Magnon-bandgap controllable artificial domain wall waveguide
In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the propagation behavior and dispersion relationship of spin waves in artificial domain wall waveguides, it is found that the nonreciprocal propagat...
Saved in:
Published in | Applied physics letters Vol. 122; no. 24 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
12.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the propagation behavior and dispersion relationship of spin waves in artificial domain wall waveguides, it is found that the nonreciprocal propagation of spin waves in the artificial domain walls is mainly affected by the local effective exchange field, and the magnon bandgap can be controlled by changing the maximum value of the effective exchange field. In addition, it is observed that the artificial domain wall waveguides are structurally more stable than the natural domain wall waveguides under the same spin wave injection conditions, and the magnon bandgap of the artificial domain wall waveguides can be adjusted by its width and magnetic anisotropy parameters. The bandgap controllable artificial domain wall scheme is beneficial to the miniaturization and integration of magnon devices and can be applied to future magnonic technology as a high-pass filter with adjustable cutoff frequency. |
---|---|
AbstractList | In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the propagation behavior and dispersion relationship of spin waves in artificial domain wall waveguides, it is found that the nonreciprocal propagation of spin waves in the artificial domain walls is mainly affected by the local effective exchange field, and the magnon bandgap can be controlled by changing the maximum value of the effective exchange field. In addition, it is observed that the artificial domain wall waveguides are structurally more stable than the natural domain wall waveguides under the same spin wave injection conditions, and the magnon bandgap of the artificial domain wall waveguides can be adjusted by its width and magnetic anisotropy parameters. The bandgap controllable artificial domain wall scheme is beneficial to the miniaturization and integration of magnon devices and can be applied to future magnonic technology as a high-pass filter with adjustable cutoff frequency. |
Author | Zhang, Xue-Feng Ma, Xiao-Ping Yu, Hai Luo, Zhaochu Piao, Hong-Guang Zhang, Huanhuan |
Author_xml | – sequence: 1 givenname: Hai surname: Yu fullname: Yu, Hai organization: Hubei Engineering Research Center of Weak Magnetic-field Detection, China Three Gorges University – sequence: 2 givenname: Xiao-Ping surname: Ma fullname: Ma, Xiao-Ping organization: Department of Physics, Yanbian University – sequence: 3 givenname: Huanhuan surname: Zhang fullname: Zhang, Huanhuan organization: Hubei Engineering Research Center of Weak Magnetic-field Detection, China Three Gorges University – sequence: 4 givenname: Xue-Feng surname: Zhang fullname: Zhang, Xue-Feng organization: Hubei Engineering Research Center of Weak Magnetic-field Detection, China Three Gorges University – sequence: 5 givenname: Zhaochu surname: Luo fullname: Luo, Zhaochu organization: School of Physics, Peiking University – sequence: 6 givenname: Hong-Guang surname: Piao fullname: Piao, Hong-Guang organization: 3School of Physics, Peiking University, Beijing 100871, People's Republic of China |
BookMark | eNqdkE9LAzEQxYNUsFYPfoMFTwrbJjub3Sx4keI_qHjRc5hkk5KSbtbstuK3d0srgnjyMsPA773hvVMyakJjCLlgdMpoATM-pSyHPM-PyJjRskyBMTEiY0oppEXF2Qk57brVcPIMYExunnE5WKQKm3qJbaJD08fgPSpvEoy9s0479Ekd1uia5AO9H8bWLDeuNmfk2KLvzPlhT8jb_d3r_DFdvDw8zW8XqYYi61OVKaqtAkWrsiq0ogwRCwHCKiNUhaa2wlSWqdoigjEMrcipFUxXFiwvYUIu975tDO8b0_VyFTaxGV7KTGQ8K3MKfKBme0rH0HXRWKldj73bJULnJaNyV5Hk8lDRoLj6pWijW2P8_JO93rPdt-v_4G2IP6BsawtfhUCE1A |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1063_5_0181317 crossref_primary_10_1103_PhysRevB_109_184401 |
Cites_doi | 10.1103/PhysRevB.90.174411 10.1063/5.0054943 10.1016/j.microrel.2005.08.009 10.1016/j.physrep.2020.12.004 10.1103/PhysRevApplied.15.034077 10.1016/0022-3697(58)90076-3 10.1103/PhysRevB.94.104431 10.1103/PhysRevB.89.224408 10.1063/1.4775684 10.1103/PhysRevLett.110.167201 10.1007/BF01339661 10.1088/1361-648X/abec1a 10.1063/1.4974168 10.1126/sciadv.abb4042 10.1088/1674-1056/aba09a 10.1038/s41598-017-09485-7 10.1038/nphys3347 10.1038/s41586-020-2061-y 10.1038/s41928-020-00485-6 10.1038/ncomms15007 10.1063/1.4738887 10.1103/PhysRevB.88.184404 10.1103/PhysRevLett.114.247206 10.1038/ncomms5700 10.1103/PhysRevApplied.17.064013 10.1063/1.4899186 10.1016/j.jmmm.2022.169976 10.1063/1.4932598 10.1103/PhysRev.124.452 10.1038/nnano.2015.339 10.1103/PhysRev.120.91 10.1038/s42005-018-0056-x 10.1038/s41467-017-00265-5 10.1016/j.jmmm.2022.169901 10.1038/ncomms4727 10.1021/acs.nanolett.2c01238 10.1038/s41467-018-03199-8 10.1038/s41467-018-07372-x 10.1063/1.4705289 10.1126/science.aau7913 10.1103/PhysRevB.84.144406 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0143444 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0143444 apl |
GrantInformation_xml | – fundername: Yanbian University grantid: 482022104 funderid: 10.13039/501100019594 – fundername: National Natural Science Foundation of China grantid: 52271160 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Yichang City grantid: A22-3-010 funderid: 10.13039/100017718 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c362t-b2b0cfb3b09796cb01aaa6838fbe8b9aedf8e9f1bdfaa3ee1af840f81c9f3f573 |
IEDL.DBID | AJDQP |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 02:45:45 EDT 2025 Thu Jul 03 08:44:00 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Tue Jul 04 19:18:26 EDT 2023 Fri Jun 21 00:13:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-b2b0cfb3b09796cb01aaa6838fbe8b9aedf8e9f1bdfaa3ee1af840f81c9f3f573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5948-4327 0000-0003-0375-1478 0000-0003-4795-9860 0000-0002-7543-3244 0000-0003-1193-1479 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0143444 |
PQID | 2825274035 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2825274035 scitation_primary_10_1063_5_0143444 crossref_citationtrail_10_1063_5_0143444 crossref_primary_10_1063_5_0143444 |
PublicationCentury | 2000 |
PublicationDate | 20230612 2023-06-12 |
PublicationDateYYYYMMDD | 2023-06-12 |
PublicationDate_xml | – month: 06 year: 2023 text: 20230612 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Chumak, Serga, Hillebrands (c17) 2014 Moon, Seo, Lee, Kim, Ryu, Lee, McMichael, Stiles (c25) 2013 Albisetti, Petti, Sala, Silvani, Tacchi, Finizio, Wintz, Calò, Zheng, Raabe, Riedo, Bertacco (c29) 2018 Yan, Xing, Han (c2) 2022 Winter (c21) 1961 Aliev, Awad, Dielman, Lara, Metlushko, Guslienko (c22) 2011 Wang, Kewenig, Schneider, Verba, Kohl, Heinz, Geilen, Mohseni, Lägel, Ciubotaru, Adelmann, Dubs, Cotofana, Dobrovolskiy, Brächer, Pirro, Chumak (c18) 2020 Luo, Schären, Hrabec, Dao, Sala, Finizio, Feng, Mayr, Raabe, Gambardella, Heyderman (c36) 2021 Luo, Dao, Hrabec, Vijayakumar, Kleibert, Baumgartner, Kirk, Cui, Savchenko, Krishnaswamy, Heyderman, Gambardella (c32) 2019 Vansteenkiste, Leliaert, Dvornik, Helsen, Garcia-Sanchez, Van Waeyenberge (c37) 2014 Devolder, Ducrot, Adam, Barisic, Vernier, Kim, Ockert, Ravelosona (c38) 2013 Papp, porod, Csurgay, Csaba (c15) 2017 Jain, Tsai, Huang, Chang, Liang, Tang, Lee (c11) 2022 Vogt, Fradin, Pearson, Sebastian, Bader, Hillebrands, Hoffmann, Schultheiss (c14) 2014 Au, Dvornik, Dmytriiev, Kruglyak (c16) 2012 Garcia-Sanchez, Borys, Vansteenkiste, Kim, Stamps (c26) 2014 Tu, Liu, Li (c3) 2017 Sun, Cao, Miao, Feng, You, Wu, Zhang, Hu, Ding (c34) 2013 Talmelli, Devolder, Träger, Förster, Wintz, Weigand, Stoll, Heyns, Schütz, Radu, Gräfe, Ciubotaru, Adelmann (c19) 2020 Dzyaloshinsky (c23) 1958 Luo, Hrabec, Dao, Sala, Finizio, Feng, Mayr, Raabe, Gambardella, Heyderman (c33) 2020 Ma, Piao, Yang, Kim, You, Pan (c31) 2020 Bloch (c8) 1930 Soucaille, Belmeguenai, Torrejon, Kim, Devolder, Roussigne, Cherif, Stashkevich, Hayashi, Adam (c39) 2016 Moriya (c24) 1960 Liu, Zhang, Chai, Wu (c40) 2021 Yu, Xiao, Schultheiss (c10) 2021 Lan, Yu, Xiao (c13) 2017 Liu, Chen, Liu, Heimbach, Yu, Xiao, Hu, Liu, Chang, Stueckler, Tu, Zhang, Zhang, Gao, Liao, Yu, Xia, Lei, Zhao, Wu (c7) 2018 Lai, Kao (c4) 2006 Barman, Gubbiotti, Ladak, Adeyeye, Krawczyk, Gräfe, Adelmann, Cotofana, Naeemi, Vasyuchka, Hillebrands, Nikitov, Yu, Grundler, Sadovnikov, Grachev, Sheshukova, Duquesne, Marangolo, Csaba, Porod, Demidov, Urazhdin, Demokritov, Albisetti, Petti, Bertacco, Schultheiss, Kruglyak, Poimanov, Sahoo, Sinha, Yang, Münzenberg, Moriyama, Mizukami, Landeros, Gallardo, Carlotti, Kim, Stamps, Camley, Rana, Otani, Yu, Yu, Bauer, Back, Uhrig, Dobrovolskiy, Budinska, Qin, van Dijken, Chumak, Khitun, Nikonov, Young, Zingsem, Winklhofer (c9) 2021 Wagner, Kákay, Schultheiss, Henschke, Sebastian, Schultheiss (c28) 2016 Qin, Holländer, Flajšman, Dijken (c41) 2022 Zhao, Wang, Luo, Xia, Nie, Xiong, Guo (c30) 2022 Chumak, Vasyuchka, Serga, Hillebrands (c1) 2015 Vogt, Schultheiss, Jain, Pearson, Hoffmann, Bader, Hillebrands (c20) 2012 Hämäläinen, Madami, Qin, Gubbiotti, van Dijken (c12) 2018 Miao, Sun, Wu, Tao, Xiong, Wen, Cao, Wang, Wu, Zhan, You, Du, Li, Ding (c35) 2014 Liu, Li, Kim, Gu, Tu (c5) 2015 Razdolski, Alekhin, Ilin, Meyburg, Roddatis, Diesing, Bovensiepen, Melnikov (c6) 2017 Garcia-Sanchez, Borys, Soucaille, Adam, Stamps, Kim (c27) 2015 (2023081120030686800_c30) 2022; 17 (2023081120030686800_c8) 1930; 61 (2023081120030686800_c3) 2017; 4 (2023081120030686800_c25) 2013; 88 (2023081120030686800_c2) 2022; 563 (2023081120030686800_c22) 2011; 84 (2023081120030686800_c37) 2014; 4 (2023081120030686800_c14) 2014; 5 (2023081120030686800_c20) 2012; 101 (2023081120030686800_c16) 2012; 100 (2023081120030686800_c40) 2021; 118 (2023081120030686800_c6) 2017; 8 (2023081120030686800_c13) 2017; 8 (2023081120030686800_c17) 2014; 5 (2023081120030686800_c23) 1958; 4 (2023081120030686800_c21) 1961; 124 (2023081120030686800_c32) 2019; 363 (2023081120030686800_c7) 2018; 9 (2023081120030686800_c36) 2021; 15 (2023081120030686800_c34) 2013; 110 (2023081120030686800_c39) 2016; 24 (2023081120030686800_c11) 2022; 563 (2023081120030686800_c15) 2017; 7 (2023081120030686800_c41) 2022; 22 (2023081120030686800_c31) 2020; 29 (2023081120030686800_c19) 2020; 6 (2023081120030686800_c18) 2020; 3 (2023081120030686800_c28) 2016; 11 (2023081120030686800_c1) 2015; 11 (2023081120030686800_c4) 2006; 46 (2023081120030686800_c38) 2013; 102 (2023081120030686800_c10) 2021; 905 (2023081120030686800_c12) 2018; 9 (2023081120030686800_c33) 2020; 579 (2023081120030686800_c5) 2015; 118 (2023081120030686800_c27) 2015; 114 (2023081120030686800_c35) 2014; 90 (2023081120030686800_c24) 1960; 120 (2023081120030686800_c26) 2014; 89 (2023081120030686800_c29) 2018; 1 (2023081120030686800_c9) 2021; 33 |
References_xml | – start-page: 452 year: 1961 ident: c21 publication-title: Phys. Rev. – start-page: 15007 year: 2017 ident: c6 publication-title: Nat. Commun. – start-page: 169901 year: 2022 ident: c11 publication-title: J. Magn. Magn. – start-page: 206 year: 1930 ident: c8 publication-title: Z. Physik. – start-page: 9245 year: 2017 ident: c15 publication-title: Sci. Rep. – start-page: 135304 year: 2015 ident: c5 publication-title: J. Appl. Phys. – start-page: 3727 year: 2014 ident: c14 publication-title: Nat. Commun. – start-page: 107133 year: 2014 ident: c37 publication-title: AIP Adv. – start-page: 104431 year: 2016 ident: c39 publication-title: Phys. Rev. B – start-page: 097502 year: 2020 ident: c31 publication-title: Chin. Phys. B – start-page: 011101 year: 2017 ident: c3 publication-title: Appl. Phys. Rev. – start-page: 144406 year: 2011 ident: c22 publication-title: Phys. Rev. B – start-page: 4853 year: 2018 ident: c12 publication-title: Nat. Commun. – start-page: eabb4042 year: 2020 ident: c19 publication-title: Sci. Adv. – start-page: 1–59 year: 2021 ident: c10 publication-title: Phys. Rep. – start-page: 064013 year: 2022 ident: c30 publication-title: Phys. Rev. Appl. – start-page: 214 year: 2020 ident: c33 publication-title: Nature – start-page: 765 year: 2020 ident: c18 publication-title: Sci. Rep. – start-page: 022407 year: 2013 ident: c38 publication-title: Appl. Phys. Lett. – start-page: 172408 year: 2012 ident: c16 publication-title: Appl. Phys. Lett. – start-page: 224408 year: 2014 ident: c26 publication-title: Phys. Rev. B – start-page: 738 year: 2018 ident: c7 publication-title: Nat. Commun. – start-page: 4700 year: 2014 ident: c17 publication-title: Nat. Commun. – start-page: 56 year: 2018 ident: c29 publication-title: Commun. Phys. – start-page: 169976 year: 2022 ident: c2 publication-title: J. Magn. Magn. Mater. – start-page: 262410 year: 2021 ident: c40 publication-title: Appl. Phys. Lett. – start-page: 1435 year: 2019 ident: c32 publication-title: Science – start-page: 042410 year: 2012 ident: c20 publication-title: Appl. Phys. Lett. – start-page: 432 year: 2016 ident: c28 publication-title: Nat. Nanotechnol. – start-page: 1357 year: 2006 ident: c4 publication-title: Microelectron Reliab – start-page: 247206 year: 2015 ident: c27 publication-title: Phys. Rev. Lett. – start-page: 453 year: 2015 ident: c1 publication-title: Nat. Phys. – start-page: 413001 year: 2021 ident: c9 publication-title: J. Phys.: Condens. Matter. – start-page: 167201 year: 2013 ident: c34 publication-title: Phys. Rev. Lett. – start-page: 178 year: 2017 ident: c13 publication-title: Nat. Commun. – start-page: 184404 year: 2013 ident: c25 publication-title: Phys. Rev. B – start-page: 5294 year: 2022 ident: c41 publication-title: Nano Lett. – start-page: 241 year: 1958 ident: c23 publication-title: J. Phys. Chem. Solids – start-page: 91 year: 1960 ident: c24 publication-title: Phys. Rev. – start-page: 034077 year: 2021 ident: c36 publication-title: Phys. Rev. Appl. – start-page: 174411 year: 2014 ident: c35 publication-title: Phys. Rev. B – volume: 90 start-page: 174411 year: 2014 ident: 2023081120030686800_c35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.174411 – volume: 118 start-page: 262410 year: 2021 ident: 2023081120030686800_c40 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0054943 – volume: 46 start-page: 1357 year: 2006 ident: 2023081120030686800_c4 publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2005.08.009 – volume: 905 start-page: 1–59 year: 2021 ident: 2023081120030686800_c10 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.12.004 – volume: 15 start-page: 034077 year: 2021 ident: 2023081120030686800_c36 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.034077 – volume: 4 start-page: 241 year: 1958 ident: 2023081120030686800_c23 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(58)90076-3 – volume: 24 start-page: 104431 year: 2016 ident: 2023081120030686800_c39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.104431 – volume: 89 start-page: 224408 year: 2014 ident: 2023081120030686800_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.224408 – volume: 102 start-page: 022407 year: 2013 ident: 2023081120030686800_c38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4775684 – volume: 110 start-page: 167201 year: 2013 ident: 2023081120030686800_c34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.167201 – volume: 61 start-page: 206 year: 1930 ident: 2023081120030686800_c8 publication-title: Z. Physik. doi: 10.1007/BF01339661 – volume: 33 start-page: 413001 year: 2021 ident: 2023081120030686800_c9 publication-title: J. Phys.: Condens. Matter. doi: 10.1088/1361-648X/abec1a – volume: 4 start-page: 011101 year: 2017 ident: 2023081120030686800_c3 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4974168 – volume: 6 start-page: eabb4042 year: 2020 ident: 2023081120030686800_c19 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb4042 – volume: 29 start-page: 097502 year: 2020 ident: 2023081120030686800_c31 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/aba09a – volume: 7 start-page: 9245 year: 2017 ident: 2023081120030686800_c15 publication-title: Sci. Rep. doi: 10.1038/s41598-017-09485-7 – volume: 11 start-page: 453 year: 2015 ident: 2023081120030686800_c1 publication-title: Nat. Phys. doi: 10.1038/nphys3347 – volume: 579 start-page: 214 year: 2020 ident: 2023081120030686800_c33 publication-title: Nature doi: 10.1038/s41586-020-2061-y – volume: 3 start-page: 765 year: 2020 ident: 2023081120030686800_c18 publication-title: Sci. Rep. doi: 10.1038/s41928-020-00485-6 – volume: 8 start-page: 15007 year: 2017 ident: 2023081120030686800_c6 publication-title: Nat. Commun. doi: 10.1038/ncomms15007 – volume: 101 start-page: 042410 year: 2012 ident: 2023081120030686800_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4738887 – volume: 88 start-page: 184404 year: 2013 ident: 2023081120030686800_c25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.184404 – volume: 114 start-page: 247206 year: 2015 ident: 2023081120030686800_c27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.247206 – volume: 5 start-page: 4700 year: 2014 ident: 2023081120030686800_c17 publication-title: Nat. Commun. doi: 10.1038/ncomms5700 – volume: 17 start-page: 064013 year: 2022 ident: 2023081120030686800_c30 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.064013 – volume: 4 start-page: 107133 year: 2014 ident: 2023081120030686800_c37 publication-title: AIP Adv. doi: 10.1063/1.4899186 – volume: 563 start-page: 169976 year: 2022 ident: 2023081120030686800_c2 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2022.169976 – volume: 118 start-page: 135304 year: 2015 ident: 2023081120030686800_c5 publication-title: J. Appl. Phys. doi: 10.1063/1.4932598 – volume: 124 start-page: 452 year: 1961 ident: 2023081120030686800_c21 publication-title: Phys. Rev. doi: 10.1103/PhysRev.124.452 – volume: 11 start-page: 432 year: 2016 ident: 2023081120030686800_c28 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.339 – volume: 120 start-page: 91 year: 1960 ident: 2023081120030686800_c24 publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.91 – volume: 1 start-page: 56 year: 2018 ident: 2023081120030686800_c29 publication-title: Commun. Phys. doi: 10.1038/s42005-018-0056-x – volume: 8 start-page: 178 year: 2017 ident: 2023081120030686800_c13 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00265-5 – volume: 563 start-page: 169901 year: 2022 ident: 2023081120030686800_c11 publication-title: J. Magn. Magn. doi: 10.1016/j.jmmm.2022.169901 – volume: 5 start-page: 3727 year: 2014 ident: 2023081120030686800_c14 publication-title: Nat. Commun. doi: 10.1038/ncomms4727 – volume: 22 start-page: 5294 year: 2022 ident: 2023081120030686800_c41 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01238 – volume: 9 start-page: 738 year: 2018 ident: 2023081120030686800_c7 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03199-8 – volume: 9 start-page: 4853 year: 2018 ident: 2023081120030686800_c12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07372-x – volume: 100 start-page: 172408 year: 2012 ident: 2023081120030686800_c16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4705289 – volume: 363 start-page: 1435 year: 2019 ident: 2023081120030686800_c32 publication-title: Science doi: 10.1126/science.aau7913 – volume: 84 start-page: 144406 year: 2011 ident: 2023081120030686800_c22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.144406 |
SSID | ssj0005233 |
Score | 2.4511163 |
Snippet | In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Controllability Domain walls Energy gap High pass filters Magnetic anisotropy Magnons Wave propagation Waveguides |
Title | Magnon-bandgap controllable artificial domain wall waveguide |
URI | http://dx.doi.org/10.1063/5.0143444 https://www.proquest.com/docview/2825274035 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8NADA5zQ9QH0ak4naM4H3wptr2264EvwznGcKLoYG_l7no3hLqN_fLfN7e2W4UpvvTl0lDSHEnIly8AN5Rp7KDNTE8whgUKlSZXDc8U1A8i5jnoM3rAuffsd_pud-ANClD_pYPvkztNq-kS13V3oORgchwUodTstl5fckgOQrLFeD5mDBmBUP7ln2Fnk0vuYaBJet65sNI-gsM0HzSayQ88hoIcleEgxxJYht0VSlPMTuC-p3FxI5Nj-T9kEyPFmcd6_MnQPpDQQRjR-BMLfuOLxTE-lnK4-IjkKfTbj-8PHTNdf2AKjCpzkzvcEooTbtEG9QW3bMaYH5BAcRlwymSkAkmVzSPFGJHSZgqrNRXYgiqivAY5gyJ-kzwHgzuO0tR0Nh64kfAoqpK2EKicuj5xK3CbWSfM7KFXVMThqkftk9ALU0NW4HotOkkIMbYJVTMTh-mdmIV6ShZrYIt4Faivzf6Xki1Sy_F0IxFOInXxL12XsK_3xJurpUNVKM6nC3mF2cSc19CbWr2nt1rqVd_UDsZB |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60RaoH8Yn1GdSDl7VNN9lmwYv4oNZWFFroLcxudqUQa-jLv-9uk9gKRbzkktlh87FhZthvvgG45Gi5gy4SXyKaAoUrInTdJ5KzIEK_Zs6MbXBuv7BG12v2_F7GzbG9MGYTo2vsJ6lEcBJXMgBJbHLOSTIXHGC0YgU3Pep53ioUTTXOggIUb5v3b68LHA9K85F5zOQSubTQ4uLfAWmeZZZMCEpvwxcCzuMWbGaZonOb7mwbVtRgBzYW9AN3YG3G35SjXbhpW8bcgAgcRO-YOBkDPbaNUY79uFQowok-P7A_cL4wjs1jqt4n_UjtQffxoXPXINlgBCJNvBkTURNVqQUVVV7nTIqqi4gsoIEWKhAcVaQDxbUrIo1IlXJRmzpOB67kmmq_TvehYPakDsARtZq2onWueeFF0ufGlXKlNM65x6hXhqscnTDHww6viMPZ7TWjoR9mQJbh_Mc0SaUylhkd5xCH2d8yCm3_rKmOq9Qvw8UP7H85WWI1_RzOLcIk0of_8nUGpUan3QpbTy_PR7Bup8mT2WiiYyiMhxN1YnKOsTjNTtY3iD7Rrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnon-bandgap+controllable+artificial+domain+wall+waveguide&rft.jtitle=Applied+physics+letters&rft.au=Yu%2C+Hai&rft.au=Ma%2C+Xiao-Ping&rft.au=Zhang%2C+Huanhuan&rft.au=Zhang%2C+Xue-Feng&rft.date=2023-06-12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=24&rft_id=info:doi/10.1063%2F5.0143444&rft.externalDocID=apl |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |