The association between lead and cadmium co-exposure and renal dysfunction
Both cadmium (Cd) and lead (Pb) exposure can induce kidney damage. However, the effects of combined exposure to Cd and Pb on renal function at environmental levels have not been fully clarified. In this study we investigated the renal function in a Chinese population co-exposed to Cd and Pb. A total...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 173; pp. 429 - 435 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
30.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0147-6513 1090-2414 1090-2414 |
DOI | 10.1016/j.ecoenv.2019.01.121 |
Cover
Loading…
Abstract | Both cadmium (Cd) and lead (Pb) exposure can induce kidney damage. However, the effects of combined exposure to Cd and Pb on renal function at environmental levels have not been fully clarified. In this study we investigated the renal function in a Chinese population co-exposed to Cd and Pb. A total of 331 subjects (215 women and 116 men), living in either a control or a polluted area, were included in this study. Cd and Pb in blood and urine (BCd, BPb, UCd, and UPb), and kidney effect markers including urinary N-acetyl-β-D-glucosaminidase (UNAG) and estimated glomerular filtration rate (eGFR), were determined, and the association between exposure markers and renal effect biomarkers were analyzed. The exposure levels in the polluted area were significantly higher than in the control area (all p < 0.01). The eGFR of subjects in the polluted area was decreased compared with that in the control area (p < 0.01). The subjects with high BCd/BPb (BCd ≥ 2 μg/L, BPb ≥ 100 μg/L) or high UCd/UPb (UCd ≥ 3 μg/g creatinine, UPb ≥ 10 μg/g creatinine) showed higher UNAG and UALB levels compared with other subgroups (p < 0.01). The probability of having elevated UNAG in subjects with high BCd/BPb was greater than those with low BCd/BPb [odds ratio (OR) = 2.6, 95% confidence interval (CI): 1.4–4.7), low BCd/high BPb (OR =3.1, 95% CI: 1.4–6.6), and high BCd/low BPb (OR = 1.7, 95% CI: 0.9–3.2). The OR of subjects with low UCd and high UPb, high UCd and low UPb, and high UCd/UPb were 2.9 (95% CI: 1.4–5.7), 3.3 (95% CI: 1.5–7.2), and 7.7 (95% CI: 4.0–14.7), respectively, compared with those with low UCd/UPb. The risk of decrease in eGFR was also higher in subjects with high UCd/UPb than for those with low UCd/UPb (OR = 7.2, 95% CI: 0.8–62.2). Our data demonstrate that Cd and Pb exposure, alone or in combination, are associated with renal impairment. In addition, co-exposure to Pb and Cd propagates the renal tubular dysfunction compared with Cd or Pb exposure alone.
•The effects of Cd and Pb co-exposure on renal function are not totally clarified.•Cd and Pb exposure were associated with renal impairment.•Pb and Cd co-exposure aggravate the renal tubular dysfunction.•UNAG is a marker for the renal dysfunction induced by Cd and Pb co-exposure. |
---|---|
AbstractList | Both cadmium (Cd) and lead (Pb) exposure can induce kidney damage. However, the effects of combined exposure to Cd and Pb on renal function at environmental levels have not been fully clarified. In this study we investigated the renal function in a Chinese population co-exposed to Cd and Pb. A total of 331 subjects (215 women and 116 men), living in either a control or a polluted area, were included in this study. Cd and Pb in blood and urine (BCd, BPb, UCd, and UPb), and kidney effect markers including urinary N-acetyl-β-D-glucosaminidase (UNAG) and estimated glomerular filtration rate (eGFR), were determined, and the association between exposure markers and renal effect biomarkers were analyzed. The exposure levels in the polluted area were significantly higher than in the control area (all p < 0.01). The eGFR of subjects in the polluted area was decreased compared with that in the control area (p < 0.01). The subjects with high BCd/BPb (BCd ≥ 2 μg/L, BPb ≥ 100 μg/L) or high UCd/UPb (UCd ≥ 3 μg/g creatinine, UPb ≥ 10 μg/g creatinine) showed higher UNAG and UALB levels compared with other subgroups (p < 0.01). The probability of having elevated UNAG in subjects with high BCd/BPb was greater than those with low BCd/BPb [odds ratio (OR) = 2.6, 95% confidence interval (CI): 1.4-4.7), low BCd/high BPb (OR =3.1, 95% CI: 1.4-6.6), and high BCd/low BPb (OR = 1.7, 95% CI: 0.9-3.2). The OR of subjects with low UCd and high UPb, high UCd and low UPb, and high UCd/UPb were 2.9 (95% CI: 1.4-5.7), 3.3 (95% CI: 1.5-7.2), and 7.7 (95% CI: 4.0-14.7), respectively, compared with those with low UCd/UPb. The risk of decrease in eGFR was also higher in subjects with high UCd/UPb than for those with low UCd/UPb (OR = 7.2, 95% CI: 0.8-62.2). Our data demonstrate that Cd and Pb exposure, alone or in combination, are associated with renal impairment. In addition, co-exposure to Pb and Cd propagates the renal tubular dysfunction compared with Cd or Pb exposure alone.Both cadmium (Cd) and lead (Pb) exposure can induce kidney damage. However, the effects of combined exposure to Cd and Pb on renal function at environmental levels have not been fully clarified. In this study we investigated the renal function in a Chinese population co-exposed to Cd and Pb. A total of 331 subjects (215 women and 116 men), living in either a control or a polluted area, were included in this study. Cd and Pb in blood and urine (BCd, BPb, UCd, and UPb), and kidney effect markers including urinary N-acetyl-β-D-glucosaminidase (UNAG) and estimated glomerular filtration rate (eGFR), were determined, and the association between exposure markers and renal effect biomarkers were analyzed. The exposure levels in the polluted area were significantly higher than in the control area (all p < 0.01). The eGFR of subjects in the polluted area was decreased compared with that in the control area (p < 0.01). The subjects with high BCd/BPb (BCd ≥ 2 μg/L, BPb ≥ 100 μg/L) or high UCd/UPb (UCd ≥ 3 μg/g creatinine, UPb ≥ 10 μg/g creatinine) showed higher UNAG and UALB levels compared with other subgroups (p < 0.01). The probability of having elevated UNAG in subjects with high BCd/BPb was greater than those with low BCd/BPb [odds ratio (OR) = 2.6, 95% confidence interval (CI): 1.4-4.7), low BCd/high BPb (OR =3.1, 95% CI: 1.4-6.6), and high BCd/low BPb (OR = 1.7, 95% CI: 0.9-3.2). The OR of subjects with low UCd and high UPb, high UCd and low UPb, and high UCd/UPb were 2.9 (95% CI: 1.4-5.7), 3.3 (95% CI: 1.5-7.2), and 7.7 (95% CI: 4.0-14.7), respectively, compared with those with low UCd/UPb. The risk of decrease in eGFR was also higher in subjects with high UCd/UPb than for those with low UCd/UPb (OR = 7.2, 95% CI: 0.8-62.2). Our data demonstrate that Cd and Pb exposure, alone or in combination, are associated with renal impairment. In addition, co-exposure to Pb and Cd propagates the renal tubular dysfunction compared with Cd or Pb exposure alone. Both cadmium (Cd) and lead (Pb) exposure can induce kidney damage. However, the effects of combined exposure to Cd and Pb on renal function at environmental levels have not been fully clarified. In this study we investigated the renal function in a Chinese population co-exposed to Cd and Pb. A total of 331 subjects (215 women and 116 men), living in either a control or a polluted area, were included in this study. Cd and Pb in blood and urine (BCd, BPb, UCd, and UPb), and kidney effect markers including urinary N-acetyl-β-D-glucosaminidase (UNAG) and estimated glomerular filtration rate (eGFR), were determined, and the association between exposure markers and renal effect biomarkers were analyzed. The exposure levels in the polluted area were significantly higher than in the control area (all p < 0.01). The eGFR of subjects in the polluted area was decreased compared with that in the control area (p < 0.01). The subjects with high BCd/BPb (BCd ≥ 2 μg/L, BPb ≥ 100 μg/L) or high UCd/UPb (UCd ≥ 3 μg/g creatinine, UPb ≥ 10 μg/g creatinine) showed higher UNAG and UALB levels compared with other subgroups (p < 0.01). The probability of having elevated UNAG in subjects with high BCd/BPb was greater than those with low BCd/BPb [odds ratio (OR) = 2.6, 95% confidence interval (CI): 1.4–4.7), low BCd/high BPb (OR =3.1, 95% CI: 1.4–6.6), and high BCd/low BPb (OR = 1.7, 95% CI: 0.9–3.2). The OR of subjects with low UCd and high UPb, high UCd and low UPb, and high UCd/UPb were 2.9 (95% CI: 1.4–5.7), 3.3 (95% CI: 1.5–7.2), and 7.7 (95% CI: 4.0–14.7), respectively, compared with those with low UCd/UPb. The risk of decrease in eGFR was also higher in subjects with high UCd/UPb than for those with low UCd/UPb (OR = 7.2, 95% CI: 0.8–62.2). Our data demonstrate that Cd and Pb exposure, alone or in combination, are associated with renal impairment. In addition, co-exposure to Pb and Cd propagates the renal tubular dysfunction compared with Cd or Pb exposure alone. •The effects of Cd and Pb co-exposure on renal function are not totally clarified.•Cd and Pb exposure were associated with renal impairment.•Pb and Cd co-exposure aggravate the renal tubular dysfunction.•UNAG is a marker for the renal dysfunction induced by Cd and Pb co-exposure. Both cadmium (Cd) and lead (Pb) exposure can induce kidney damage. However, the effects of combined exposure to Cd and Pb on renal function at environmental levels have not been fully clarified. In this study we investigated the renal function in a Chinese population co-exposed to Cd and Pb. A total of 331 subjects (215 women and 116 men), living in either a control or a polluted area, were included in this study. Cd and Pb in blood and urine (BCd, BPb, UCd, and UPb), and kidney effect markers including urinary N-acetyl-β-D-glucosaminidase (UNAG) and estimated glomerular filtration rate (eGFR), were determined, and the association between exposure markers and renal effect biomarkers were analyzed. The exposure levels in the polluted area were significantly higher than in the control area (all p < 0.01). The eGFR of subjects in the polluted area was decreased compared with that in the control area (p < 0.01). The subjects with high BCd/BPb (BCd ≥ 2 μg/L, BPb ≥ 100 μg/L) or high UCd/UPb (UCd ≥ 3 μg/g creatinine, UPb ≥ 10 μg/g creatinine) showed higher UNAG and UALB levels compared with other subgroups (p < 0.01). The probability of having elevated UNAG in subjects with high BCd/BPb was greater than those with low BCd/BPb [odds ratio (OR) = 2.6, 95% confidence interval (CI): 1.4-4.7), low BCd/high BPb (OR =3.1, 95% CI: 1.4-6.6), and high BCd/low BPb (OR = 1.7, 95% CI: 0.9-3.2). The OR of subjects with low UCd and high UPb, high UCd and low UPb, and high UCd/UPb were 2.9 (95% CI: 1.4-5.7), 3.3 (95% CI: 1.5-7.2), and 7.7 (95% CI: 4.0-14.7), respectively, compared with those with low UCd/UPb. The risk of decrease in eGFR was also higher in subjects with high UCd/UPb than for those with low UCd/UPb (OR = 7.2, 95% CI: 0.8-62.2). Our data demonstrate that Cd and Pb exposure, alone or in combination, are associated with renal impairment. In addition, co-exposure to Pb and Cd propagates the renal tubular dysfunction compared with Cd or Pb exposure alone. |
Author | Zhou, Hao Jin, Taiyi Zhu, Guoying Chen, Xiao He, Ping Liu, Yongkang Wang, Zhongqiu |
Author_xml | – sequence: 1 givenname: Xiao surname: Chen fullname: Chen, Xiao email: chxwin@163.com organization: Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China – sequence: 2 givenname: Guoying surname: Zhu fullname: Zhu, Guoying organization: Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China – sequence: 3 givenname: Zhongqiu surname: Wang fullname: Wang, Zhongqiu organization: Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China – sequence: 4 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China – sequence: 5 givenname: Ping surname: He fullname: He, Ping organization: Department of Occupational Medicine, School of Public Health, Shanghai Medical College of Fudan University, 150 Dongan Road, Shanghai 200032, China – sequence: 6 givenname: Yongkang surname: Liu fullname: Liu, Yongkang organization: Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China – sequence: 7 givenname: Taiyi surname: Jin fullname: Jin, Taiyi email: 071114298@fudan.edu.cn organization: Department of Occupational Medicine, School of Public Health, Shanghai Medical College of Fudan University, 150 Dongan Road, Shanghai 200032, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30798186$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1v1DAQhi1URLeFf4BQjlwSZmzHdjggoYpPVeJSzpbXnhVeJfZiJ4X-e7Ld9sIBTiON3ucdzXPBzlJOxNhLhA4B1Zt9Rz5Tuu044NABdsjxCdsgDNByifKMbQClblWP4pxd1LoHAAF9_4ydC9CDQaM27OvND2pcrdlHN8ecmi3Nv4hSM5ILjUuh8S5McZkan1v6fch1KXS_L5Tc2IS7uluSP6LP2dOdGyu9eJiX7PvHDzdXn9vrb5--XL2_br1QfG6d154r0NDvQA0SIQwQjBC9kAMPwWNQnMPWeNIioDGSay3VYAYpQSu3FZfs9an3UPLPhepsp1g9jaNLlJdqOZreaLWeWKOvHqLLdqJgDyVOrtzZx__XwNtTwJdca6Gd9XG-FzEXF0eLYI-y7d6eZNujbAtoV9krLP-CH_v_g707YbRKuo1UbPWRkqcQC_nZhhz_XfAHqKuZFQ |
CitedBy_id | crossref_primary_10_61865_j_cyfsld_2024_cecv_5a48 crossref_primary_10_1007_s11356_022_19521_3 crossref_primary_10_1038_s41598_024_83299_2 crossref_primary_10_1007_s11356_022_24411_9 crossref_primary_10_1016_j_scitotenv_2023_168951 crossref_primary_10_5812_modernc_96468 crossref_primary_10_1016_j_tox_2024_153833 crossref_primary_10_3389_fpubh_2022_832079 crossref_primary_10_3390_nu15030571 crossref_primary_10_1016_j_etap_2021_103598 crossref_primary_10_1016_j_envres_2021_110998 crossref_primary_10_1007_s12011_020_02498_w crossref_primary_10_1186_s12940_023_01045_z crossref_primary_10_1016_j_bbrc_2025_151642 crossref_primary_10_1007_s00339_023_06871_z crossref_primary_10_1016_j_ijheh_2023_114237 crossref_primary_10_1007_s10653_021_01177_6 crossref_primary_10_1016_j_envpol_2022_120727 crossref_primary_10_1016_j_ecoenv_2020_110251 crossref_primary_10_1007_s11356_023_26734_7 crossref_primary_10_3390_nu15214528 crossref_primary_10_3390_nu14194080 crossref_primary_10_1016_j_scitotenv_2023_168189 crossref_primary_10_1007_s10653_024_02318_3 crossref_primary_10_1016_j_jtemb_2023_127330 crossref_primary_10_1016_j_ecoenv_2023_115812 crossref_primary_10_1016_j_chemosphere_2021_131809 crossref_primary_10_1016_j_ecoenv_2022_113927 crossref_primary_10_1016_j_heliyon_2024_e32317 crossref_primary_10_3390_toxics10090524 crossref_primary_10_5114_aoms_181508 crossref_primary_10_3390_children8080673 crossref_primary_10_3390_medsci12040051 crossref_primary_10_1016_j_etap_2024_104375 crossref_primary_10_1186_s12882_022_02945_x crossref_primary_10_1016_j_envres_2024_119705 crossref_primary_10_1038_s41598_024_63858_3 crossref_primary_10_3390_toxics8040086 crossref_primary_10_1016_j_jhazmat_2021_126138 crossref_primary_10_3389_fpubh_2024_1403878 crossref_primary_10_1016_j_ecoenv_2024_116659 crossref_primary_10_1016_j_jtemb_2021_126852 crossref_primary_10_1016_j_ecoenv_2023_115528 crossref_primary_10_1007_s11356_022_21273_z crossref_primary_10_1016_j_envint_2020_106129 crossref_primary_10_1007_s12011_019_01764_w crossref_primary_10_1016_j_envpol_2024_124509 crossref_primary_10_1007_s11356_021_13725_9 crossref_primary_10_1007_s12011_021_02991_w crossref_primary_10_1007_s12403_022_00524_x crossref_primary_10_1007_s13762_023_04866_0 crossref_primary_10_1016_j_sciaf_2021_e00870 crossref_primary_10_1016_j_ecoenv_2024_116424 crossref_primary_10_1007_s11356_025_35997_1 crossref_primary_10_1016_j_envint_2019_105034 crossref_primary_10_1016_j_ecoenv_2024_116306 crossref_primary_10_1007_s12011_022_03349_6 crossref_primary_10_1007_s12011_022_03248_w crossref_primary_10_1016_j_fct_2020_111828 crossref_primary_10_1007_s10653_021_01129_0 crossref_primary_10_3390_toxics11080659 crossref_primary_10_3390_toxics12040261 crossref_primary_10_3390_ijms24098413 crossref_primary_10_3390_ijerph18084174 |
Cites_doi | 10.1016/j.chemosphere.2015.11.069 10.1038/s41598-018-20554-3 10.1016/j.taap.2008.01.017 10.1016/j.toxrep.2018.05.012 10.1016/j.ijheh.2016.01.005 10.1053/j.ajkd.2013.12.005 10.1016/j.toxlet.2014.04.006 10.1038/srep38930 10.1016/j.bone.2014.02.017 10.1016/j.envres.2006.06.013 10.1016/j.envres.2012.06.003 10.1289/ehp.8033 10.1016/j.etap.2014.01.024 10.1038/sj.ki.5001809 10.1006/enrs.1999.3959 10.1056/NEJM199207163270303 10.1097/00000441-200406000-00008 10.1016/j.aquatox.2015.01.032 10.1016/j.envres.2008.01.015 10.1016/j.envint.2006.05.010 10.1289/ehp.1103699 10.1002/jcla.21495 10.1016/j.envres.2004.02.012 10.1007/s12011-009-8560-1 10.1016/j.toxlet.2013.06.218 10.1053/j.ajkd.2011.02.393 10.1038/ki.2010.394 10.1136/oemed-2016-103876 10.1093/aje/kwp248 10.1007/s10534-010-9328-y 10.1080/09603120220129355 10.1016/j.kint.2017.03.013 10.29261/pakvetj/2018.062 10.1016/j.etap.2011.03.007 10.1016/j.fct.2013.12.041 10.1016/j.envint.2016.04.042 10.1016/j.fct.2015.02.011 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ecoenv.2019.01.121 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
EndPage | 435 |
ExternalDocumentID | 30798186 10_1016_j_ecoenv_2019_01_121 S0147651319300983 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPKN AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 OK1 R2- SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c362t-ac7c260705f069410d90d83353492ddc1d6220b8ce73d18842774698944076ab3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Thu Sep 04 16:07:30 EDT 2025 Mon Jul 21 06:05:49 EDT 2025 Tue Jul 01 04:00:04 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Fri Feb 23 02:27:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lead Cadmium Urinary microalbuminuria Renal function Urinary N-acetyl-β-D-glucosaminidase Estimated glomerular filtration rate |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-ac7c260705f069410d90d83353492ddc1d6220b8ce73d18842774698944076ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30798186 |
PQID | 2185876607 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2185876607 pubmed_primary_30798186 crossref_citationtrail_10_1016_j_ecoenv_2019_01_121 crossref_primary_10_1016_j_ecoenv_2019_01_121 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2019_01_121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-30 |
PublicationDateYYYYMMDD | 2019-05-30 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tahir, Saleemi, Khan, Yousaf, Butt, Siriwong, Muhammad, Bhatti, Qureshi (bib31) 2017; 36 Chen, Zhu, Jin, Lei, Liang (bib8) 2011; 32 Iqbal, Muntner, Batuman, Rabito (bib16) 2008; 107 Ekong, Jaar, Weaver (bib11) 2006; 70 Nordberg (bib27) 1996; 4 Yuan, Dai, Yin, Lu, Jia, Xu, Song, Li, Shu, Zhao (bib40) 2014; 65 Trzeciakowski, Gardiner, Parrish (bib33) 2014; 228 Tsai, Kuo, Pan, Chung, Chen, Wu, Wang (bib34) 2017; 92 Teo, Xu, Wang, Li, Sinha, Shuter, Sethi, Lee (bib32) 2011; 58 Buser, Z.Ingber, Raines, Fowler, Scinicariello (bib4) 2016; 219 Rana, Tangpong, Rahman (bib29) 2018; 5 Wang, Sun, Wu, Zhou, Ding, Chen, Xu (bib35) 2016; 147 Chowdhury, Darrow, McClellan, Sarnat, Steenland (bib9) 2014; 64 Liu, Chung, Yang, Lin, Tsai, Yang, Chen, Lai, Li, Liu (bib23) 2012; 26 Liang, Lei, Nilsson, Li, Nordberg, Bernard, Nordberg, Bergdahl, Jin (bib22) 2012; 120 Jin, Nordberg, Wu, Ye, Kong, Wang, Zhuang, Cai (bib17) 1999; 81 Yilmaz (bib39) 2002; 12 Bi, Feng, Yang, Qiu, Li, Li, Liu, Fu, Jin (bib2) 2006; 32 Brewster, Perazella (bib3) 2004; 327 Kim, Lee (bib21) 2012; 118 Chen, Wang, Wang, Gan, He, Liang, Jin, Zhu (bib7) 2014; 63 Matović, Buha, Ðukić-Ćosić, Bulat (bib24) 2015; 78 Charakida, Georgiopoulos, Dangardt, Chiesa, Hughes, Rapala, Davey Smith, Lawlor, Finer, Deanfield (bib6) 2018 Butt, Saleemi, Khan, Khan, Farooq, Khatoon, Bhatti, Tahir, Islam, Jamil, Muhammad (bib5) 2018; 38 Zhou, Xu, Shen, Han, Chen, Feng, Kuang (bib42) 2016; 6 National Kidney Foundation (bib25) 2012; 39 Clemow, Wilkie (bib10) 2015; 161 Wang, Li, Li, Liu (bib37) 2010; 137 Johri, Jacquillet, Unwin (bib19) 2010; 23 Evans, Elinder (bib13) 2011; 79 Jin, Nordberg, Ye, Bo, Wang, Zhu, Kong, Bernard (bib18) 2004; 96 Hambach, Lison, D'Haese, Weyler, De Graef, De Schryver, Lamberts, van Sprundel (bib14) 2013; 222 Navas-Acien, Tellez-Plaza, Guallar, Muntner, Silbergeld, Jaar, Weaver (bib26) 2009; 170 Kasperczyk, Dobrakowski, Kasperczyk, Machnik, Birkner (bib20) 2014; 37 Paoliello, De Capitani (bib28) 2007; 103 Wang, Fowler (bib36) 2008; 233 Wu, Jia, Li, Pan, Wang, Guo, Wu, Zhao (bib38) 2018; 8 Evans, Discacciati, Quershi, Åkesson, Elinder (bib12) 2017; 74 Hu, Cheng, Tao (bib15) 2016; 92–93 Staessen, Lauwerys, Buchet, Bulpitt, Rondia, Vanrenterghem, Amery (bib30) 1992; 327 Akesson, Lundh, Vahter, Bjellerup, Lidfeldt, Nerbrand, Samsioe, Strömberg, Skerfving (bib1) 2005; 113 Yuan, Dai, Yin, Lu, Jia, Xu, Song, Li, Shu, Zhao, Chen, Fan, Liang, He, Yin, Lv, Lei, Wang, Mi, Yu, Zhang (bib41) 2014; 15 Chen (10.1016/j.ecoenv.2019.01.121_bib7) 2014; 63 Buser (10.1016/j.ecoenv.2019.01.121_bib4) 2016; 219 Navas-Acien (10.1016/j.ecoenv.2019.01.121_bib26) 2009; 170 Hambach (10.1016/j.ecoenv.2019.01.121_bib14) 2013; 222 Jin (10.1016/j.ecoenv.2019.01.121_bib18) 2004; 96 Evans (10.1016/j.ecoenv.2019.01.121_bib13) 2011; 79 Tsai (10.1016/j.ecoenv.2019.01.121_bib34) 2017; 92 Rana (10.1016/j.ecoenv.2019.01.121_bib29) 2018; 5 Liang (10.1016/j.ecoenv.2019.01.121_bib22) 2012; 120 Kasperczyk (10.1016/j.ecoenv.2019.01.121_bib20) 2014; 37 Wang (10.1016/j.ecoenv.2019.01.121_bib35) 2016; 147 Yuan (10.1016/j.ecoenv.2019.01.121_bib41) 2014; 15 Nordberg (10.1016/j.ecoenv.2019.01.121_bib27) 1996; 4 Jin (10.1016/j.ecoenv.2019.01.121_bib17) 1999; 81 Staessen (10.1016/j.ecoenv.2019.01.121_bib30) 1992; 327 Clemow (10.1016/j.ecoenv.2019.01.121_bib10) 2015; 161 Wu (10.1016/j.ecoenv.2019.01.121_bib38) 2018; 8 Chen (10.1016/j.ecoenv.2019.01.121_bib8) 2011; 32 Chowdhury (10.1016/j.ecoenv.2019.01.121_bib9) 2014; 64 Akesson (10.1016/j.ecoenv.2019.01.121_bib1) 2005; 113 Evans (10.1016/j.ecoenv.2019.01.121_bib12) 2017; 74 Tahir (10.1016/j.ecoenv.2019.01.121_bib31) 2017; 36 Yilmaz (10.1016/j.ecoenv.2019.01.121_bib39) 2002; 12 Wang (10.1016/j.ecoenv.2019.01.121_bib37) 2010; 137 Butt (10.1016/j.ecoenv.2019.01.121_bib5) 2018; 38 Matović (10.1016/j.ecoenv.2019.01.121_bib24) 2015; 78 Trzeciakowski (10.1016/j.ecoenv.2019.01.121_bib33) 2014; 228 Charakida (10.1016/j.ecoenv.2019.01.121_bib6) 2018 Hu (10.1016/j.ecoenv.2019.01.121_bib15) 2016; 92–93 Kim (10.1016/j.ecoenv.2019.01.121_bib21) 2012; 118 National Kidney Foundation (10.1016/j.ecoenv.2019.01.121_bib25) 2012; 39 Brewster (10.1016/j.ecoenv.2019.01.121_bib3) 2004; 327 Ekong (10.1016/j.ecoenv.2019.01.121_bib11) 2006; 70 Johri (10.1016/j.ecoenv.2019.01.121_bib19) 2010; 23 Teo (10.1016/j.ecoenv.2019.01.121_bib32) 2011; 58 Liu (10.1016/j.ecoenv.2019.01.121_bib23) 2012; 26 Yuan (10.1016/j.ecoenv.2019.01.121_bib40) 2014; 65 Paoliello (10.1016/j.ecoenv.2019.01.121_bib28) 2007; 103 Iqbal (10.1016/j.ecoenv.2019.01.121_bib16) 2008; 107 Zhou (10.1016/j.ecoenv.2019.01.121_bib42) 2016; 6 Bi (10.1016/j.ecoenv.2019.01.121_bib2) 2006; 32 Wang (10.1016/j.ecoenv.2019.01.121_bib36) 2008; 233 |
References_xml | – volume: 327 start-page: 151 year: 1992 end-page: 156 ident: bib30 article-title: Impairment of renal function with increasing blood lead concentrations in the general population publication-title: N. Engl. J. Med. – volume: 12 start-page: 181 year: 2002 end-page: 185 ident: bib39 article-title: Cadmium and lead levels in human liver and kidney samples obtained from Bursa Province publication-title: Int J. Environ. Health Res. – volume: 74 start-page: 396 year: 2017 end-page: 401 ident: bib12 article-title: End-stage renal disease after occupational lead exposure: 20 years of follow-up publication-title: Occup. Environ. Med. – volume: 222 start-page: 233 year: 2013 end-page: 238 ident: bib14 article-title: Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers publication-title: Toxicol. Lett. – volume: 107 start-page: 305 year: 2008 end-page: 311 ident: bib16 article-title: Estimated burden of blood lead levels ≥5mg/dl in 1999–2002 and declines from 1988 to 1994 publication-title: Environ. Res. – volume: 32 start-page: 883 year: 2006 end-page: 890 ident: bib2 article-title: Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China publication-title: Environ. Int. – volume: 26 start-page: 206 year: 2012 end-page: 214 ident: bib23 article-title: Serum creatinine determined by jaffe, enzymatic method, and isotope dilution-liquid chromatography-mass spectrometry in patients under hemodialysis publication-title: J. Clin. Lab. Anal. – volume: 79 start-page: 272 year: 2011 end-page: 279 ident: bib13 article-title: Chronic renal failure from lead: myth or evidence-based fact? publication-title: Kidney Int. – volume: 78 start-page: 130 year: 2015 end-page: 140 ident: bib24 article-title: Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys publication-title: Food Chem. Toxicol. – volume: 81 start-page: 167 year: 1999 end-page: 173 ident: bib17 article-title: Urinary N-acetyl-beta-D-glucosaminidase isoenzymes as biomarker of renal dysfunction causedby cadmium in a general population publication-title: Environ. Res. – volume: 92 start-page: 710 year: 2017 end-page: 720 ident: bib34 article-title: The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium publication-title: Kidney Int. – volume: 64 start-page: 25 year: 2014 end-page: 31 ident: bib9 article-title: Incident ESRD among participants in a lead surveillance program publication-title: Am. J. Kidney Dis. – volume: 137 start-page: 69 year: 2010 end-page: 78 ident: bib37 article-title: Effects of lead and/or cadmium on the oxidative damage of rat kidney cortex mitochondria publication-title: Biol. Trace Elem. Res. – volume: 23 start-page: 783 year: 2010 end-page: 792 ident: bib19 article-title: Heavy metal poisoning: the effects of cadmium on the kidney publication-title: Biometals – volume: 120 start-page: 223 year: 2012 end-page: 228 ident: bib22 article-title: Renal function after reduction in cadmium exposure: an 8-year follow-up of residents in cadmium-polluted areas publication-title: Environ. Health Perspect. – volume: 8 start-page: 2157 year: 2018 ident: bib38 article-title: Association of estimated glomerular filtration rate and proteinuria with all-cause mortality in community-based population in China: a result from Kailuan study publication-title: Sci. Rep. – volume: 36 start-page: 187 year: 2017 end-page: 193 ident: bib31 article-title: Hematobiochemical effects of cadmium intoxication in male Japanese quail (Coturnix japonica) and its amelioration with silymarin and milk thistle publication-title: Toxin Rev. – volume: 37 start-page: 638 year: 2014 end-page: 647 ident: bib20 article-title: Effect of N-acetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers publication-title: Environ. Toxicol. Pharmacol. – volume: 233 start-page: 92 year: 2008 end-page: 99 ident: bib36 article-title: Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic publication-title: Toxicol. Appl. Pharmacol. – volume: 15 start-page: 2905 year: 2014 end-page: 2914 ident: bib41 article-title: Sub-chronic lead and cadmium co-induce apoptosis protein expression in liver and kidney of rats publication-title: Int. J. Clin. Exp. Pathol. – volume: 327 start-page: 341 year: 2004 end-page: 347 ident: bib3 article-title: A review of chronic lead intoxication: an unrecognized cause of chronic kidney disease publication-title: Am. J. Med. Sci. – volume: 5 start-page: 704 year: 2018 end-page: 713 ident: bib29 article-title: Toxicodynamics of lead, cadmium, mercury and arsenic- induced kidney toxicity and treatmentstrategy: a mini review publication-title: Toxicol. Rep. – volume: 228 start-page: 34 year: 2014 end-page: 41 ident: bib33 article-title: Effects of environmental levels of cadmium, lead and mercury on human renal function evaluated by structural equation modeling publication-title: Toxicol. Lett. – volume: 4 start-page: 133 year: 1996 end-page: 147 ident: bib27 article-title: Current issues in low-dose cadmium toxicology: nephrotoxicity and carcinogenicity publication-title: Environ. Sci. – volume: 170 start-page: 1156 year: 2009 end-page: 1164 ident: bib26 article-title: Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis publication-title: Am. J. Epidemiol. – volume: 103 start-page: 288 year: 2007 end-page: 297 ident: bib28 article-title: Occupational and environmental human lead exposure in Brazil publication-title: Environ. Res. – volume: 92–93 start-page: 515 year: 2016 end-page: 532 ident: bib15 article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review publication-title: Environ. Int. – volume: 38 start-page: 249 year: 2018 end-page: 255 ident: bib5 article-title: Cadmium toxicity in female Japanese quail (Coturnix japonica) and its diminution with silymarin publication-title: Pak. Vet. J. – volume: 147 start-page: 3 year: 2016 end-page: 8 ident: bib35 article-title: Tubular and glomerular kidney effects in the Chinese general population with low environmental cadmium exposure publication-title: Chemosphere – volume: 113 start-page: 1627 year: 2005 end-page: 1631 ident: bib1 article-title: Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure publication-title: Environ. Health Perspect. – volume: 58 start-page: 56 year: 2011 end-page: 63 ident: bib32 article-title: GFR estimating equations in a multiethnic Asian population publication-title: Am. J. Kidney Dis. – volume: 118 start-page: 124 year: 2012 end-page: 129 ident: bib21 article-title: Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: analysis of 2008–2010 Korean National Health and Nutrition Examination Survey data publication-title: Environ. Res. – volume: 32 start-page: 46 year: 2011 end-page: 53 ident: bib8 article-title: Bone mineral density is related with previous renal dysfunction caused by cadmium exposure publication-title: Environ. Toxicol. Pharmacol. – volume: 63 start-page: 76 year: 2014 end-page: 80 ident: bib7 article-title: Effects of cadmium and lead co-exposure on bone mineral density in a Chinese population publication-title: Bone – volume: 6 start-page: 38930 year: 2016 ident: bib42 article-title: Urinary KIM-1: a novel biomarker for evaluation of occupational exposure to lead publication-title: Sci. Rep. – volume: 219 start-page: 261 year: 2016 end-page: 267 ident: bib4 article-title: Urinary and blood cadmium and lead and kidney NHANES 2007–2012 publication-title: Int. J. Hyg. Environ. Health – volume: 65 start-page: 260 year: 2014 end-page: 268 ident: bib40 article-title: Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats publication-title: Food Chem. Toxicol. – volume: 161 start-page: 176 year: 2015 end-page: 188 ident: bib10 article-title: Effects of Pb plus Cd mixtures on toxicity, and internal electrolyte and osmotic balance in the rainbow trout (Oncorhynchus mykiss) publication-title: Aquat. Toxicol. – volume: 39 start-page: S1 year: 2012 end-page: 266 ident: bib25 article-title: K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification publication-title: Am. J. Kidney Dis. – volume: 96 start-page: 353 year: 2004 end-page: 359 ident: bib18 article-title: Osteoporosis and renal dysfunction in a general population exposed to cadmium in China publication-title: Environ. Res. – volume: 70 start-page: 2074 year: 2006 end-page: 2084 ident: bib11 article-title: Lead-related nephrotoxicity: a review of the epidemiologic evidence publication-title: Kidney Int. – year: 2018 ident: bib6 article-title: Early vascular damage from smoking and alcohol in teenage years: the ALSPAC study publication-title: Eur. Heart J. – volume: 147 start-page: 3 year: 2016 ident: 10.1016/j.ecoenv.2019.01.121_bib35 article-title: Tubular and glomerular kidney effects in the Chinese general population with low environmental cadmium exposure publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.069 – volume: 36 start-page: 187 year: 2017 ident: 10.1016/j.ecoenv.2019.01.121_bib31 article-title: Hematobiochemical effects of cadmium intoxication in male Japanese quail (Coturnix japonica) and its amelioration with silymarin and milk thistle publication-title: Toxin Rev. – volume: 8 start-page: 2157 year: 2018 ident: 10.1016/j.ecoenv.2019.01.121_bib38 article-title: Association of estimated glomerular filtration rate and proteinuria with all-cause mortality in community-based population in China: a result from Kailuan study publication-title: Sci. Rep. doi: 10.1038/s41598-018-20554-3 – volume: 233 start-page: 92 year: 2008 ident: 10.1016/j.ecoenv.2019.01.121_bib36 article-title: Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2008.01.017 – volume: 5 start-page: 704 year: 2018 ident: 10.1016/j.ecoenv.2019.01.121_bib29 article-title: Toxicodynamics of lead, cadmium, mercury and arsenic- induced kidney toxicity and treatmentstrategy: a mini review publication-title: Toxicol. Rep. doi: 10.1016/j.toxrep.2018.05.012 – volume: 219 start-page: 261 year: 2016 ident: 10.1016/j.ecoenv.2019.01.121_bib4 article-title: Urinary and blood cadmium and lead and kidney NHANES 2007–2012 publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2016.01.005 – volume: 64 start-page: 25 year: 2014 ident: 10.1016/j.ecoenv.2019.01.121_bib9 article-title: Incident ESRD among participants in a lead surveillance program publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2013.12.005 – volume: 228 start-page: 34 year: 2014 ident: 10.1016/j.ecoenv.2019.01.121_bib33 article-title: Effects of environmental levels of cadmium, lead and mercury on human renal function evaluated by structural equation modeling publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2014.04.006 – volume: 6 start-page: 38930 year: 2016 ident: 10.1016/j.ecoenv.2019.01.121_bib42 article-title: Urinary KIM-1: a novel biomarker for evaluation of occupational exposure to lead publication-title: Sci. Rep. doi: 10.1038/srep38930 – volume: 63 start-page: 76 year: 2014 ident: 10.1016/j.ecoenv.2019.01.121_bib7 article-title: Effects of cadmium and lead co-exposure on bone mineral density in a Chinese population publication-title: Bone doi: 10.1016/j.bone.2014.02.017 – volume: 103 start-page: 288 year: 2007 ident: 10.1016/j.ecoenv.2019.01.121_bib28 article-title: Occupational and environmental human lead exposure in Brazil publication-title: Environ. Res. doi: 10.1016/j.envres.2006.06.013 – volume: 39 start-page: S1 year: 2012 ident: 10.1016/j.ecoenv.2019.01.121_bib25 article-title: K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification publication-title: Am. J. Kidney Dis. – volume: 15 start-page: 2905 year: 2014 ident: 10.1016/j.ecoenv.2019.01.121_bib41 article-title: Sub-chronic lead and cadmium co-induce apoptosis protein expression in liver and kidney of rats publication-title: Int. J. Clin. Exp. Pathol. – volume: 118 start-page: 124 year: 2012 ident: 10.1016/j.ecoenv.2019.01.121_bib21 article-title: Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: analysis of 2008–2010 Korean National Health and Nutrition Examination Survey data publication-title: Environ. Res. doi: 10.1016/j.envres.2012.06.003 – volume: 4 start-page: 133 year: 1996 ident: 10.1016/j.ecoenv.2019.01.121_bib27 article-title: Current issues in low-dose cadmium toxicology: nephrotoxicity and carcinogenicity publication-title: Environ. Sci. – volume: 113 start-page: 1627 year: 2005 ident: 10.1016/j.ecoenv.2019.01.121_bib1 article-title: Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8033 – volume: 37 start-page: 638 year: 2014 ident: 10.1016/j.ecoenv.2019.01.121_bib20 article-title: Effect of N-acetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2014.01.024 – volume: 70 start-page: 2074 year: 2006 ident: 10.1016/j.ecoenv.2019.01.121_bib11 article-title: Lead-related nephrotoxicity: a review of the epidemiologic evidence publication-title: Kidney Int. doi: 10.1038/sj.ki.5001809 – volume: 81 start-page: 167 year: 1999 ident: 10.1016/j.ecoenv.2019.01.121_bib17 article-title: Urinary N-acetyl-beta-D-glucosaminidase isoenzymes as biomarker of renal dysfunction causedby cadmium in a general population publication-title: Environ. Res. doi: 10.1006/enrs.1999.3959 – year: 2018 ident: 10.1016/j.ecoenv.2019.01.121_bib6 article-title: Early vascular damage from smoking and alcohol in teenage years: the ALSPAC study publication-title: Eur. Heart J. – volume: 327 start-page: 151 year: 1992 ident: 10.1016/j.ecoenv.2019.01.121_bib30 article-title: Impairment of renal function with increasing blood lead concentrations in the general population publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199207163270303 – volume: 327 start-page: 341 year: 2004 ident: 10.1016/j.ecoenv.2019.01.121_bib3 article-title: A review of chronic lead intoxication: an unrecognized cause of chronic kidney disease publication-title: Am. J. Med. Sci. doi: 10.1097/00000441-200406000-00008 – volume: 161 start-page: 176 year: 2015 ident: 10.1016/j.ecoenv.2019.01.121_bib10 article-title: Effects of Pb plus Cd mixtures on toxicity, and internal electrolyte and osmotic balance in the rainbow trout (Oncorhynchus mykiss) publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.01.032 – volume: 107 start-page: 305 year: 2008 ident: 10.1016/j.ecoenv.2019.01.121_bib16 article-title: Estimated burden of blood lead levels ≥5mg/dl in 1999–2002 and declines from 1988 to 1994 publication-title: Environ. Res. doi: 10.1016/j.envres.2008.01.015 – volume: 32 start-page: 883 year: 2006 ident: 10.1016/j.ecoenv.2019.01.121_bib2 article-title: Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China publication-title: Environ. Int. doi: 10.1016/j.envint.2006.05.010 – volume: 120 start-page: 223 year: 2012 ident: 10.1016/j.ecoenv.2019.01.121_bib22 article-title: Renal function after reduction in cadmium exposure: an 8-year follow-up of residents in cadmium-polluted areas publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1103699 – volume: 26 start-page: 206 year: 2012 ident: 10.1016/j.ecoenv.2019.01.121_bib23 article-title: Serum creatinine determined by jaffe, enzymatic method, and isotope dilution-liquid chromatography-mass spectrometry in patients under hemodialysis publication-title: J. Clin. Lab. Anal. doi: 10.1002/jcla.21495 – volume: 96 start-page: 353 year: 2004 ident: 10.1016/j.ecoenv.2019.01.121_bib18 article-title: Osteoporosis and renal dysfunction in a general population exposed to cadmium in China publication-title: Environ. Res. doi: 10.1016/j.envres.2004.02.012 – volume: 137 start-page: 69 year: 2010 ident: 10.1016/j.ecoenv.2019.01.121_bib37 article-title: Effects of lead and/or cadmium on the oxidative damage of rat kidney cortex mitochondria publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-009-8560-1 – volume: 222 start-page: 233 year: 2013 ident: 10.1016/j.ecoenv.2019.01.121_bib14 article-title: Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.06.218 – volume: 58 start-page: 56 year: 2011 ident: 10.1016/j.ecoenv.2019.01.121_bib32 article-title: GFR estimating equations in a multiethnic Asian population publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2011.02.393 – volume: 79 start-page: 272 year: 2011 ident: 10.1016/j.ecoenv.2019.01.121_bib13 article-title: Chronic renal failure from lead: myth or evidence-based fact? publication-title: Kidney Int. doi: 10.1038/ki.2010.394 – volume: 74 start-page: 396 year: 2017 ident: 10.1016/j.ecoenv.2019.01.121_bib12 article-title: End-stage renal disease after occupational lead exposure: 20 years of follow-up publication-title: Occup. Environ. Med. doi: 10.1136/oemed-2016-103876 – volume: 170 start-page: 1156 year: 2009 ident: 10.1016/j.ecoenv.2019.01.121_bib26 article-title: Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwp248 – volume: 23 start-page: 783 year: 2010 ident: 10.1016/j.ecoenv.2019.01.121_bib19 article-title: Heavy metal poisoning: the effects of cadmium on the kidney publication-title: Biometals doi: 10.1007/s10534-010-9328-y – volume: 12 start-page: 181 year: 2002 ident: 10.1016/j.ecoenv.2019.01.121_bib39 article-title: Cadmium and lead levels in human liver and kidney samples obtained from Bursa Province publication-title: Int J. Environ. Health Res. doi: 10.1080/09603120220129355 – volume: 92 start-page: 710 year: 2017 ident: 10.1016/j.ecoenv.2019.01.121_bib34 article-title: The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium publication-title: Kidney Int. doi: 10.1016/j.kint.2017.03.013 – volume: 38 start-page: 249 year: 2018 ident: 10.1016/j.ecoenv.2019.01.121_bib5 article-title: Cadmium toxicity in female Japanese quail (Coturnix japonica) and its diminution with silymarin publication-title: Pak. Vet. J. doi: 10.29261/pakvetj/2018.062 – volume: 32 start-page: 46 year: 2011 ident: 10.1016/j.ecoenv.2019.01.121_bib8 article-title: Bone mineral density is related with previous renal dysfunction caused by cadmium exposure publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2011.03.007 – volume: 65 start-page: 260 year: 2014 ident: 10.1016/j.ecoenv.2019.01.121_bib40 article-title: Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2013.12.041 – volume: 92–93 start-page: 515 year: 2016 ident: 10.1016/j.ecoenv.2019.01.121_bib15 article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review publication-title: Environ. Int. doi: 10.1016/j.envint.2016.04.042 – volume: 78 start-page: 130 year: 2015 ident: 10.1016/j.ecoenv.2019.01.121_bib24 article-title: Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2015.02.011 |
SSID | ssj0003055 |
Score | 2.5100467 |
Snippet | Both cadmium (Cd) and lead (Pb) exposure can induce kidney damage. However, the effects of combined exposure to Cd and Pb on renal function at environmental... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 429 |
SubjectTerms | Cadmium Estimated glomerular filtration rate Lead Renal function Urinary microalbuminuria Urinary N-acetyl-β-D-glucosaminidase |
Title | The association between lead and cadmium co-exposure and renal dysfunction |
URI | https://dx.doi.org/10.1016/j.ecoenv.2019.01.121 https://www.ncbi.nlm.nih.gov/pubmed/30798186 https://www.proquest.com/docview/2185876607 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba8IwFD7IxmAwxuZu7iIZ7LWzsU1rH0UU5zYZY4JvIW0iOLSKlzFf9tt3Ti_KHkTYU2lISDgnPZf0O18AHpSLEZtDFT2CSLV56FhKaMxSMLp2XE9xP6RE8bXrtXtupy_6BWjktTAEq8xsf2rTE2udtVQyaVamw2GFYEm-JzjuIYdYMYnx03V94s9__NnAPIjRKoUx-hb1zsvnEowXZngm_iKAV0DknbzKt7mnbeFn4oZaJ3CcxY-sni7xFAomLsJBM-GeXhXhKD2GY2l10Rl0cBswtVEBy3BZbIS6ZSrWLFJ6PFyOWTSxzPd0QgeGSfvM0Dx6NSfPR0PPoddqfjTaVnZ9ghWhV1pYKvIjzFZ8WwyoupXbOrA11VgRIaHWEddetWqHtcj4jua1mlvFUJDuk3QxyfNU6FzAXjyJzRUw5QhtjOsN6AhZCxWaQKvAcGUTn72wS-DkUpNRxi1OV1yMZA4i-5SprCXJWtpcoqxLYK1HTVNujR39_Vwh8s8ekWj-d4y8z_Un8fOhfyIqNpPlXGKEI9AhoJhKcJkqdr0WNH8BEf5d_3veGziktwRtYN_C3mK2NHcYxCzCcrJLy7Bfb7y_vNHz6bnd_QWCaO8E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qRRREtL7qM4LXpZtms9s9llJp7ePUQm8hu4lQabdFW7H_3pl9VDyI4DW7IWFmdh7Zb74APGoPMzZBHT2SSLV5JBwtDVYpmF0Lz9c8iKhQHAz9zth7nshJCVpFLwzBKnPfn_n01FvnI7VcmrXldFojWFLgS442JIgVU-zALrFTobHvNru9znDrkInUKkMyBg5NKDroUpgXFnk2-SCMV0j8nbzOf4tQv2WgaSR6OoajPIVkzWyXJ1CySQX22in99KYCh9lJHMsajE7hGS2B6W8tsByaxWaoXqYTw2Jt5tP1nMULx34uF3RmmI6_WVrHbN4p-NHUMxg_tUetjpPfoODEGJhWjo6DGAuWwJUv1ODKXRO6htqsiJPQmJgbv153o0ZsA2F4o-HVMRukKyU9rPN8HYlzKCeLxF4C00Iaaz3_hU6RjdSRDY0OLdcuUdpLtwqikJqKc3pxuuVipgoc2avKZK1I1srlCmVdBWc7a5nRa_zxflAoRP0wE4UR4I-ZD4X-FH5B9FtEJ3axfleY5EiMCSimKlxkit3uBT1gSJx_V_9e9x72O6NBX_W7w941HNCTFHzg3kB59ba2t5jTrKK73Ga_ADxt8CA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+association+between+lead+and+cadmium+co-exposure+and+renal+dysfunction&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Chen%2C+Xiao&rft.au=Zhu%2C+Guoying&rft.au=Wang%2C+Zhongqiu&rft.au=Zhou%2C+Hao&rft.date=2019-05-30&rft.issn=1090-2414&rft.eissn=1090-2414&rft.volume=173&rft.spage=429&rft_id=info:doi/10.1016%2Fj.ecoenv.2019.01.121&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |