Magnon-bandgap controllable artificial domain wall waveguide

In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the propagation behavior and dispersion relationship of spin waves in artificial domain wall waveguides, it is found that the nonreciprocal propagat...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 122; no. 24
Main Authors Yu, Hai, Ma, Xiao-Ping, Zhang, Huanhuan, Zhang, Xue-Feng, Luo, Zhaochu, Piao, Hong-Guang
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 12.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the propagation behavior and dispersion relationship of spin waves in artificial domain wall waveguides, it is found that the nonreciprocal propagation of spin waves in the artificial domain walls is mainly affected by the local effective exchange field, and the magnon bandgap can be controlled by changing the maximum value of the effective exchange field. In addition, it is observed that the artificial domain wall waveguides are structurally more stable than the natural domain wall waveguides under the same spin wave injection conditions, and the magnon bandgap of the artificial domain wall waveguides can be adjusted by its width and magnetic anisotropy parameters. The bandgap controllable artificial domain wall scheme is beneficial to the miniaturization and integration of magnon devices and can be applied to future magnonic technology as a high-pass filter with adjustable cutoff frequency.
AbstractList In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the propagation behavior and dispersion relationship of spin waves in artificial domain wall waveguides, it is found that the nonreciprocal propagation of spin waves in the artificial domain walls is mainly affected by the local effective exchange field, and the magnon bandgap can be controlled by changing the maximum value of the effective exchange field. In addition, it is observed that the artificial domain wall waveguides are structurally more stable than the natural domain wall waveguides under the same spin wave injection conditions, and the magnon bandgap of the artificial domain wall waveguides can be adjusted by its width and magnetic anisotropy parameters. The bandgap controllable artificial domain wall scheme is beneficial to the miniaturization and integration of magnon devices and can be applied to future magnonic technology as a high-pass filter with adjustable cutoff frequency.
Author Zhang, Xue-Feng
Ma, Xiao-Ping
Yu, Hai
Luo, Zhaochu
Piao, Hong-Guang
Zhang, Huanhuan
Author_xml – sequence: 1
  givenname: Hai
  surname: Yu
  fullname: Yu, Hai
  organization: Hubei Engineering Research Center of Weak Magnetic-field Detection, China Three Gorges University
– sequence: 2
  givenname: Xiao-Ping
  surname: Ma
  fullname: Ma, Xiao-Ping
  organization: Department of Physics, Yanbian University
– sequence: 3
  givenname: Huanhuan
  surname: Zhang
  fullname: Zhang, Huanhuan
  organization: Hubei Engineering Research Center of Weak Magnetic-field Detection, China Three Gorges University
– sequence: 4
  givenname: Xue-Feng
  surname: Zhang
  fullname: Zhang, Xue-Feng
  organization: Hubei Engineering Research Center of Weak Magnetic-field Detection, China Three Gorges University
– sequence: 5
  givenname: Zhaochu
  surname: Luo
  fullname: Luo, Zhaochu
  organization: School of Physics, Peiking University
– sequence: 6
  givenname: Hong-Guang
  surname: Piao
  fullname: Piao, Hong-Guang
  organization: 3School of Physics, Peiking University, Beijing 100871, People's Republic of China
BookMark eNqdkE9LAzEQxYNUsFYPfoMFTwrbJjub3Sx4keI_qHjRc5hkk5KSbtbstuK3d0srgnjyMsPA773hvVMyakJjCLlgdMpoATM-pSyHPM-PyJjRskyBMTEiY0oppEXF2Qk57brVcPIMYExunnE5WKQKm3qJbaJD08fgPSpvEoy9s0479Ekd1uia5AO9H8bWLDeuNmfk2KLvzPlhT8jb_d3r_DFdvDw8zW8XqYYi61OVKaqtAkWrsiq0ogwRCwHCKiNUhaa2wlSWqdoigjEMrcipFUxXFiwvYUIu975tDO8b0_VyFTaxGV7KTGQ8K3MKfKBme0rH0HXRWKldj73bJULnJaNyV5Hk8lDRoLj6pWijW2P8_JO93rPdt-v_4G2IP6BsawtfhUCE1A
CODEN APPLAB
CitedBy_id crossref_primary_10_1063_5_0181317
crossref_primary_10_1103_PhysRevB_109_184401
Cites_doi 10.1103/PhysRevB.90.174411
10.1063/5.0054943
10.1016/j.microrel.2005.08.009
10.1016/j.physrep.2020.12.004
10.1103/PhysRevApplied.15.034077
10.1016/0022-3697(58)90076-3
10.1103/PhysRevB.94.104431
10.1103/PhysRevB.89.224408
10.1063/1.4775684
10.1103/PhysRevLett.110.167201
10.1007/BF01339661
10.1088/1361-648X/abec1a
10.1063/1.4974168
10.1126/sciadv.abb4042
10.1088/1674-1056/aba09a
10.1038/s41598-017-09485-7
10.1038/nphys3347
10.1038/s41586-020-2061-y
10.1038/s41928-020-00485-6
10.1038/ncomms15007
10.1063/1.4738887
10.1103/PhysRevB.88.184404
10.1103/PhysRevLett.114.247206
10.1038/ncomms5700
10.1103/PhysRevApplied.17.064013
10.1063/1.4899186
10.1016/j.jmmm.2022.169976
10.1063/1.4932598
10.1103/PhysRev.124.452
10.1038/nnano.2015.339
10.1103/PhysRev.120.91
10.1038/s42005-018-0056-x
10.1038/s41467-017-00265-5
10.1016/j.jmmm.2022.169901
10.1038/ncomms4727
10.1021/acs.nanolett.2c01238
10.1038/s41467-018-03199-8
10.1038/s41467-018-07372-x
10.1063/1.4705289
10.1126/science.aau7913
10.1103/PhysRevB.84.144406
ContentType Journal Article
Copyright Author(s)
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0143444
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0143444
apl
GrantInformation_xml – fundername: Yanbian University
  grantid: 482022104
  funderid: 10.13039/501100019594
– fundername: National Natural Science Foundation of China
  grantid: 52271160
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Yichang City
  grantid: A22-3-010
  funderid: 10.13039/100017718
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c362t-b2b0cfb3b09796cb01aaa6838fbe8b9aedf8e9f1bdfaa3ee1af840f81c9f3f573
IEDL.DBID AJDQP
ISSN 0003-6951
IngestDate Mon Jun 30 02:45:45 EDT 2025
Thu Jul 03 08:44:00 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Tue Jul 04 19:18:26 EDT 2023
Fri Jun 21 00:13:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-b2b0cfb3b09796cb01aaa6838fbe8b9aedf8e9f1bdfaa3ee1af840f81c9f3f573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5948-4327
0000-0003-0375-1478
0000-0003-4795-9860
0000-0002-7543-3244
0000-0003-1193-1479
OpenAccessLink http://dx.doi.org/10.1063/5.0143444
PQID 2825274035
PQPubID 2050678
PageCount 6
ParticipantIDs proquest_journals_2825274035
scitation_primary_10_1063_5_0143444
crossref_citationtrail_10_1063_5_0143444
crossref_primary_10_1063_5_0143444
PublicationCentury 2000
PublicationDate 20230612
2023-06-12
PublicationDateYYYYMMDD 2023-06-12
PublicationDate_xml – month: 06
  year: 2023
  text: 20230612
  day: 12
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Chumak, Serga, Hillebrands (c17) 2014
Moon, Seo, Lee, Kim, Ryu, Lee, McMichael, Stiles (c25) 2013
Albisetti, Petti, Sala, Silvani, Tacchi, Finizio, Wintz, Calò, Zheng, Raabe, Riedo, Bertacco (c29) 2018
Yan, Xing, Han (c2) 2022
Winter (c21) 1961
Aliev, Awad, Dielman, Lara, Metlushko, Guslienko (c22) 2011
Wang, Kewenig, Schneider, Verba, Kohl, Heinz, Geilen, Mohseni, Lägel, Ciubotaru, Adelmann, Dubs, Cotofana, Dobrovolskiy, Brächer, Pirro, Chumak (c18) 2020
Luo, Schären, Hrabec, Dao, Sala, Finizio, Feng, Mayr, Raabe, Gambardella, Heyderman (c36) 2021
Luo, Dao, Hrabec, Vijayakumar, Kleibert, Baumgartner, Kirk, Cui, Savchenko, Krishnaswamy, Heyderman, Gambardella (c32) 2019
Vansteenkiste, Leliaert, Dvornik, Helsen, Garcia-Sanchez, Van Waeyenberge (c37) 2014
Devolder, Ducrot, Adam, Barisic, Vernier, Kim, Ockert, Ravelosona (c38) 2013
Papp, porod, Csurgay, Csaba (c15) 2017
Jain, Tsai, Huang, Chang, Liang, Tang, Lee (c11) 2022
Vogt, Fradin, Pearson, Sebastian, Bader, Hillebrands, Hoffmann, Schultheiss (c14) 2014
Au, Dvornik, Dmytriiev, Kruglyak (c16) 2012
Garcia-Sanchez, Borys, Vansteenkiste, Kim, Stamps (c26) 2014
Tu, Liu, Li (c3) 2017
Sun, Cao, Miao, Feng, You, Wu, Zhang, Hu, Ding (c34) 2013
Talmelli, Devolder, Träger, Förster, Wintz, Weigand, Stoll, Heyns, Schütz, Radu, Gräfe, Ciubotaru, Adelmann (c19) 2020
Dzyaloshinsky (c23) 1958
Luo, Hrabec, Dao, Sala, Finizio, Feng, Mayr, Raabe, Gambardella, Heyderman (c33) 2020
Ma, Piao, Yang, Kim, You, Pan (c31) 2020
Bloch (c8) 1930
Soucaille, Belmeguenai, Torrejon, Kim, Devolder, Roussigne, Cherif, Stashkevich, Hayashi, Adam (c39) 2016
Moriya (c24) 1960
Liu, Zhang, Chai, Wu (c40) 2021
Yu, Xiao, Schultheiss (c10) 2021
Lan, Yu, Xiao (c13) 2017
Liu, Chen, Liu, Heimbach, Yu, Xiao, Hu, Liu, Chang, Stueckler, Tu, Zhang, Zhang, Gao, Liao, Yu, Xia, Lei, Zhao, Wu (c7) 2018
Lai, Kao (c4) 2006
Barman, Gubbiotti, Ladak, Adeyeye, Krawczyk, Gräfe, Adelmann, Cotofana, Naeemi, Vasyuchka, Hillebrands, Nikitov, Yu, Grundler, Sadovnikov, Grachev, Sheshukova, Duquesne, Marangolo, Csaba, Porod, Demidov, Urazhdin, Demokritov, Albisetti, Petti, Bertacco, Schultheiss, Kruglyak, Poimanov, Sahoo, Sinha, Yang, Münzenberg, Moriyama, Mizukami, Landeros, Gallardo, Carlotti, Kim, Stamps, Camley, Rana, Otani, Yu, Yu, Bauer, Back, Uhrig, Dobrovolskiy, Budinska, Qin, van Dijken, Chumak, Khitun, Nikonov, Young, Zingsem, Winklhofer (c9) 2021
Wagner, Kákay, Schultheiss, Henschke, Sebastian, Schultheiss (c28) 2016
Qin, Holländer, Flajšman, Dijken (c41) 2022
Zhao, Wang, Luo, Xia, Nie, Xiong, Guo (c30) 2022
Chumak, Vasyuchka, Serga, Hillebrands (c1) 2015
Vogt, Schultheiss, Jain, Pearson, Hoffmann, Bader, Hillebrands (c20) 2012
Hämäläinen, Madami, Qin, Gubbiotti, van Dijken (c12) 2018
Miao, Sun, Wu, Tao, Xiong, Wen, Cao, Wang, Wu, Zhan, You, Du, Li, Ding (c35) 2014
Liu, Li, Kim, Gu, Tu (c5) 2015
Razdolski, Alekhin, Ilin, Meyburg, Roddatis, Diesing, Bovensiepen, Melnikov (c6) 2017
Garcia-Sanchez, Borys, Soucaille, Adam, Stamps, Kim (c27) 2015
(2023081120030686800_c30) 2022; 17
(2023081120030686800_c8) 1930; 61
(2023081120030686800_c3) 2017; 4
(2023081120030686800_c25) 2013; 88
(2023081120030686800_c2) 2022; 563
(2023081120030686800_c22) 2011; 84
(2023081120030686800_c37) 2014; 4
(2023081120030686800_c14) 2014; 5
(2023081120030686800_c20) 2012; 101
(2023081120030686800_c16) 2012; 100
(2023081120030686800_c40) 2021; 118
(2023081120030686800_c6) 2017; 8
(2023081120030686800_c13) 2017; 8
(2023081120030686800_c17) 2014; 5
(2023081120030686800_c23) 1958; 4
(2023081120030686800_c21) 1961; 124
(2023081120030686800_c32) 2019; 363
(2023081120030686800_c7) 2018; 9
(2023081120030686800_c36) 2021; 15
(2023081120030686800_c34) 2013; 110
(2023081120030686800_c39) 2016; 24
(2023081120030686800_c11) 2022; 563
(2023081120030686800_c15) 2017; 7
(2023081120030686800_c41) 2022; 22
(2023081120030686800_c31) 2020; 29
(2023081120030686800_c19) 2020; 6
(2023081120030686800_c18) 2020; 3
(2023081120030686800_c28) 2016; 11
(2023081120030686800_c1) 2015; 11
(2023081120030686800_c4) 2006; 46
(2023081120030686800_c38) 2013; 102
(2023081120030686800_c10) 2021; 905
(2023081120030686800_c12) 2018; 9
(2023081120030686800_c33) 2020; 579
(2023081120030686800_c5) 2015; 118
(2023081120030686800_c27) 2015; 114
(2023081120030686800_c35) 2014; 90
(2023081120030686800_c24) 1960; 120
(2023081120030686800_c26) 2014; 89
(2023081120030686800_c29) 2018; 1
(2023081120030686800_c9) 2021; 33
References_xml – start-page: 452
  year: 1961
  ident: c21
  publication-title: Phys. Rev.
– start-page: 15007
  year: 2017
  ident: c6
  publication-title: Nat. Commun.
– start-page: 169901
  year: 2022
  ident: c11
  publication-title: J. Magn. Magn.
– start-page: 206
  year: 1930
  ident: c8
  publication-title: Z. Physik.
– start-page: 9245
  year: 2017
  ident: c15
  publication-title: Sci. Rep.
– start-page: 135304
  year: 2015
  ident: c5
  publication-title: J. Appl. Phys.
– start-page: 3727
  year: 2014
  ident: c14
  publication-title: Nat. Commun.
– start-page: 107133
  year: 2014
  ident: c37
  publication-title: AIP Adv.
– start-page: 104431
  year: 2016
  ident: c39
  publication-title: Phys. Rev. B
– start-page: 097502
  year: 2020
  ident: c31
  publication-title: Chin. Phys. B
– start-page: 011101
  year: 2017
  ident: c3
  publication-title: Appl. Phys. Rev.
– start-page: 144406
  year: 2011
  ident: c22
  publication-title: Phys. Rev. B
– start-page: 4853
  year: 2018
  ident: c12
  publication-title: Nat. Commun.
– start-page: eabb4042
  year: 2020
  ident: c19
  publication-title: Sci. Adv.
– start-page: 1–59
  year: 2021
  ident: c10
  publication-title: Phys. Rep.
– start-page: 064013
  year: 2022
  ident: c30
  publication-title: Phys. Rev. Appl.
– start-page: 214
  year: 2020
  ident: c33
  publication-title: Nature
– start-page: 765
  year: 2020
  ident: c18
  publication-title: Sci. Rep.
– start-page: 022407
  year: 2013
  ident: c38
  publication-title: Appl. Phys. Lett.
– start-page: 172408
  year: 2012
  ident: c16
  publication-title: Appl. Phys. Lett.
– start-page: 224408
  year: 2014
  ident: c26
  publication-title: Phys. Rev. B
– start-page: 738
  year: 2018
  ident: c7
  publication-title: Nat. Commun.
– start-page: 4700
  year: 2014
  ident: c17
  publication-title: Nat. Commun.
– start-page: 56
  year: 2018
  ident: c29
  publication-title: Commun. Phys.
– start-page: 169976
  year: 2022
  ident: c2
  publication-title: J. Magn. Magn. Mater.
– start-page: 262410
  year: 2021
  ident: c40
  publication-title: Appl. Phys. Lett.
– start-page: 1435
  year: 2019
  ident: c32
  publication-title: Science
– start-page: 042410
  year: 2012
  ident: c20
  publication-title: Appl. Phys. Lett.
– start-page: 432
  year: 2016
  ident: c28
  publication-title: Nat. Nanotechnol.
– start-page: 1357
  year: 2006
  ident: c4
  publication-title: Microelectron Reliab
– start-page: 247206
  year: 2015
  ident: c27
  publication-title: Phys. Rev. Lett.
– start-page: 453
  year: 2015
  ident: c1
  publication-title: Nat. Phys.
– start-page: 413001
  year: 2021
  ident: c9
  publication-title: J. Phys.: Condens. Matter.
– start-page: 167201
  year: 2013
  ident: c34
  publication-title: Phys. Rev. Lett.
– start-page: 178
  year: 2017
  ident: c13
  publication-title: Nat. Commun.
– start-page: 184404
  year: 2013
  ident: c25
  publication-title: Phys. Rev. B
– start-page: 5294
  year: 2022
  ident: c41
  publication-title: Nano Lett.
– start-page: 241
  year: 1958
  ident: c23
  publication-title: J. Phys. Chem. Solids
– start-page: 91
  year: 1960
  ident: c24
  publication-title: Phys. Rev.
– start-page: 034077
  year: 2021
  ident: c36
  publication-title: Phys. Rev. Appl.
– start-page: 174411
  year: 2014
  ident: c35
  publication-title: Phys. Rev. B
– volume: 90
  start-page: 174411
  year: 2014
  ident: 2023081120030686800_c35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.174411
– volume: 118
  start-page: 262410
  year: 2021
  ident: 2023081120030686800_c40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0054943
– volume: 46
  start-page: 1357
  year: 2006
  ident: 2023081120030686800_c4
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2005.08.009
– volume: 905
  start-page: 1–59
  year: 2021
  ident: 2023081120030686800_c10
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.12.004
– volume: 15
  start-page: 034077
  year: 2021
  ident: 2023081120030686800_c36
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.15.034077
– volume: 4
  start-page: 241
  year: 1958
  ident: 2023081120030686800_c23
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(58)90076-3
– volume: 24
  start-page: 104431
  year: 2016
  ident: 2023081120030686800_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.104431
– volume: 89
  start-page: 224408
  year: 2014
  ident: 2023081120030686800_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.224408
– volume: 102
  start-page: 022407
  year: 2013
  ident: 2023081120030686800_c38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4775684
– volume: 110
  start-page: 167201
  year: 2013
  ident: 2023081120030686800_c34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.167201
– volume: 61
  start-page: 206
  year: 1930
  ident: 2023081120030686800_c8
  publication-title: Z. Physik.
  doi: 10.1007/BF01339661
– volume: 33
  start-page: 413001
  year: 2021
  ident: 2023081120030686800_c9
  publication-title: J. Phys.: Condens. Matter.
  doi: 10.1088/1361-648X/abec1a
– volume: 4
  start-page: 011101
  year: 2017
  ident: 2023081120030686800_c3
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4974168
– volume: 6
  start-page: eabb4042
  year: 2020
  ident: 2023081120030686800_c19
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb4042
– volume: 29
  start-page: 097502
  year: 2020
  ident: 2023081120030686800_c31
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/aba09a
– volume: 7
  start-page: 9245
  year: 2017
  ident: 2023081120030686800_c15
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09485-7
– volume: 11
  start-page: 453
  year: 2015
  ident: 2023081120030686800_c1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3347
– volume: 579
  start-page: 214
  year: 2020
  ident: 2023081120030686800_c33
  publication-title: Nature
  doi: 10.1038/s41586-020-2061-y
– volume: 3
  start-page: 765
  year: 2020
  ident: 2023081120030686800_c18
  publication-title: Sci. Rep.
  doi: 10.1038/s41928-020-00485-6
– volume: 8
  start-page: 15007
  year: 2017
  ident: 2023081120030686800_c6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15007
– volume: 101
  start-page: 042410
  year: 2012
  ident: 2023081120030686800_c20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4738887
– volume: 88
  start-page: 184404
  year: 2013
  ident: 2023081120030686800_c25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.184404
– volume: 114
  start-page: 247206
  year: 2015
  ident: 2023081120030686800_c27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.247206
– volume: 5
  start-page: 4700
  year: 2014
  ident: 2023081120030686800_c17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5700
– volume: 17
  start-page: 064013
  year: 2022
  ident: 2023081120030686800_c30
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.064013
– volume: 4
  start-page: 107133
  year: 2014
  ident: 2023081120030686800_c37
  publication-title: AIP Adv.
  doi: 10.1063/1.4899186
– volume: 563
  start-page: 169976
  year: 2022
  ident: 2023081120030686800_c2
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2022.169976
– volume: 118
  start-page: 135304
  year: 2015
  ident: 2023081120030686800_c5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4932598
– volume: 124
  start-page: 452
  year: 1961
  ident: 2023081120030686800_c21
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.124.452
– volume: 11
  start-page: 432
  year: 2016
  ident: 2023081120030686800_c28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.339
– volume: 120
  start-page: 91
  year: 1960
  ident: 2023081120030686800_c24
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.91
– volume: 1
  start-page: 56
  year: 2018
  ident: 2023081120030686800_c29
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-018-0056-x
– volume: 8
  start-page: 178
  year: 2017
  ident: 2023081120030686800_c13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00265-5
– volume: 563
  start-page: 169901
  year: 2022
  ident: 2023081120030686800_c11
  publication-title: J. Magn. Magn.
  doi: 10.1016/j.jmmm.2022.169901
– volume: 5
  start-page: 3727
  year: 2014
  ident: 2023081120030686800_c14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4727
– volume: 22
  start-page: 5294
  year: 2022
  ident: 2023081120030686800_c41
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01238
– volume: 9
  start-page: 738
  year: 2018
  ident: 2023081120030686800_c7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03199-8
– volume: 9
  start-page: 4853
  year: 2018
  ident: 2023081120030686800_c12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07372-x
– volume: 100
  start-page: 172408
  year: 2012
  ident: 2023081120030686800_c16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4705289
– volume: 363
  start-page: 1435
  year: 2019
  ident: 2023081120030686800_c32
  publication-title: Science
  doi: 10.1126/science.aau7913
– volume: 84
  start-page: 144406
  year: 2011
  ident: 2023081120030686800_c22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.144406
SSID ssj0005233
Score 2.4511163
Snippet In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Controllability
Domain walls
Energy gap
High pass filters
Magnetic anisotropy
Magnons
Wave propagation
Waveguides
Title Magnon-bandgap controllable artificial domain wall waveguide
URI http://dx.doi.org/10.1063/5.0143444
https://www.proquest.com/docview/2825274035
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8NADA5zQ9QH0ak4naM4H3wptr2264EvwznGcKLoYG_l7no3hLqN_fLfN7e2W4UpvvTl0lDSHEnIly8AN5Rp7KDNTE8whgUKlSZXDc8U1A8i5jnoM3rAuffsd_pud-ANClD_pYPvkztNq-kS13V3oORgchwUodTstl5fckgOQrLFeD5mDBmBUP7ln2Fnk0vuYaBJet65sNI-gsM0HzSayQ88hoIcleEgxxJYht0VSlPMTuC-p3FxI5Nj-T9kEyPFmcd6_MnQPpDQQRjR-BMLfuOLxTE-lnK4-IjkKfTbj-8PHTNdf2AKjCpzkzvcEooTbtEG9QW3bMaYH5BAcRlwymSkAkmVzSPFGJHSZgqrNRXYgiqivAY5gyJ-kzwHgzuO0tR0Nh64kfAoqpK2EKicuj5xK3CbWSfM7KFXVMThqkftk9ALU0NW4HotOkkIMbYJVTMTh-mdmIV6ShZrYIt4Faivzf6Xki1Sy_F0IxFOInXxL12XsK_3xJurpUNVKM6nC3mF2cSc19CbWr2nt1rqVd_UDsZB
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60RaoH8Yn1GdSDl7VNN9lmwYv4oNZWFFroLcxudqUQa-jLv-9uk9gKRbzkktlh87FhZthvvgG45Gi5gy4SXyKaAoUrInTdJ5KzIEK_Zs6MbXBuv7BG12v2_F7GzbG9MGYTo2vsJ6lEcBJXMgBJbHLOSTIXHGC0YgU3Pep53ioUTTXOggIUb5v3b68LHA9K85F5zOQSubTQ4uLfAWmeZZZMCEpvwxcCzuMWbGaZonOb7mwbVtRgBzYW9AN3YG3G35SjXbhpW8bcgAgcRO-YOBkDPbaNUY79uFQowok-P7A_cL4wjs1jqt4n_UjtQffxoXPXINlgBCJNvBkTURNVqQUVVV7nTIqqi4gsoIEWKhAcVaQDxbUrIo1IlXJRmzpOB67kmmq_TvehYPakDsARtZq2onWueeFF0ufGlXKlNM65x6hXhqscnTDHww6viMPZ7TWjoR9mQJbh_Mc0SaUylhkd5xCH2d8yCm3_rKmOq9Qvw8UP7H85WWI1_RzOLcIk0of_8nUGpUan3QpbTy_PR7Bup8mT2WiiYyiMhxN1YnKOsTjNTtY3iD7Rrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnon-bandgap+controllable+artificial+domain+wall+waveguide&rft.jtitle=Applied+physics+letters&rft.au=Yu%2C+Hai&rft.au=Ma%2C+Xiao-Ping&rft.au=Zhang%2C+Huanhuan&rft.au=Zhang%2C+Xue-Feng&rft.date=2023-06-12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=24&rft_id=info:doi/10.1063%2F5.0143444&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon