SFT-SGAT: A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition and consciousness detection

Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emo...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 180; p. 106643
Main Authors Qiu, Lina, Zhong, Liangquan, Li, Jianping, Feng, Weisen, Zhou, Chengju, Pan, Jiahui
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model’s performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC. •We propose a cross-subject emotion recognition method with state-of-the-art results.•We introduce a dynamic graph organization method to optimize graph structures.•We enhance emotion recognition by combining supervised and semi-supervised training.
AbstractList Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model’s performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC. •We propose a cross-subject emotion recognition method with state-of-the-art results.•We introduce a dynamic graph organization method to optimize graph structures.•We enhance emotion recognition by combining supervised and semi-supervised training.
Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model's performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC.Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model's performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC.
Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model's performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC.
ArticleNumber 106643
Author Pan, Jiahui
Li, Jianping
Feng, Weisen
Qiu, Lina
Zhou, Chengju
Zhong, Liangquan
Author_xml – sequence: 1
  givenname: Lina
  orcidid: 0000-0001-5733-1992
  surname: Qiu
  fullname: Qiu, Lina
  email: lina.qiu@scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, 510630, China
– sequence: 2
  givenname: Liangquan
  orcidid: 0009-0003-8636-3960
  surname: Zhong
  fullname: Zhong, Liangquan
  email: 2022024250@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, 510630, China
– sequence: 3
  givenname: Jianping
  orcidid: 0009-0008-3821-5708
  surname: Li
  fullname: Li, Jianping
  email: 2021024150@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, 510630, China
– sequence: 4
  givenname: Weisen
  orcidid: 0009-0009-5190-0862
  surname: Feng
  fullname: Feng, Weisen
  email: 2023024255@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, 510630, China
– sequence: 5
  givenname: Chengju
  surname: Zhou
  fullname: Zhou, Chengju
  email: cjzhou@scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, 510630, China
– sequence: 6
  givenname: Jiahui
  orcidid: 0000-0002-7576-6743
  surname: Pan
  fullname: Pan, Jiahui
  email: panjiahui@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Guangzhou, 510630, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39186838$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu1DAUtVARnRb-ACEv2WTqR-I4XSCNKlqQKrHo7C3Hvhk8JPZgO61Y8-N4mlZCLMrK1j0P3XvOGTrxwQNC7ylZU0LFxX7tYfaQ14ywuoyEqPkrtKKy7SrWSnaCVkR2vBJEklN0ltKeECJkzd-gU95RKSSXK_T77npb3d1stpd4gxNMrkrzAeK9S2Dx4DxUefbO7wo2Dn9ju6gP37HOGXx2weOyyUOIP_AQIoYpPM4imLDz7vGvvcUm-GRcmJOHlLCFDOaIvUWvBz0mePf0nqPt9eft1Zfq9tvN16vNbWW4YLnSXDeS9EOtZWd7bizVpG-ANobr1lIzlIPaTou-4YK3zLJey76WsmGshdryc_RxsT3E8HOGlNXkkoFx1B7KToqTrq07Rjgr1A9P1LmfwKpDdJOOv9RzboVwuRBMDClFGJRxWR-PyVG7UVGijiWpvVpKUseS1FJSEdf_iJ_9_yP7tMigZHTvIKoSJngD1pWgs7LBvWzwB1OcsDg
CitedBy_id crossref_primary_10_3389_fnhum_2025_1517273
Cites_doi 10.1080/02699930126048
10.1016/j.neunet.2019.04.003
10.1016/j.neunet.2023.03.039
10.1109/TAFFC.2018.2817622
10.1109/CVPR.2019.01157
10.1016/j.neulet.2006.04.006
10.1109/TCDS.2016.2587290
10.1145/3524499
10.1109/TAFFC.2020.2994159
10.1088/1741-2560/11/5/056007
10.1016/0028-3932(85)90081-8
10.1126/science.3992243
10.1016/j.neucom.2023.126901
10.1016/j.chiabu.2007.09.006
10.3389/fnhum.2018.00198
10.1109/T-AFFC.2011.15
10.1037/0022-006X.60.3.329
10.1109/TAMD.2015.2431497
10.1049/cit2.12174
10.1007/978-3-642-18047-7_2
10.9758/cpn.2020.18.1.58
10.1109/TAFFC.2017.2712143
10.1088/1741-2552/acae06
10.3389/fnhum.2010.00232
10.1109/TAFFC.2019.2901456
10.1088/1741-2552/ac63ec
10.1109/TIM.2023.3302938
10.1109/TCYB.2018.2797176
10.1038/79871
10.1007/s00521-022-07292-4
10.1089/cap.2005.15.563
10.1016/j.bspc.2023.104741
10.1016/j.tics.2007.01.005
10.1017/S0033291714002591
10.1038/s41467-022-28451-0
10.1186/1471-2377-9-35
10.1023/A:1018628609742
10.1016/j.bspc.2021.103289
10.1027/0269-8803.21.2.100
10.1088/1741-2552/abf00c
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2024.106643
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 39186838
10_1016_j_neunet_2024_106643
S0893608024005677
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-a3a580bf4a89db3cd1a0b5e15c3a7d1cf83879a6b536372d2ba8b4885227e4d3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Tue Aug 05 11:16:54 EDT 2025
Mon Jul 21 05:39:43 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 03:32:20 EDT 2025
Sat Nov 09 15:59:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Self-supervised
Cross-subject
Graph attention network
Semi-supervised
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-a3a580bf4a89db3cd1a0b5e15c3a7d1cf83879a6b536372d2ba8b4885227e4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7576-6743
0009-0008-3821-5708
0009-0009-5190-0862
0009-0003-8636-3960
0000-0001-5733-1992
PMID 39186838
PQID 3097492032
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3097492032
pubmed_primary_39186838
crossref_citationtrail_10_1016_j_neunet_2024_106643
crossref_primary_10_1016_j_neunet_2024_106643
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106643
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Chen, Jin (b23) 2022; 19
Huang, Xie, Pan, He, Wen, Yu (b17) 2019; 12
Zheng, Lu (b51) 2015; 7
Ahern, Schwartz (b1) 1985; 23
Roh, Kim, Kim, Kim, Lee (b38) 2020; 18
(pp. 11313–11320).
Zheng, Liu, Lu, Lu, Cichocki (b50) 2018; 49
Zhang, Huang, Li, Zhang, Xia, Liu (b47) 2023
Houssein, Hammad, Ali (b15) 2022; 34
Jiménez-Guarneros, Fuentes-Pineda (b19) 2023
Pan, Xie, He, Wang, Di, Laureys (b34) 2014; 11
Schnakers, Vanhaudenhuyse, Giacino, Ventura, Boly, Majerus (b40) 2009; 9
Zhong, Wang, Miao (b53) 2020; 13
Li, Wang, Huang, Qi, Pan (b27) 2023; 163
Jiang, B., Zhang, Z., Lin, D., Tang, J., & Luo, B. (2019). Semi-supervised learning with graph learning-convolutional networks. In
Gosseries, Vanhaudenhuyse, Bruno, Demertzi, Schnakers, Boly (b12) 2011
Tsuchiya, Adolphs (b43) 2007; 11
Li, Zhang, Tiwari, Song, Hu, Yang (b28) 2022; 55
Damasio, Grabowski, Bechara, Damasio, Ponto, Parvizi (b7) 2000; 3
Lee, Sanz, Barra, Wolff, Nieminen, Boly (b22) 2022; 13
Pan, Liang, He, Li, Liang, Zhou (b33) 2023
Wen, Zhang, Li, Qiao (b45) 2016
Dossena, Irwin, Portinale (b9) 2022
Bhosale, Chakraborty, Kopparapu (b4) 2022; 72
Suykens, Vandewalle (b42) 1999; 9
Li, Jin, Zheng, Lu (b24) 2018
Huang, Qiu, Lin, Xiao, Huang, Huang (b16) 2021; 18
Zheng (b49) 2016; 9
Schmidt, Trainor (b39) 2001; 15
He, Zhong, Pan (b14) 2022
Balconi, Lucchiari (b3) 2007; 21
Allen, Cohen (b2) 2010; 4
Li, Li, Pan, Wang (b25) 2021; 15
Quan, Li, Wang, He, Yang, Guo (b36) 2023; 84
Duan, Zhu, Lu (b10) 2013
Kim, Oh (b20) 2022
Liang, Oba, Ishii (b29) 2019; 116
Micheloyannis, Pachou, Stam, Vourkas, Erimaki, Tsirka (b32) 2006; 402
Zhang, Xu, Chen, Chen, Wang (b48) 2022
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi (b21) 2011; 3
Liu, Wu, Zhang (b30) 2022
Pan, Xie, Huang, He, Sun, Yu (b35) 2018
Derryberry, Tucker (b8) 1992; 60
Masten, Guyer, Hodgdon, McClure, Charney, Ernst (b31) 2008; 32
Xu, Dang, Wang, Zhou (b46) 2023; 20
Ray, Cole (b37) 1985; 228
Damasio (b6) 1999
Dalili, Penton-Voak, Harmer, Munafò (b5) 2015; 45
Li, Li, Zhang, Tiwari (b26) 2021
Zheng, Zhu, Lu (b52) 2017; 10
Song, Zheng, Song, Cui (b41) 2018; 11
Graña, Morais-Quilez (b13) 2023
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b44) 2017
Easter, McClure, Monk, Dhanani, Hodgdon, Leibenluft (b11) 2005; 15
10.1016/j.neunet.2024.106643_b18
Zheng (10.1016/j.neunet.2024.106643_b52) 2017; 10
Houssein (10.1016/j.neunet.2024.106643_b15) 2022; 34
Song (10.1016/j.neunet.2024.106643_b41) 2018; 11
Huang (10.1016/j.neunet.2024.106643_b17) 2019; 12
Gosseries (10.1016/j.neunet.2024.106643_b12) 2011
Graña (10.1016/j.neunet.2024.106643_b13) 2023
Huang (10.1016/j.neunet.2024.106643_b16) 2021; 18
Balconi (10.1016/j.neunet.2024.106643_b3) 2007; 21
Koelstra (10.1016/j.neunet.2024.106643_b21) 2011; 3
Ahern (10.1016/j.neunet.2024.106643_b1) 1985; 23
Li (10.1016/j.neunet.2024.106643_b24) 2018
Liang (10.1016/j.neunet.2024.106643_b29) 2019; 116
Micheloyannis (10.1016/j.neunet.2024.106643_b32) 2006; 402
Jiménez-Guarneros (10.1016/j.neunet.2024.106643_b19) 2023
Masten (10.1016/j.neunet.2024.106643_b31) 2008; 32
Roh (10.1016/j.neunet.2024.106643_b38) 2020; 18
Duan (10.1016/j.neunet.2024.106643_b10) 2013
He (10.1016/j.neunet.2024.106643_b14) 2022
Zhong (10.1016/j.neunet.2024.106643_b53) 2020; 13
Lee (10.1016/j.neunet.2024.106643_b22) 2022; 13
Suykens (10.1016/j.neunet.2024.106643_b42) 1999; 9
Pan (10.1016/j.neunet.2024.106643_b34) 2014; 11
Kim (10.1016/j.neunet.2024.106643_b20) 2022
Tsuchiya (10.1016/j.neunet.2024.106643_b43) 2007; 11
Li (10.1016/j.neunet.2024.106643_b23) 2022; 19
Pan (10.1016/j.neunet.2024.106643_b35) 2018
Li (10.1016/j.neunet.2024.106643_b26) 2021
Derryberry (10.1016/j.neunet.2024.106643_b8) 1992; 60
Damasio (10.1016/j.neunet.2024.106643_b6) 1999
Zheng (10.1016/j.neunet.2024.106643_b51) 2015; 7
Quan (10.1016/j.neunet.2024.106643_b36) 2023; 84
Schnakers (10.1016/j.neunet.2024.106643_b40) 2009; 9
Schmidt (10.1016/j.neunet.2024.106643_b39) 2001; 15
Xu (10.1016/j.neunet.2024.106643_b46) 2023; 20
Bhosale (10.1016/j.neunet.2024.106643_b4) 2022; 72
Wen (10.1016/j.neunet.2024.106643_b45) 2016
Easter (10.1016/j.neunet.2024.106643_b11) 2005; 15
Zhang (10.1016/j.neunet.2024.106643_b47) 2023
Ray (10.1016/j.neunet.2024.106643_b37) 1985; 228
Zheng (10.1016/j.neunet.2024.106643_b49) 2016; 9
Allen (10.1016/j.neunet.2024.106643_b2) 2010; 4
Zheng (10.1016/j.neunet.2024.106643_b50) 2018; 49
Dossena (10.1016/j.neunet.2024.106643_b9) 2022
Li (10.1016/j.neunet.2024.106643_b25) 2021; 15
Li (10.1016/j.neunet.2024.106643_b27) 2023; 163
Li (10.1016/j.neunet.2024.106643_b28) 2022; 55
Veličković (10.1016/j.neunet.2024.106643_b44) 2017
Liu (10.1016/j.neunet.2024.106643_b30) 2022
Damasio (10.1016/j.neunet.2024.106643_b7) 2000; 3
Pan (10.1016/j.neunet.2024.106643_b33) 2023
Dalili (10.1016/j.neunet.2024.106643_b5) 2015; 45
Zhang (10.1016/j.neunet.2024.106643_b48) 2022
References_xml – start-page: 1769
  year: 2022
  end-page: 1774
  ident: b9
  article-title: Graph-based recommendation using graph neural networks
  publication-title: 2022 21st IEEE international conference on machine learning and applications
– volume: 20
  year: 2023
  ident: b46
  article-title: DAGAM: a domain adversarial graph attention model for subject-independent EEG-based emotion recognition
  publication-title: Journal of Neural Engineering
– volume: 13
  start-page: 1290
  year: 2020
  end-page: 1301
  ident: b53
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Transactions on Affective Computing
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: b41
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Transactions on Affective Computing
– start-page: 499
  year: 2016
  end-page: 515
  ident: b45
  article-title: A discriminative feature learning approach for deep face recognition
  publication-title: Computer vision–ECCV 2016: 14th European conference, amsterdam, the netherlands, October 11–14, 2016, proceedings, part VII 14
– volume: 12
  start-page: 832
  year: 2019
  end-page: 842
  ident: b17
  article-title: An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness
  publication-title: IEEE Transactions on Affective Computing
– volume: 34
  start-page: 12527
  year: 2022
  end-page: 12557
  ident: b15
  article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review
  publication-title: Neural Computing and Applications
– reference: Jiang, B., Zhang, Z., Lin, D., Tang, J., & Luo, B. (2019). Semi-supervised learning with graph learning-convolutional networks. In
– year: 2023
  ident: b33
  article-title: ST-SCGNN: A spatio-temporal self-constructing graph neural network for cross-subject EEG-based emotion recognition and consciousness detection
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 18
  year: 2021
  ident: b16
  article-title: Hybrid asynchronous brain–computer interface for yes/no communication in patients with disorders of consciousness
  publication-title: Journal of Neural Engineering
– year: 1999
  ident: b6
  article-title: The feeling of what happens: Body and emotion in the making of consciousness
– volume: 72
  year: 2022
  ident: b4
  article-title: Calibration free meta learning based approach for subject independent EEG emotion recognition
  publication-title: Biomedical Signal Processing and Control
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b42
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
– start-page: 29
  year: 2011
  end-page: 55
  ident: b12
  article-title: Disorders of consciousness: coma, vegetative and minimally conscious states
  publication-title: States of Consciousness: Experimental Insights into Meditation, Waking, Sleep and Dreams
– year: 2017
  ident: b44
  article-title: Graph attention networks
– year: 2023
  ident: b47
  article-title: Self-training maximum classifier discrepancy for EEG emotion recognition
  publication-title: CAAI Transactions on Intelligence Technology
– volume: 9
  start-page: 281
  year: 2016
  end-page: 290
  ident: b49
  article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 23
  start-page: 745
  year: 1985
  end-page: 755
  ident: b1
  article-title: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis
  publication-title: Neuropsychologia
– start-page: 2017
  year: 2022
  end-page: 2023
  ident: b30
  article-title: CR-GAT: Consistency regularization enhanced graph attention network for semi-supervised EEG emotion recognition
  publication-title: 2022 IEEE international conference on bioinformatics and biomedicine
– start-page: 18
  year: 2022
  end-page: 25
  ident: b48
  article-title: CopGAT: Co-propagation self-supervised graph attention network
  publication-title: 2022 IEEE intl conf on parallel & distributed processing with applications, big data & cloud computing, sustainable computing & communications, social computing & networking (ISPA/bDCloud/socialCom/sustainCom)
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: b21
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Transactions on Affective Computing
– volume: 55
  start-page: 1
  year: 2022
  end-page: 57
  ident: b28
  article-title: EEG based emotion recognition: A tutorial and review
  publication-title: ACM Computing Surveys
– volume: 15
  year: 2021
  ident: b25
  article-title: Cross-subject EEG emotion recognition with self-organized graph neural network
  publication-title: Frontiers in Neuroscience
– start-page: 403
  year: 2018
  end-page: 413
  ident: b24
  article-title: Cross-subject emotion recognition using deep adaptation networks
  publication-title: Neural information processing: 25th international conference, ICONIP 2018, Siem Reap, Cambodia, December 13–16, 2018, proceedings, part v 25
– volume: 402
  start-page: 273
  year: 2006
  end-page: 277
  ident: b32
  article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis
  publication-title: Neuroscience Letters
– volume: 21
  start-page: 100
  year: 2007
  end-page: 108
  ident: b3
  article-title: Consciousness and emotional facial expression recognition: Subliminal/supraliminal stimulation effect on N200 and P300 ERPs
  publication-title: Journal of Psychophysiology
– start-page: 3642
  year: 2021
  end-page: 3647
  ident: b26
  article-title: Emotion recognition from multi-channel EEG data through a dual-pipeline graph attention network
  publication-title: 2021 IEEE international conference on bioinformatics and biomedicine
– volume: 84
  year: 2023
  ident: b36
  article-title: EEG-based cross-subject emotion recognition using multi-source domain transfer learning
  publication-title: Biomedical Signal Processing and Control
– volume: 9
  start-page: 1
  year: 2009
  end-page: 5
  ident: b40
  article-title: Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment
  publication-title: BMC Neurology
– year: 2023
  ident: b13
  article-title: A review of graph neural networks for electroencephalography data analysis
  publication-title: Neurocomputing
– volume: 228
  start-page: 750
  year: 1985
  end-page: 752
  ident: b37
  article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes
  publication-title: Science
– volume: 15
  start-page: 563
  year: 2005
  end-page: 570
  ident: b11
  article-title: Emotion recognition deficits in pediatric anxiety disorders: Implications for amygdala research
  publication-title: Journal of Child & Adolescent Psychopharmacology
– year: 2022
  ident: b20
  article-title: How to find your friendly neighborhood: Graph attention design with self-supervision
– year: 2023
  ident: b19
  article-title: Cross-subject EEG-based emotion recognition via semi-supervised multi-source joint distribution adaptation
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b51
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Transactions on Autonomous Mental Development
– volume: 163
  start-page: 195
  year: 2023
  end-page: 204
  ident: b27
  article-title: A novel semi-supervised meta learning method for subject-transfer brain–computer interface
  publication-title: Neural Networks
– volume: 116
  start-page: 257
  year: 2019
  end-page: 268
  ident: b29
  article-title: An unsupervised EEG decoding system for human emotion recognition
  publication-title: Neural Networks
– start-page: 198
  year: 2018
  ident: b35
  article-title: Emotion-related consciousness detection in patients with disorders of consciousness through an EEG-based BCI system
  publication-title: Frontiers in Human Neuroscience
– volume: 11
  start-page: 158
  year: 2007
  end-page: 167
  ident: b43
  article-title: Emotion and consciousness
  publication-title: Trends in Cognitive Sciences
– volume: 32
  start-page: 139
  year: 2008
  end-page: 153
  ident: b31
  article-title: Recognition of facial emotions among maltreated children with high rates of post-traumatic stress disorder
  publication-title: Child Abuse & Neglect
– volume: 45
  start-page: 1135
  year: 2015
  end-page: 1144
  ident: b5
  article-title: Meta-analysis of emotion recognition deficits in major depressive disorder
  publication-title: Psychological Medicine
– start-page: 81
  year: 2013
  end-page: 84
  ident: b10
  article-title: Differential entropy feature for EEG-based emotion classification
  publication-title: 2013 6th international IEEE/eMBS conference on neural engineering
– volume: 49
  start-page: 1110
  year: 2018
  end-page: 1122
  ident: b50
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Transactions on Cybernetics
– volume: 19
  year: 2022
  ident: b23
  article-title: Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN
  publication-title: Journal of Neural Engineering
– reference: (pp. 11313–11320).
– start-page: 3158
  year: 2022
  end-page: 3164
  ident: b14
  article-title: Emotion-related awareness detection for patients with disorders of consciousness via graph isomorphic network
  publication-title: 2022 IEEE international conference on systems, man, and cybernetics
– volume: 11
  year: 2014
  ident: b34
  article-title: Detecting awareness in patients with disorders of consciousness using a hybrid brain–computer interface
  publication-title: Journal of Neural Engineering
– volume: 3
  start-page: 1049
  year: 2000
  end-page: 1056
  ident: b7
  article-title: Subcortical and cortical brain activity during the feeling of self-generated emotions
  publication-title: Nature Neuroscience
– volume: 10
  start-page: 417
  year: 2017
  end-page: 429
  ident: b52
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Transactions on Affective Computing
– volume: 4
  start-page: 232
  year: 2010
  ident: b2
  article-title: Deconstructing the “resting” state: exploring the temporal dynamics of frontal alpha asymmetry as an endophenotype for depression
  publication-title: Frontiers in Human Neuroscience
– volume: 13
  start-page: 1064
  year: 2022
  ident: b22
  article-title: Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning
  publication-title: Nature Communications
– volume: 18
  start-page: 58
  year: 2020
  ident: b38
  article-title: Frontal alpha asymmetry moderated by suicidal ideation in patients with major depressive disorder: a comparison with healthy individuals
  publication-title: Clinical Psychopharmacology and Neuroscience
– volume: 15
  start-page: 487
  year: 2001
  end-page: 500
  ident: b39
  article-title: Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions
  publication-title: Cognition and Emotion
– volume: 60
  start-page: 329
  year: 1992
  ident: b8
  article-title: Neural mechanisms of emotion
  publication-title: Journal of Consulting and Clinical Psychology
– volume: 15
  start-page: 487
  issue: 4
  year: 2001
  ident: 10.1016/j.neunet.2024.106643_b39
  article-title: Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions
  publication-title: Cognition and Emotion
  doi: 10.1080/02699930126048
– start-page: 499
  year: 2016
  ident: 10.1016/j.neunet.2024.106643_b45
  article-title: A discriminative feature learning approach for deep face recognition
– start-page: 2017
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b30
  article-title: CR-GAT: Consistency regularization enhanced graph attention network for semi-supervised EEG emotion recognition
– volume: 116
  start-page: 257
  year: 2019
  ident: 10.1016/j.neunet.2024.106643_b29
  article-title: An unsupervised EEG decoding system for human emotion recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.04.003
– volume: 163
  start-page: 195
  year: 2023
  ident: 10.1016/j.neunet.2024.106643_b27
  article-title: A novel semi-supervised meta learning method for subject-transfer brain–computer interface
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.03.039
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2024.106643_b41
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2018.2817622
– start-page: 403
  year: 2018
  ident: 10.1016/j.neunet.2024.106643_b24
  article-title: Cross-subject emotion recognition using deep adaptation networks
– start-page: 1769
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b9
  article-title: Graph-based recommendation using graph neural networks
– start-page: 18
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b48
  article-title: CopGAT: Co-propagation self-supervised graph attention network
– ident: 10.1016/j.neunet.2024.106643_b18
  doi: 10.1109/CVPR.2019.01157
– volume: 402
  start-page: 273
  issue: 3
  year: 2006
  ident: 10.1016/j.neunet.2024.106643_b32
  article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2006.04.006
– volume: 9
  start-page: 281
  issue: 3
  year: 2016
  ident: 10.1016/j.neunet.2024.106643_b49
  article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2016.2587290
– volume: 55
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b28
  article-title: EEG based emotion recognition: A tutorial and review
  publication-title: ACM Computing Surveys
  doi: 10.1145/3524499
– volume: 13
  start-page: 1290
  issue: 3
  year: 2020
  ident: 10.1016/j.neunet.2024.106643_b53
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2020.2994159
– volume: 15
  year: 2021
  ident: 10.1016/j.neunet.2024.106643_b25
  article-title: Cross-subject EEG emotion recognition with self-organized graph neural network
  publication-title: Frontiers in Neuroscience
– volume: 11
  issue: 5
  year: 2014
  ident: 10.1016/j.neunet.2024.106643_b34
  article-title: Detecting awareness in patients with disorders of consciousness using a hybrid brain–computer interface
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/11/5/056007
– volume: 23
  start-page: 745
  issue: 6
  year: 1985
  ident: 10.1016/j.neunet.2024.106643_b1
  article-title: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(85)90081-8
– volume: 228
  start-page: 750
  issue: 4700
  year: 1985
  ident: 10.1016/j.neunet.2024.106643_b37
  article-title: EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes
  publication-title: Science
  doi: 10.1126/science.3992243
– year: 2023
  ident: 10.1016/j.neunet.2024.106643_b13
  article-title: A review of graph neural networks for electroencephalography data analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126901
– start-page: 3158
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b14
  article-title: Emotion-related awareness detection for patients with disorders of consciousness via graph isomorphic network
– volume: 32
  start-page: 139
  issue: 1
  year: 2008
  ident: 10.1016/j.neunet.2024.106643_b31
  article-title: Recognition of facial emotions among maltreated children with high rates of post-traumatic stress disorder
  publication-title: Child Abuse & Neglect
  doi: 10.1016/j.chiabu.2007.09.006
– start-page: 81
  year: 2013
  ident: 10.1016/j.neunet.2024.106643_b10
  article-title: Differential entropy feature for EEG-based emotion classification
– start-page: 198
  year: 2018
  ident: 10.1016/j.neunet.2024.106643_b35
  article-title: Emotion-related consciousness detection in patients with disorders of consciousness through an EEG-based BCI system
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2018.00198
– year: 2017
  ident: 10.1016/j.neunet.2024.106643_b44
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.neunet.2024.106643_b21
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.15
– volume: 60
  start-page: 329
  issue: 3
  year: 1992
  ident: 10.1016/j.neunet.2024.106643_b8
  article-title: Neural mechanisms of emotion
  publication-title: Journal of Consulting and Clinical Psychology
  doi: 10.1037/0022-006X.60.3.329
– year: 2023
  ident: 10.1016/j.neunet.2024.106643_b33
  article-title: ST-SCGNN: A spatio-temporal self-constructing graph neural network for cross-subject EEG-based emotion recognition and consciousness detection
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2024.106643_b51
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Transactions on Autonomous Mental Development
  doi: 10.1109/TAMD.2015.2431497
– start-page: 3642
  year: 2021
  ident: 10.1016/j.neunet.2024.106643_b26
  article-title: Emotion recognition from multi-channel EEG data through a dual-pipeline graph attention network
– year: 2023
  ident: 10.1016/j.neunet.2024.106643_b47
  article-title: Self-training maximum classifier discrepancy for EEG emotion recognition
  publication-title: CAAI Transactions on Intelligence Technology
  doi: 10.1049/cit2.12174
– start-page: 29
  year: 2011
  ident: 10.1016/j.neunet.2024.106643_b12
  article-title: Disorders of consciousness: coma, vegetative and minimally conscious states
  publication-title: States of Consciousness: Experimental Insights into Meditation, Waking, Sleep and Dreams
  doi: 10.1007/978-3-642-18047-7_2
– volume: 18
  start-page: 58
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2024.106643_b38
  article-title: Frontal alpha asymmetry moderated by suicidal ideation in patients with major depressive disorder: a comparison with healthy individuals
  publication-title: Clinical Psychopharmacology and Neuroscience
  doi: 10.9758/cpn.2020.18.1.58
– volume: 10
  start-page: 417
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2024.106643_b52
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2017.2712143
– volume: 20
  issue: 1
  year: 2023
  ident: 10.1016/j.neunet.2024.106643_b46
  article-title: DAGAM: a domain adversarial graph attention model for subject-independent EEG-based emotion recognition
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/acae06
– volume: 4
  start-page: 232
  year: 2010
  ident: 10.1016/j.neunet.2024.106643_b2
  article-title: Deconstructing the “resting” state: exploring the temporal dynamics of frontal alpha asymmetry as an endophenotype for depression
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2010.00232
– volume: 12
  start-page: 832
  issue: 4
  year: 2019
  ident: 10.1016/j.neunet.2024.106643_b17
  article-title: An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2019.2901456
– volume: 19
  issue: 2
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b23
  article-title: Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac63ec
– year: 2023
  ident: 10.1016/j.neunet.2024.106643_b19
  article-title: Cross-subject EEG-based emotion recognition via semi-supervised multi-source joint distribution adaptation
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2023.3302938
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2024.106643_b50
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2797176
– volume: 3
  start-page: 1049
  issue: 10
  year: 2000
  ident: 10.1016/j.neunet.2024.106643_b7
  article-title: Subcortical and cortical brain activity during the feeling of self-generated emotions
  publication-title: Nature Neuroscience
  doi: 10.1038/79871
– volume: 34
  start-page: 12527
  issue: 15
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b15
  article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07292-4
– volume: 15
  start-page: 563
  issue: 4
  year: 2005
  ident: 10.1016/j.neunet.2024.106643_b11
  article-title: Emotion recognition deficits in pediatric anxiety disorders: Implications for amygdala research
  publication-title: Journal of Child & Adolescent Psychopharmacology
  doi: 10.1089/cap.2005.15.563
– volume: 84
  year: 2023
  ident: 10.1016/j.neunet.2024.106643_b36
  article-title: EEG-based cross-subject emotion recognition using multi-source domain transfer learning
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.104741
– year: 2022
  ident: 10.1016/j.neunet.2024.106643_b20
– volume: 11
  start-page: 158
  issue: 4
  year: 2007
  ident: 10.1016/j.neunet.2024.106643_b43
  article-title: Emotion and consciousness
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2007.01.005
– year: 1999
  ident: 10.1016/j.neunet.2024.106643_b6
– volume: 45
  start-page: 1135
  issue: 6
  year: 2015
  ident: 10.1016/j.neunet.2024.106643_b5
  article-title: Meta-analysis of emotion recognition deficits in major depressive disorder
  publication-title: Psychological Medicine
  doi: 10.1017/S0033291714002591
– volume: 13
  start-page: 1064
  issue: 1
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b22
  article-title: Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-28451-0
– volume: 9
  start-page: 1
  year: 2009
  ident: 10.1016/j.neunet.2024.106643_b40
  article-title: Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment
  publication-title: BMC Neurology
  doi: 10.1186/1471-2377-9-35
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.neunet.2024.106643_b42
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– volume: 72
  year: 2022
  ident: 10.1016/j.neunet.2024.106643_b4
  article-title: Calibration free meta learning based approach for subject independent EEG emotion recognition
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103289
– volume: 21
  start-page: 100
  issue: 2
  year: 2007
  ident: 10.1016/j.neunet.2024.106643_b3
  article-title: Consciousness and emotional facial expression recognition: Subliminal/supraliminal stimulation effect on N200 and P300 ERPs
  publication-title: Journal of Psychophysiology
  doi: 10.1027/0269-8803.21.2.100
– volume: 18
  issue: 5
  year: 2021
  ident: 10.1016/j.neunet.2024.106643_b16
  article-title: Hybrid asynchronous brain–computer interface for yes/no communication in patients with disorders of consciousness
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/abf00c
SSID ssj0006843
Score 2.458172
Snippet Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106643
SubjectTerms Adult
Attention - physiology
Brain-Computer Interfaces
Consciousness - physiology
Cross-subject
Electroencephalography - methods
Emotion recognition
Emotions - physiology
Female
Graph attention network
Humans
Male
Neural Networks, Computer
Self-supervised
Semi-supervised
Supervised Machine Learning
Title SFT-SGAT: A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition and consciousness detection
URI https://dx.doi.org/10.1016/j.neunet.2024.106643
https://www.ncbi.nlm.nih.gov/pubmed/39186838
https://www.proquest.com/docview/3097492032
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7tLL1m7dlq4rNGBXNVYky8puQbEs29BckgK9CZIlAxlaNWjsay_94yUtO-sORYDdbD1ggaRISv5IEvJVe-t4XipWlk4yyUecuaBy5irwnsED0ZXFe8jLuZpdyV_X-fUeuehjYRBW2en-pNNbbd21DDtqDter1XCRgalVGCoqMZ9lgRHlUhYo5ecPf2EeSifkHAxmOLoPn2sxXjE0MSCiciShSSkpXjJPL7mfrRmaHpLXnf9IJ2mJR2QvxLfkTV-bgXZb9R15XEyXbPFjsvxGJ3QTblds06xRL2yCpxW4lqxu8EoE-m6q531tBmuKWTdbHCSNCSdOwbmlIdX8oVvUETzb6CmcqYF2d80G9Sb1oW7xXfGYLKfflxcz1hVcYCXYsZpZYXOduUpaPfZOlJ7bzOUBeCls4XlZaaGLsVUuF0oUIz9yVjvQAODDFUF68Z7sx7sYPhLqeMGB3do6qaS33CrY9y7TlRdac5kPiOjJbMouGTnWxLgxPersj0nMMcgck5gzIGw7a52ScewYX_QcNP8IlQF7sWPml57hBvYb_kSxMQAdjcjgBDbGuvMD8iFJwnYtYozFB4Q--e_vfiIH-JbwMqdkv75vwmfwemp31or1GXk1-fl7Nn8Cw2MDzQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoBLKe-lLRiJq9l47ThebquK7QJtLxuk3iw7dqRFxV11k2sv_eOM42Qph6oSt8gPJZrxzHx2Ps8AfFLOWJZXklaVFVSwCaPWy5zaGtEzIhBVm3gOeXYuFz_F94v8YgeOh7swkVbZ-_7k0ztv3beMe2mO16vVeJlhqJXxqqiI-SyL4hE8Fmi-sYzB55u_PA-pEnUOR9M4fLg_15G8gm-Dj5TKicAmKQW_Lz7dhz-7ODTfh70eQJJZ-sbnsOPDC3g2FGcgva2-hNvlvKTLk1n5hczIxv9e0U27jo5h4x2pEVvSpo1nIth3Wd_t61JYk5h2syNCkpCI4gTRLfGp6A_Z0o7w2QRHcFONwrtqN9FxEuebjuAVXkE5_1oeL2hfcYFWGMgaarjJVWZrYdTUWV45ZjKbe1QmN4VjVa24KqZG2pxLXkzcxBpl0QUgiCu8cPw17Iar4N8CsaxgqG9lrJDCGWYkGr7NVO24UkzkI-CDmHXVZyOPRTEu9UA7-6WTcnRUjk7KGQHdzlqnbBwPjC8GDep_VpXGgPHAzI-DwjUaXPyLYoJHOWqe4RZsGgvPj-BNWgnbb-HTWH2Aq3f__d4P8GRRnp3q02_nPw7gaexJ5JlD2G2uW3-EEKix77sl_geeDgVb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SFT-SGAT%3A+A+semi-supervised+fine-tuning+self-supervised+graph+attention+network+for+emotion+recognition+and+consciousness+detection&rft.jtitle=Neural+networks&rft.au=Qiu%2C+Lina&rft.au=Zhong%2C+Liangquan&rft.au=Li%2C+Jianping&rft.au=Feng%2C+Weisen&rft.date=2024-12-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=180&rft.spage=106643&rft_id=info:doi/10.1016%2Fj.neunet.2024.106643&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon