Coordination-driven strategy towards crystalline hybrid photochromic materials via the marriage of a non-photochromic extended dipyridine unit and zincophosphate

The coordinative linkage of supramolecular zincophosphate building units and an extended dipyridine unit, 1,4-di(pyridine-4-yl)benzene (bpyb), generates two hybrid photochromic frames. The structural and photochromic diversities were mainly attributable to the distinct coordination mode of bpyb in t...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 13; pp. 3920 - 3923
Main Authors Ge, Bang-Di, Han, Song-De, Wei, Qi, Li, Jin-Hua, Wang, Guo-Ming
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text
ISSN2050-7526
2050-7534
DOI10.1039/C9TC00851A

Cover

Loading…
Abstract The coordinative linkage of supramolecular zincophosphate building units and an extended dipyridine unit, 1,4-di(pyridine-4-yl)benzene (bpyb), generates two hybrid photochromic frames. The structural and photochromic diversities were mainly attributable to the distinct coordination mode of bpyb in the resultant structure. Different from most of the reported photochromic materials driven by photochromically active units, the crystalline hybrid photochromic materials in this work are decorated by non-photochromic bpyb. The metal-assisted phosphate-to-bpyb charge transfer is responsible for the photochromism. Our work provides a new perspective to develop photochromic hybrid materials based on non-photochromic moieties.
AbstractList The coordinative linkage of supramolecular zincophosphate building units and an extended dipyridine unit, 1,4-di(pyridine-4-yl)benzene (bpyb), generates two hybrid photochromic frames. The structural and photochromic diversities were mainly attributable to the distinct coordination mode of bpyb in the resultant structure. Different from most of the reported photochromic materials driven by photochromically active units, the crystalline hybrid photochromic materials in this work are decorated by non-photochromic bpyb. The metal-assisted phosphate-to-bpyb charge transfer is responsible for the photochromism. Our work provides a new perspective to develop photochromic hybrid materials based on non-photochromic moieties.
Author Wang, Guo-Ming
Han, Song-De
Wei, Qi
Ge, Bang-Di
Li, Jin-Hua
Author_xml – sequence: 1
  givenname: Bang-Di
  surname: Ge
  fullname: Ge, Bang-Di
  organization: College of Chemistry and Chemical Engineering, Qingdao University, P. R. China
– sequence: 2
  givenname: Song-De
  surname: Han
  fullname: Han, Song-De
  organization: College of Chemistry and Chemical Engineering, Qingdao University, P. R. China
– sequence: 3
  givenname: Qi
  surname: Wei
  fullname: Wei, Qi
  organization: College of Chemistry and Chemical Engineering, Qingdao University, P. R. China
– sequence: 4
  givenname: Jin-Hua
  surname: Li
  fullname: Li, Jin-Hua
  organization: College of Chemistry and Chemical Engineering, Qingdao University, P. R. China
– sequence: 5
  givenname: Guo-Ming
  orcidid: 0000-0003-0156-904X
  surname: Wang
  fullname: Wang, Guo-Ming
  organization: College of Chemistry and Chemical Engineering, Qingdao University, P. R. China
BookMark eNptkd1KAzEQhYMoWGtvfIKAd8LqZH-zl2XxDwre9H7JJtluyjZZk7S6vo1vampFUZybDMN3zoQzZ-hYGy0RuiBwTSApb6pyWQHQjMyP0CSGDKIiS9Lj7z7OT9HMuTWEoiSneTlB75UxVijNvDI6ElbtpMbOW-blasTevDArHOZ2dJ71vdISd2NjlcBDZ7zhnTUbxfEm4Fax3uGdYth3MkxsGKwkNi1mOHw0-iWQr15qIQUWahiD3d54q5XHTAv8pjQ3AXdDF3zP0UkbnOXs652i5d3tsnqIFk_3j9V8EfEkj33EIadMxqTNeMEEzTKSiyItSNwyyghAUbQlpwIIb2RDMs5EAVKWDYc2SdIkmaLLg-1gzfNWOl-vzdbqsLGOSUlpSVIKgYIDxa1xzsq25sp_ZhciU31NoN6fov45RZBc_ZEMVoV4xv_gD_wFkE0
CitedBy_id crossref_primary_10_1016_j_ccr_2022_214892
crossref_primary_10_1002_chem_202005402
crossref_primary_10_1039_D2DT01003H
crossref_primary_10_1039_D0QI00948B
crossref_primary_10_1021_acs_inorgchem_3c00835
crossref_primary_10_1039_D3QI00534H
crossref_primary_10_1016_j_inoche_2020_108426
crossref_primary_10_1039_D0DT03929B
crossref_primary_10_1039_D4CC06570K
crossref_primary_10_1021_acs_cgd_1c00043
crossref_primary_10_1039_D2TC01610A
crossref_primary_10_1016_j_molstruc_2024_139202
crossref_primary_10_1021_acs_cgd_1c00647
crossref_primary_10_1021_acs_cgd_9b00937
crossref_primary_10_1039_C9QI00730J
crossref_primary_10_1016_j_jssc_2022_123346
crossref_primary_10_1021_acs_cgd_1c00576
crossref_primary_10_1016_j_ccr_2021_214304
crossref_primary_10_1002_aenm_202100441
crossref_primary_10_1002_slct_202100218
crossref_primary_10_1021_acs_cgd_9b01271
crossref_primary_10_1039_D0DT00966K
crossref_primary_10_1016_j_ccr_2022_214918
crossref_primary_10_1080_24701556_2020_1813765
crossref_primary_10_1002_chem_202402581
crossref_primary_10_1039_D1CE00900A
crossref_primary_10_1002_chem_202004411
crossref_primary_10_1016_j_jssc_2022_123236
crossref_primary_10_1039_D0DT02796K
crossref_primary_10_1039_D2CC05407H
crossref_primary_10_1039_D4DT00764F
crossref_primary_10_1007_s10876_020_01931_3
crossref_primary_10_1039_D1DT02899E
crossref_primary_10_1039_D0DT03010D
crossref_primary_10_3390_polym13183049
crossref_primary_10_1016_j_dyepig_2022_110302
crossref_primary_10_1016_j_dyepig_2020_108784
crossref_primary_10_1021_acsami_1c23328
crossref_primary_10_1021_acs_inorgchem_0c03375
crossref_primary_10_1021_jacs_9b04930
crossref_primary_10_1016_j_dyepig_2020_108941
crossref_primary_10_1039_D0QI00744G
crossref_primary_10_1039_D0CS00148A
crossref_primary_10_1039_D0NJ04686H
crossref_primary_10_1016_j_dyepig_2021_109146
crossref_primary_10_1016_j_jssc_2019_121067
crossref_primary_10_1021_acs_inorgchem_9b01740
crossref_primary_10_1021_acs_cgd_3c00974
crossref_primary_10_1021_acs_cgd_9b00800
crossref_primary_10_1039_D1DT01016F
Cites_doi 10.1021/ja201484s
10.1039/c39850000525
10.1016/j.ccr.2012.10.002
10.1039/C8CC08220K
10.1002/chem.201003274
10.1039/C4SC01396D
10.1002/anie.201406554
10.1039/c2cc33823h
10.1002/anie.200700122
10.1039/C8DT04393K
10.1107/S0021889800007202
10.1039/c3cc40936h
10.1016/S0010-8545(98)00189-1
10.1039/C5SC00291E
10.1039/b111059d
10.1002/anie.200705545
10.1002/anie.201812554
10.1039/C7CE00212B
10.1039/c3ta10478h
10.1021/acs.inorgchem.5b02340
10.1002/anie.201311124
10.1021/jacs.7b10101
10.1002/anie.200800603
10.1246/cl.2000.142
10.1039/c3cc42268b
10.1039/C5QI00283D
10.1021/ar0401707
10.1002/anie.201001145
10.1039/C5CC00987A
10.1021/jacs.5b05320
10.1039/C4TC01315H
10.1039/B917890B
10.1002/chem.201502758
10.1039/c0dt00471e
10.1002/anie.201108220
10.1039/C8CE01335G
10.1039/C8CC00694F
10.1021/jp035030d
10.1039/C8TC02903B
10.1039/b916782j
10.1039/b505722a
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/C9TC00851A
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 3923
ExternalDocumentID 10_1039_C9TC00851A
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c362t-c068ae21f5c7ad85516d74712fa8a10077f9c8d01cbeb15cad70ee9bc0f33433
ISSN 2050-7526
IngestDate Mon Jun 30 05:04:49 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 02:08:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-c068ae21f5c7ad85516d74712fa8a10077f9c8d01cbeb15cad70ee9bc0f33433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0156-904X
PQID 2198891480
PQPubID 2047521
PageCount 4
ParticipantIDs proquest_journals_2198891480
crossref_citationtrail_10_1039_C9TC00851A
crossref_primary_10_1039_C9TC00851A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (C9TC00851A-(cit1a)/*[position()=1]) 2010; 46
Jhang (C9TC00851A-(cit3a)/*[position()=1]) 2010; 49
Wang (C9TC00851A-(cit5a)/*[position()=1]) 2012; 51
Cai (C9TC00851A-(cit1b)/*[position()=1]) 2015; 137
Tao (C9TC00851A-(cit3e)/*[position()=1]) 2016; 3
Xu (C9TC00851A-(cit3h)/*[position()=1]) 2007; 46
Seo (C9TC00851A-(cit8d)/*[position()=1]) 2011; 133
Li (C9TC00851A-(cit6b)/*[position()=1]) 2017; 19
Xu (C9TC00851A-(cit3i)/*[position()=1]) 2010; 39
Nishikiori (C9TC00851A-(cit4f)/*[position()=1]) 2005; 38
Ma (C9TC00851A-(cit6a)/*[position()=1]) 2018; 6
Wang (C9TC00851A-(cit2c)/*[position()=1]) 2008; 47
Luo (C9TC00851A-(cit2a)/*[position()=1]) 2014; 53
Yoshikawa (C9TC00851A-(cit4b)/*[position()=1]) 2000
Li (C9TC00851A-(cit5f)/*[position()=1]) 2018; 20
Zhu (C9TC00851A-(cit6d)/*[position()=1]) 2011; 17
De (C9TC00851A-(cit8c)/*[position()=1]) 2015; 21
Li (C9TC00851A-(cit5e)/*[position()=1]) 2015; 3
Zeng (C9TC00851A-(cit3g)/*[position()=1]) 2012; 48
Yoshikawa (C9TC00851A-(cit4d)/*[position()=1]) 2003; 107
Shi (C9TC00851A-(cit5g)/*[position()=1]) 2019; 48
Wu (C9TC00851A-(cit3c)/*[position()=1]) 2014; 5
Wang (C9TC00851A-(cit4h)/*[position()=1]) 2019; 58
Kamogawa (C9TC00851A-(cit4a)/*[position()=1]) 1985
Blatov (C9TC00851A-(cit11)/*[position()=1]) 2000; 33
Qin (C9TC00851A-(cit12b)/*[position()=1]) 2009
Wei (C9TC00851A-(cit4g)/*[position()=1]) 2018; 54
Yoshikawa (C9TC00851A-(cit4e)/*[position()=1]) 2005
Guo (C9TC00851A-(cit5c)/*[position()=1]) 2018; 54
Zhang (C9TC00851A-(cit6c)/*[position()=1]) 2013; 1
Sun (C9TC00851A-(cit5d)/*[position()=1]) 2018; 140
Du (C9TC00851A-(cit7)/*[position()=1]) 2013; 257
Wu (C9TC00851A-(cit3d)/*[position()=1]) 2015; 6
Yang (C9TC00851A-(cit8a)/*[position()=1]) 2016; 55
Zhang (C9TC00851A-(cit2b)/*[position()=1]) 2008; 47
Gong (C9TC00851A-(cit3f)/*[position()=1]) 2013; 49
Wu (C9TC00851A-(cit3b)/*[position()=1]) 2013; 49
Shi (C9TC00851A-(cit8b)/*[position()=1]) 2015; 51
Yoshikawa (C9TC00851A-(cit4c)/*[position()=1]) 2002
Li (C9TC00851A-(cit5b)/*[position()=1]) 2014; 53
Kalyanasundaram (C9TC00851A-(cit12a)/*[position()=1]) 1998; 177
References_xml – volume: 133
  start-page: 9005
  year: 2011
  ident: C9TC00851A-(cit8d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201484s
– start-page: 525
  year: 1985
  ident: C9TC00851A-(cit4a)/*[position()=1]
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39850000525
– volume: 257
  start-page: 1282
  year: 2013
  ident: C9TC00851A-(cit7)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.10.002
– volume: 54
  start-page: 14077
  year: 2018
  ident: C9TC00851A-(cit4g)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08220K
– volume: 17
  start-page: 3358
  year: 2011
  ident: C9TC00851A-(cit6d)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201003274
– volume: 5
  start-page: 4237
  year: 2014
  ident: C9TC00851A-(cit3c)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01396D
– volume: 53
  start-page: 11529
  year: 2014
  ident: C9TC00851A-(cit5b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201406554
– volume: 48
  start-page: 8114
  year: 2012
  ident: C9TC00851A-(cit3g)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33823h
– volume: 46
  start-page: 3249
  year: 2007
  ident: C9TC00851A-(cit3h)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200700122
– volume: 48
  start-page: 954
  year: 2019
  ident: C9TC00851A-(cit5g)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04393K
– volume: 33
  start-page: 1193
  year: 2000
  ident: C9TC00851A-(cit11)/*[position()=1]
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889800007202
– volume: 49
  start-page: 4995
  year: 2013
  ident: C9TC00851A-(cit3b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40936h
– volume: 177
  start-page: 347
  year: 1998
  ident: C9TC00851A-(cit12a)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(98)00189-1
– volume: 6
  start-page: 2922
  year: 2015
  ident: C9TC00851A-(cit3d)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00291E
– start-page: 1907
  year: 2002
  ident: C9TC00851A-(cit4c)/*[position()=1]
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/b111059d
– volume: 47
  start-page: 3565
  year: 2008
  ident: C9TC00851A-(cit2c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200705545
– volume: 58
  start-page: 2692
  year: 2019
  ident: C9TC00851A-(cit4h)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201812554
– volume: 19
  start-page: 1160
  year: 2017
  ident: C9TC00851A-(cit6b)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00212B
– volume: 1
  start-page: 4945
  year: 2013
  ident: C9TC00851A-(cit6c)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10478h
– volume: 55
  start-page: 4951
  year: 2016
  ident: C9TC00851A-(cit8a)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02340
– volume: 53
  start-page: 9298
  year: 2014
  ident: C9TC00851A-(cit2a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311124
– volume: 140
  start-page: 2805
  year: 2018
  ident: C9TC00851A-(cit5d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10101
– volume: 47
  start-page: 4149
  year: 2008
  ident: C9TC00851A-(cit2b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200800603
– start-page: 142
  year: 2000
  ident: C9TC00851A-(cit4b)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2000.142
– volume: 49
  start-page: 7711
  year: 2013
  ident: C9TC00851A-(cit3f)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42268b
– volume: 3
  start-page: 541
  year: 2016
  ident: C9TC00851A-(cit3e)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00283D
– volume: 38
  start-page: 227
  year: 2005
  ident: C9TC00851A-(cit4f)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar0401707
– volume: 49
  start-page: 4200
  year: 2010
  ident: C9TC00851A-(cit3a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001145
– volume: 51
  start-page: 8300
  year: 2015
  ident: C9TC00851A-(cit8b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00987A
– volume: 137
  start-page: 10882
  year: 2015
  ident: C9TC00851A-(cit1b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05320
– volume: 3
  start-page: 253
  year: 2015
  ident: C9TC00851A-(cit5e)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01315H
– volume: 46
  start-page: 361
  year: 2010
  ident: C9TC00851A-(cit1a)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/B917890B
– volume: 21
  start-page: 17422
  year: 2015
  ident: C9TC00851A-(cit8c)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201502758
– volume: 39
  start-page: 8688
  year: 2010
  ident: C9TC00851A-(cit3i)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt00471e
– volume: 51
  start-page: 3432
  year: 2012
  ident: C9TC00851A-(cit5a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108220
– volume: 20
  start-page: 6412
  year: 2018
  ident: C9TC00851A-(cit5f)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C8CE01335G
– volume: 54
  start-page: 4525
  year: 2018
  ident: C9TC00851A-(cit5c)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00694F
– volume: 107
  start-page: 9261
  year: 2003
  ident: C9TC00851A-(cit4d)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp035030d
– volume: 6
  start-page: 9341
  year: 2018
  ident: C9TC00851A-(cit6a)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02903B
– start-page: 9388
  year: 2009
  ident: C9TC00851A-(cit12b)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/b916782j
– start-page: 3056
  year: 2005
  ident: C9TC00851A-(cit4e)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/b505722a
SSID ssj0000816869
Score 2.4267309
Snippet The coordinative linkage of supramolecular zincophosphate building units and an extended dipyridine unit, 1,4-di(pyridine-4-yl)benzene (bpyb), generates two...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3920
SubjectTerms Benzene
Charge transfer
Crystal structure
Crystallinity
Crystallography
Photochromism
Title Coordination-driven strategy towards crystalline hybrid photochromic materials via the marriage of a non-photochromic extended dipyridine unit and zincophosphate
URI https://www.proquest.com/docview/2198891480
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKJiR4QDBADAayBC8o8kjz136cylCZJiSkIu0tchyHRhpNlKRI3bfh-_EhONv544w-DF6ixHHctPfr-ee78x1C7-Iw9eZR6BHGM0YCmGNJSoVLciYp93IZZZmOtvgSLb8FF1fh1Wz224pa2rbpqbjZu6_kf6QKbSBXtUv2HyQ7DAoNcA7yhSNIGI53kvGihKVjYex5JKuV4nIak25WkUoVENs4ot4BA7zWdHK9Uxu0nGpdtqVY12pHsgOU1byr87Pgmof-4DU0GGsCdzYw9uSB3m7uZEW1g-HUwFvQDNoPcaOyPUD3plrzdhpmNFLf8SNFX2_u1FmYrUP9HRX-WFbtkMzAqteTSa3ehtAhaRwnm-_kYzFqVGPYLVWr5X_SwQtfh26X-vqi2JDlltsWkE7DahXpuaFL4tDrkmnbbZ2JtNPxsQ1l31LYQA9da_KHS3_vxOL6Ki_rgilHDJDUITXrmL371qw6xDpqL7_PkvHZe-jQg0UNTCOHZ-erz5eDTVAXQdFVGIcv1mfU9dmHcYAph5pSCM2LVo_Ro06q-Myg8wmayc0RemiluTxC93WYsWieol97EIt7xOIOsdhCLDaIxTYA8QAfDIjFgFjcIxaXOeb4NmJxj1g8IhYrxGIAFp4i9hlafTpfLZakKxJCBHCvlgg3olx68zwUMc-o8vtmytDi5ZxyFQIU50zQzJ2LFGhJKHgWu1KyVLi57we-_xwdwFvJFwhH0stTmsOSnjJVkJsFacxEGPmwqmac58foff-rJ6JLoK_quFwnf4v4GL0d-lYmbczeXie98JJOrTQJUAhK2Tyg7ss7DfIKPVB_CmMWPEEHbb2Vr4Eot-mbDl9_ALpyyPE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination-driven+strategy+towards+crystalline+hybrid+photochromic+materials+via+the+marriage+of+a+non-photochromic+extended+dipyridine+unit+and+zincophosphate&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Ge%2C+Bang-Di&rft.au=Han%2C+Song-De&rft.au=Wei%2C+Qi&rft.au=Li%2C+Jin-Hua&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=13&rft.spage=3920&rft.epage=3923&rft_id=info:doi/10.1039%2FC9TC00851A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9TC00851A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon