0180) 2022; 102 Ji, Liu, Qu (b0160) 2022; 49 Pefanis, Ierino, Murphy, Cowan (b0010) 2019; 96 Mac-Marcjanek, Zieleniak, Zurawska-Klis, Cypryk, Wozniak, Wojcik (b0080) 2018 Nov 30; 19 Hasegawa, Inoue, Nakamura (b0135) 2021; 32 Xu, Jia, Fang, Jin, Sun, Zhou, Li, Zhang, Wang, Ren, Zou, Ding (b0115) 2022; 101 Chiba, Cerqueira, Li (b0140) 2021; 32 Song, Nabeel-Shah, Pu, Lee, Braunschweig, Ni, Ahmed, Marcon, Zhong, Ray, Ha, Guo, Zhang, Hughes, Blencowe, Greenblatt (b0190) 2022; 82 Smith, Hosgood, Nicholson (b0015) 2019; 95 Sun, Li, Mao, Wu, Deng, He, An, Zeng, Huang, Chen (b0090) 2021; 14 Feng, Zhang, Xu, Shen (b0120) 2020; 77 Chang, Guarente (b0155) 2014; 25 Xu, Sharkey, Cantley (b0025) 2019; 30 Wu, Zhang, Zheng, Zhang, Cao, Sun, Wang (b0145) 2022; 1 Liu, Duan, Yang, Liu, Deng, Tiselius, Ye, Wang, Xing, Xu (b0170) 2023 Chen, Cui, Zhao, Xu, Liu, Shen, Chen, Mai, Ai (b0065) 2022 Jul; 36 Zhuang, Xia, Huang, Wu, Qu, Chen, Sun, Li, Wu, Zhang, Zhang, Yuan, Wang (b0150) 2021; 170 Hasegawa, Sakamaki, Tamaki, Wakino (b0185) 2023; 34 Tang (b0165) 2016; 39 Deng, Sun, Wu, Fang, Cai, An, Huang, Chen, Wu, Zhou, Hu, Zeng (b0095) 2021; 12 Kang, Ahn, Choi, Ko, Han, Chinga, Park, Tao, Sharma, Pullman, Bottinger, Goldberg, Susztak (b0110) 2015; 21 Vizcaíno, Mansilla, Portugal (b0195) 2015; 152 Singh, Ubaid (b0055) 2020; 43 Yang, Liu, Wang, Chao, Zhang, Jia, Tie, Hu (b0040) 2022; 11 Wu, Hua, Hsu, Suzuki, Chu, Lee, Takahata, Lee, Wu, Nikolic-Paterson, Ka, Chen (b0085) 2020; 205 Moreno-Yruela, Zhang, Wei, Bæk, Liu, Gao, Danková, Nielsen, Bolding, Yang, Jameson, Wong, Olsen, Zhao (b0045) 2022; 8 Kuno, Hosoda, Tsukamoto, Sato, Sakuragi, Ajima, Saga, Tada, Taniguchi, Iwahara, Horio (b0050) 2023; 118 Zhang, Zhong, Li, Li, Yuan, Liu, Wu, Wu, Wu, Liang, Xie, Kang, Liu, Lai, Xiao, Tang, Jin, Wang, Xiao, Zhang, Li, Liu, Sun, Zhong (b0075) 2021; 5 Yang, Lan, Dieudé, Sabo-Vatasescu, Karakeussian-Rimbaud, Turgeon, Qi, Gunaratnam, Patey, Hébert (b0020) 2018; 29 Bugarski, Ghazi, Polesel, Martins, Hall (b0105) 2021; 32 Moreno-Yruela (10.1016/j.intimp.2024.112002_b0045) 2022; 8 Sun (10.1016/j.intimp.2024.112002_b0090) 2021; 14 Piret (10.1016/j.intimp.2024.112002_b0175) 2021; 100 Smith (10.1016/j.intimp.2024.112002_b0015) 2019; 95 Bugarski (10.1016/j.intimp.2024.112002_b0105) 2021; 32 Mac-Marcjanek (10.1016/j.intimp.2024.112002_b0080) 2018; 19 Kang (10.1016/j.intimp.2024.112002_b0110) 2015; 21 Gu (10.1016/j.intimp.2024.112002_b0180) 2022; 102 Wu (10.1016/j.intimp.2024.112002_b0085) 2020; 205 Chen (10.1016/j.intimp.2024.112002_b0065) 2022; 36 Zhao (10.1016/j.intimp.2024.112002_b0005) 2018; 28 Pefanis (10.1016/j.intimp.2024.112002_b0010) 2019; 96 Wu (10.1016/j.intimp.2024.112002_b0145) 2022; 1 Yang (10.1016/j.intimp.2024.112002_b0020) 2018; 29 Kuno (10.1016/j.intimp.2024.112002_b0050) 2023; 118 Feng (10.1016/j.intimp.2024.112002_b0120) 2020; 77 10.1016/j.intimp.2024.112002_b0200 Hasegawa (10.1016/j.intimp.2024.112002_b0135) 2021; 32 Zhang (10.1016/j.intimp.2024.112002_b0075) 2021; 5 Deng (10.1016/j.intimp.2024.112002_b0095) 2021; 12 Xiang (10.1016/j.intimp.2024.112002_b0125) 2023; 9 Xu (10.1016/j.intimp.2024.112002_b0025) 2019; 30 Yang (10.1016/j.intimp.2024.112002_b0040) 2022; 11 Xu (10.1016/j.intimp.2024.112002_b0115) 2022; 101 Song (10.1016/j.intimp.2024.112002_b0190) 2022; 82 Morrow (10.1016/j.intimp.2024.112002_b0130) 2022; 34 Vizcaíno (10.1016/j.intimp.2024.112002_b0195) 2015; 152 Liu (10.1016/j.intimp.2024.112002_b0170) 2023 Hasegawa (10.1016/j.intimp.2024.112002_b0185) 2023; 34 Carney (10.1016/j.intimp.2024.112002_b0100) 2016; 12 Singh (10.1016/j.intimp.2024.112002_b0055) 2020; 43 Zhuang (10.1016/j.intimp.2024.112002_b0150) 2021; 170 Wang (10.1016/j.intimp.2024.112002_b0030) 2022; 12 Wu (10.1016/j.intimp.2024.112002_b0035) 2022; 7 Chang (10.1016/j.intimp.2024.112002_b0155) 2014; 25 Ji (10.1016/j.intimp.2024.112002_b0160) 2022; 49 Chiba (10.1016/j.intimp.2024.112002_b0140) 2021; 32 Chen (10.1016/j.intimp.2024.112002_b0060) 2021; 24 Chen (10.1016/j.intimp.2024.112002_b0070) 2020; 65 Tang (10.1016/j.intimp.2024.112002_b0165) 2016; 39 39799025 - Int Immunopharmacol. 2025 Jan 10:113963. doi: 10.1016/j.intimp.2024.113963 |
References_xml | – volume: 43 start-page: 1589 year: 2020 end-page: 1598 ident: b0055 article-title: Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation publication-title: Inflammation – volume: 12 start-page: 3882 year: 2022 end-page: 3895 ident: b0030 article-title: Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway publication-title: Theranostics – volume: 32 start-page: 553 year: 2021 end-page: 562 ident: b0140 article-title: Endothelial-derived miR-17∼92 promotes angiogenesis to protect against renal ischemia-reperfusion injury publication-title: J. Am. Soc. Nephrol. – volume: 96 start-page: 291 year: 2019 end-page: 301 ident: b0010 article-title: Regulated necrosis in kidney ischemia-reperfusion injury publication-title: Kidney Int. – volume: 32 start-page: 1599 year: 2021 end-page: 1615 ident: b0135 article-title: Activation of sympathetic signaling in macrophages blocks systemic inflammation and protects against renal ischemia-reperfusion injury publication-title: J. Am. Soc. Nephrol. – volume: 25 start-page: 138 year: 2014 end-page: 145 ident: b0155 article-title: SIRT1 and other sirtuins in metabolism publication-title: Trends Endocrinol. Metab. – volume: 7 start-page: 402 year: 2022 ident: b0035 article-title: The sirtuin family in health and disease publication-title: Signal Transduct. Target. Ther. – volume: 101 start-page: 987 year: 2022 end-page: 1002 ident: b0115 article-title: Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation publication-title: Kidney Int. – volume: 205 start-page: 202 year: 2020 end-page: 212 ident: b0085 article-title: IgA nephropathy benefits from compound K treatment by inhibiting NF-κB/NLRP3 inflammasome and enhancing autophagy and SIRT1 publication-title: J. Immunol. – volume: 34 start-page: 919 year: 2022 end-page: 936.e8 ident: b0130 article-title: Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia publication-title: Cell Metab. – year: 2023 ident: b0170 article-title: Metformin suppresses calcium oxalate crystal-induced kidney injury by promoting Sirt1 and M2 macrophage-mediated anti-inflammatory activation publication-title: Signal Transduct. Target. Ther. – volume: 77 year: 2020 ident: b0120 article-title: ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review publication-title: Prog. Lipid Res. – volume: 28 start-page: 31 year: 2018 end-page: 42 ident: b0005 article-title: Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond publication-title: EBioMedicine – volume: 36 start-page: e22418 year: 2022 Jul ident: b0065 article-title: LPS stimulation stabilizes HIF-1α by enhancing HIF-1α acetylation via the PARP1-SIRT1 and ACLY-Tip60 pathways in macrophages publication-title: FASEB J. – volume: 65 year: 2020 ident: b0070 article-title: Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB pathway publication-title: Pulm. Pharmacol. Ther. – volume: 1 year: 2022 ident: b0145 article-title: Identification of renal ischemia reperfusion injury subtypes and predictive strategies for delayed graft function and graft survival based on neutrophil extracellular trap-related genes publication-title: Front. Immunol. – volume: 19 start-page: 3826 year: 2018 Nov 30 ident: b0080 article-title: Expression profile of diabetes-related genes associated with leukocyte sirtuin 1 overexpression in gestational diabetes publication-title: Int. J. Mol. Sci. – volume: 82 start-page: 3135 year: 2022 end-page: 3150.e9 ident: b0190 article-title: Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1 publication-title: Mol. Cell – volume: 9 year: 2023 ident: b0125 article-title: Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation publication-title: Sci. Adv. – volume: 152 start-page: 111 year: 2015 end-page: 124 ident: b0195 article-title: Sp1 transcription factor: a long-standing target in cancer chemotherapy publication-title: Pharmacol. Ther. – volume: 5 start-page: e70672 year: 2021 ident: b0075 article-title: The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis publication-title: Elife – volume: 24 year: 2021 ident: b0060 article-title: Acetyl-CoA derived from hepatic mitochondrial fatty acid β-oxidation aggravates inflammation by enhancing p65 acetylation publication-title: Iscience – volume: 170 year: 2021 ident: b0150 article-title: Targeting P2RX1 alleviates renal ischemia/reperfusion injury by preserving mitochondrial dynamics publication-title: Pharmacol. Res. – volume: 8 year: 2022 ident: b0045 article-title: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases publication-title: Sci. Adv. – reference: Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci. 20211;278:119529. doi: 10.1016/j.lfs.2021.119529. – volume: 14 year: 2021 ident: b0090 article-title: p53 deacetylation alleviates sepsis-induced acute kidney injury by promoting autophagy publication-title: Front. Immunol. – volume: 11 year: 2022 ident: b0040 article-title: Regulation of SIRT1 and its roles in inflammation publication-title: Front. Immunol. – volume: 12 start-page: 443 year: 2016 ident: b0100 article-title: Metabolism: energy-efficient transport in the kidney publication-title: Nat. Rev. Nephrol. – volume: 49 start-page: 287 year: 2022 end-page: 298 ident: b0160 article-title: Mitochondrial sirtuins, metabolism, and aging publication-title: J. Genet. Genomics – volume: 34 start-page: 1343 year: 2023 end-page: 1365 ident: b0185 article-title: PCK1 protects against Mitoribosomal defects in diabetic nephropathy in mouse models publication-title: J Am. Soc. Nephrol. – volume: 12 start-page: 217 year: 2021 ident: b0095 article-title: SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation publication-title: Cell Death Dis. – volume: 102 start-page: 321 year: 2022 end-page: 336 ident: b0180 article-title: Protein phosphatase 2Acα modulates fatty acid oxidation and glycolysis to determine tubular cell fate and kidney injury publication-title: Kidney Int. – volume: 30 start-page: 1825 year: 2019 end-page: 1840 ident: b0025 article-title: Tubular GM-CSF promotes late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury publication-title: J. Am. Soc. Nephrol. – volume: 21 start-page: 37 year: 2015 end-page: 46 ident: b0110 article-title: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development publication-title: Nat. Med. – volume: 39 start-page: 87 year: 2016 end-page: 95 ident: b0165 article-title: Sirt1 and the mitochondria publication-title: Mol. Cells – volume: 29 start-page: 1900 year: 2018 end-page: 1916 ident: b0020 article-title: Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury publication-title: J. Am. Soc. Nephrol. – volume: 118 start-page: 3360 year: 2023 end-page: 3373 ident: b0050 article-title: SIRT1 in the cardiomyocyte counteracts doxorubicin-induced cardiotoxicity via regulating histone H2AX publication-title: Cardiovasc. Res. – volume: 100 start-page: 1250 year: 2021 end-page: 1267 ident: b0175 article-title: Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation publication-title: Kidney Int. – volume: 95 start-page: 50 year: 2019 end-page: 56 ident: b0015 article-title: Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells publication-title: Kidney Int. – volume: 32 start-page: 342 year: 2021 end-page: 356 ident: b0105 article-title: Changes in NAD and lipid metabolism drive acidosis-induced acute kidney injury publication-title: J Am. Soc. Nephrol. – volume: 29 start-page: 1900 issue: 7 year: 2018 ident: 10.1016/j.intimp.2024.112002_b0020 article-title: Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2017050581 – volume: 43 start-page: 1589 issue: 5 year: 2020 ident: 10.1016/j.intimp.2024.112002_b0055 article-title: Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation publication-title: Inflammation doi: 10.1007/s10753-020-01242-9 – volume: 32 start-page: 342 issue: 2 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0105 article-title: Changes in NAD and lipid metabolism drive acidosis-induced acute kidney injury publication-title: J Am. Soc. Nephrol. doi: 10.1681/ASN.2020071003 – volume: 12 start-page: 217 issue: 2 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0095 article-title: SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03508-y – volume: 118 start-page: 3360 issue: 17 year: 2023 ident: 10.1016/j.intimp.2024.112002_b0050 article-title: SIRT1 in the cardiomyocyte counteracts doxorubicin-induced cardiotoxicity via regulating histone H2AX publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvac026 – volume: 7 start-page: 402 issue: 1 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0035 article-title: The sirtuin family in health and disease publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-01257-8 – volume: 170 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0150 article-title: Targeting P2RX1 alleviates renal ischemia/reperfusion injury by preserving mitochondrial dynamics publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2021.105712 – volume: 39 start-page: 87 issue: 2 year: 2016 ident: 10.1016/j.intimp.2024.112002_b0165 article-title: Sirt1 and the mitochondria publication-title: Mol. Cells doi: 10.14348/molcells.2016.2318 – volume: 96 start-page: 291 issue: 2 year: 2019 ident: 10.1016/j.intimp.2024.112002_b0010 article-title: Regulated necrosis in kidney ischemia-reperfusion injury publication-title: Kidney Int. doi: 10.1016/j.kint.2019.02.009 – volume: 101 start-page: 987 issue: 5 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0115 article-title: Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation publication-title: Kidney Int. doi: 10.1016/j.kint.2022.01.029 – volume: 34 start-page: 1343 issue: 8 year: 2023 ident: 10.1016/j.intimp.2024.112002_b0185 article-title: PCK1 protects against Mitoribosomal defects in diabetic nephropathy in mouse models publication-title: J Am. Soc. Nephrol. doi: 10.1681/ASN.0000000000000156 – volume: 28 start-page: 31 year: 2018 ident: 10.1016/j.intimp.2024.112002_b0005 article-title: Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.01.025 – volume: 65 year: 2020 ident: 10.1016/j.intimp.2024.112002_b0070 article-title: Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB pathway publication-title: Pulm. Pharmacol. Ther. doi: 10.1016/j.pupt.2021.102000 – volume: 82 start-page: 3135 issue: 17 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0190 article-title: Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.06.031 – volume: 32 start-page: 1599 issue: 7 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0135 article-title: Activation of sympathetic signaling in macrophages blocks systemic inflammation and protects against renal ischemia-reperfusion injury publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2020121723 – volume: 9 issue: 49 year: 2023 ident: 10.1016/j.intimp.2024.112002_b0125 article-title: Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation publication-title: Sci. Adv. doi: 10.1126/sciadv.adi2465 – volume: 11 issue: 13 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0040 article-title: Regulation of SIRT1 and its roles in inflammation publication-title: Front. Immunol. – volume: 24 issue: 11 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0060 article-title: Acetyl-CoA derived from hepatic mitochondrial fatty acid β-oxidation aggravates inflammation by enhancing p65 acetylation publication-title: Iscience doi: 10.1016/j.isci.2021.103244 – volume: 95 start-page: 50 issue: 1 year: 2019 ident: 10.1016/j.intimp.2024.112002_b0015 article-title: Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells publication-title: Kidney Int. doi: 10.1016/j.kint.2018.10.009 – volume: 152 start-page: 111 year: 2015 ident: 10.1016/j.intimp.2024.112002_b0195 article-title: Sp1 transcription factor: a long-standing target in cancer chemotherapy publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2015.05.008 – volume: 205 start-page: 202 issue: 1 year: 2020 ident: 10.1016/j.intimp.2024.112002_b0085 article-title: IgA nephropathy benefits from compound K treatment by inhibiting NF-κB/NLRP3 inflammasome and enhancing autophagy and SIRT1 publication-title: J. Immunol. doi: 10.4049/jimmunol.1900284 – volume: 34 start-page: 919 issue: 6 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0130 article-title: Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia publication-title: Cell Metab. doi: 10.1016/j.cmet.2022.05.004 – volume: 19 start-page: 3826 issue: 12 year: 2018 ident: 10.1016/j.intimp.2024.112002_b0080 article-title: Expression profile of diabetes-related genes associated with leukocyte sirtuin 1 overexpression in gestational diabetes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19123826 – volume: 102 start-page: 321 issue: 2 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0180 article-title: Protein phosphatase 2Acα modulates fatty acid oxidation and glycolysis to determine tubular cell fate and kidney injury publication-title: Kidney Int. doi: 10.1016/j.kint.2022.03.024 – volume: 32 start-page: 553 issue: 3 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0140 article-title: Endothelial-derived miR-17∼92 promotes angiogenesis to protect against renal ischemia-reperfusion injury publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2020050717 – year: 2023 ident: 10.1016/j.intimp.2024.112002_b0170 article-title: Metformin suppresses calcium oxalate crystal-induced kidney injury by promoting Sirt1 and M2 macrophage-mediated anti-inflammatory activation publication-title: Signal Transduct. Target. Ther. – volume: 14 issue: 12 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0090 article-title: p53 deacetylation alleviates sepsis-induced acute kidney injury by promoting autophagy publication-title: Front. Immunol. – volume: 5 start-page: e70672 issue: 10 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0075 article-title: The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis publication-title: Elife doi: 10.7554/eLife.70672 – volume: 1 issue: 13 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0145 article-title: Identification of renal ischemia reperfusion injury subtypes and predictive strategies for delayed graft function and graft survival based on neutrophil extracellular trap-related genes publication-title: Front. Immunol. – volume: 12 start-page: 443 issue: 8 year: 2016 ident: 10.1016/j.intimp.2024.112002_b0100 article-title: Metabolism: energy-efficient transport in the kidney publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2016.83 – volume: 30 start-page: 1825 issue: 10 year: 2019 ident: 10.1016/j.intimp.2024.112002_b0025 article-title: Tubular GM-CSF promotes late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2019010068 – volume: 25 start-page: 138 issue: 3 year: 2014 ident: 10.1016/j.intimp.2024.112002_b0155 article-title: SIRT1 and other sirtuins in metabolism publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2013.12.001 – volume: 49 start-page: 287 issue: 4 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0160 article-title: Mitochondrial sirtuins, metabolism, and aging publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2021.11.005 – volume: 100 start-page: 1250 issue: 6 year: 2021 ident: 10.1016/j.intimp.2024.112002_b0175 article-title: Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation publication-title: Kidney Int. doi: 10.1016/j.kint.2021.08.031 – volume: 77 year: 2020 ident: 10.1016/j.intimp.2024.112002_b0120 article-title: ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2019.101006 – volume: 8 issue: 3 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0045 article-title: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases publication-title: Sci. Adv. doi: 10.1126/sciadv.abi6696 – volume: 21 start-page: 37 issue: 1 year: 2015 ident: 10.1016/j.intimp.2024.112002_b0110 article-title: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development publication-title: Nat. Med. doi: 10.1038/nm.3762 – ident: 10.1016/j.intimp.2024.112002_b0200 doi: 10.1016/j.lfs.2021.119529 – volume: 36 start-page: e22418 issue: 7 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0065 article-title: LPS stimulation stabilizes HIF-1α by enhancing HIF-1α acetylation via the PARP1-SIRT1 and ACLY-Tip60 pathways in macrophages publication-title: FASEB J. doi: 10.1096/fj.202200256R – volume: 12 start-page: 3882 issue: 8 year: 2022 ident: 10.1016/j.intimp.2024.112002_b0030 article-title: Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway publication-title: Theranostics doi: 10.7150/thno.70830 – reference: 39799025 - Int Immunopharmacol. 2025 Jan 10:113963. doi: 10.1016/j.intimp.2024.113963 |
SSID | ssj0017041 |
Score | 2.4347103 |
Snippet | •The expression of Sirt1 was decreased in renal fibrosis induced by renal ischemia–reperfusion.•Overexpression or knockout Sirt1 in vivo alleviated and... Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112002 |
SubjectTerms | Acute Kidney Injury - genetics Acute Kidney Injury - metabolism Acute Kidney Injury - pathology Animals Disease Models, Animal Fatty acid oxidation Fatty Acids - metabolism Fibrosis Histone acetylation Humans Kidney - metabolism Kidney - pathology Male Mice Mice, Inbred C57BL Mice, Knockout Oxidation-Reduction Renal fibrosis Renal ischemic-reperfusion injury Reperfusion Injury - metabolism Reperfusion Injury - pathology Signal Transduction SIRT1 Sirtuin 1 - genetics Sirtuin 1 - metabolism Sp1 Transcription Factor - genetics Sp1 Transcription Factor - metabolism |
Title | The SP1/SIRT1/ACLY signaling axis mediates fatty acid oxidation in renal ischemia–reperfusion-induced renal fibrosis |
URI | https://dx.doi.org/10.1016/j.intimp.2024.112002 https://www.ncbi.nlm.nih.gov/pubmed/38608473 https://www.proquest.com/docview/3038437665 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBLadPX9hFUKDnF9UuWreOyNGz6CEt3A-lJjGwJFBrvsvaW7KX0P_Qf9pd0ZNkbCi2BXgy2JCw045lv5JlPhLyBohJRmYugQjgdMIhMAEUBgVJlHPMqBtXVV3w649Nz9v4iu9gjk6EWxqVV9rbf2_TOWvdPwn41w5W14RwjjxzRsnBZkFnScYIyljstf_t9l-YR5xHznKloEFzvoXyuy_GydWuvHGtlwlwtzbC58hf39C_42bmhkwfkfo8f6dhP8SHZ0_UBuetPlNwekKOZp6LeHtPFTWVVc0yP6OyGpHr7iHzDZjqfxeH89PMiDseTj1-oy-UAV55O4do2tCsqQSRKDbTtlkJpK7q8tv4QJmprutZuKhbjY31l4dePn2u90muzcRtwAcb6qDVV38lgVL5sbPOYnJ-8W0ymQX8GQ1Cia2vxCpwDK3SpqlIlxkS6AC1UojMQCl1ZnmTGxTHYzJnhgoEAKESkRWpEBekTsl8va_2MUK4VQ4uSKRzNiiQGAwi-Kl7GLE5MWo5IOiy9LHuCcndOxlc5ZKJdSi8w6QQmvcBGJNiNWnmCjlv654NU5R-KJtGH3DLy9aAEEr9B92MFar3cNBJhQMHQUvNsRJ567djNJS14hAggff7f731B7rm7oKOMfUn22_VGv0Ik1KrDTtUPyZ3x6Yfp2W-YWQpK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKEYINgvIankaCrhrycl4LFlWhmqHTasRMpbIy14ktGdHMaJKBZoP4Bz6FP-JLuI6TqZBAlZC6ySK2E8f3-vjYuQ9CXkBaZF6eZE6BdNph4CkH0hQcIXLfjwsfROtfcXgUD4_Zu5PoZIP87H1hjFllh_0W01u07u643Wi6C63dKe48EmTLmbGCjAKPdZaVB7L5ivu26vXoDQr5ZRDsv53tDZ0utYCTI2LXeIU4BpbKXBS5CJTyZAoyE4GMIBOI0EkQKUPPsThmKs4YZABp5sksVFkBIT73CrnKEC5M2oRX39Z2JX7iMRukFRHIdK_312uNynRZ61MTJjNgxnmnP835y3r4L77brnv7t8jNjrDSXTsmt8mGLLfINZvCstki2xMb-7rZobNzV65qh27TyXlU7OYO-YLFdDrx3eno_cx3d_fGH6gxHgHjD0_hTFe09WJB6ksV1HVDIdcFnZ9pm_WJ6pIupemKxg25PNXw6_uPpVzIpVqZEz9HlwWqadFVUlrg9-rqLjm-FMncI5vlvJQPCI2lYAhhkcDWLA18UIBsr4hzn_mBCvMBCfuh53kXEd0k5vjMe9O3T9wKjBuBcSuwAXHWrRY2IsgF9ZNeqvwPzea4aF3Q8nmvBBwnvfmTA6WcryqOvCNluDTE0YDct9qx7kuYxh5SjvDhf7_3Gbk-nB2O-Xh0dPCI3DAlThuv9jHZrJcr-QRpWC2etmpPycfLnme_AdLaSAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+SP1%2FSIRT1%2FACLY+signaling+axis+mediates+fatty+acid+oxidation+in+renal+ischemia%E2%80%93reperfusion-induced+renal+fibrosis&rft.jtitle=International+immunopharmacology&rft.au=Wu%2C+Huailiang&rft.au=Wang%2C+Liyan&rft.au=Kang%2C+Peng&rft.au=Zhou%2C+Xiangjun&rft.date=2024-05-10&rft.pub=Elsevier+B.V&rft.issn=1567-5769&rft.eissn=1878-1705&rft.volume=132&rft_id=info:doi/10.1016%2Fj.intimp.2024.112002&rft.externalDocID=S1567576924005204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-5769&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-5769&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-5769&client=summon |