Deciphering the role of dimer interface in intrinsic dynamics and allosteric pathways underlying the functional transformation of DNMT3A
DNMT3A, as de novo DNA methyltransferase, is essential for regulating gene expression through cellular development and differentiation. The functions of DNMT3A rely on its oligomeric states and allosteric regulations between its catalytic domain and binding partners. Despite recent resolution of aut...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1862; no. 7; pp. 1667 - 1679 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNMT3A, as de novo DNA methyltransferase, is essential for regulating gene expression through cellular development and differentiation. The functions of DNMT3A rely on its oligomeric states and allosteric regulations between its catalytic domain and binding partners. Despite recent resolution of autoinhibitory and active DNMT3A/3L crystal structures, the mechanism of their functional motions and interdomain allostery in regulating the activity remains to be established.
The hybrid approach, comprising Elastic Network Models coupled with information theory, Protein Structure Network, and sequence evolution analysis was employed to investigate intrinsic dynamics and allosteric properties of DNMT3A resolved in autoinhibitory and active states.
The conformational transition between two states is characterized by global motions, and the homo-dimer displays the similar dynamic properties as tetramer, acting as the basic functional unit. The hinge residues with restricted fluctuations are clustered at the dimer interface, which are predicted to enjoy remarkably efficient signal transduction properties. The allosteric pathways through the dimer interface are achieved by a cascade of interactions predominantly involving conserved and co-evolved residues.
Our results suggest that structural topology coupled with global motions indicates the structural origin of the functional transformation of DNMT3A. The comprehensive analysis further highlights the pivotal role of the dimer interface of DNMT3A both in defining the quaternary structure dynamics and establishing interdomain communications.
Understanding the global motions of DNMT3As not only provides mechanical insights into the functions of such molecular machines, but also reveals the mediators that determine their allosteric regulations.
[Display omitted]
•First insights into the intrinsic dynamics of DNMT3A in autoinhibitory and active states•Dimer interfaces in both states dictate allosteric communications•Network and evolutionary analysis highlights key residues in protein dynamics |
---|---|
AbstractList | DNMT3A, as de novo DNA methyltransferase, is essential for regulating gene expression through cellular development and differentiation. The functions of DNMT3A rely on its oligomeric states and allosteric regulations between its catalytic domain and binding partners. Despite recent resolution of autoinhibitory and active DNMT3A/3L crystal structures, the mechanism of their functional motions and interdomain allostery in regulating the activity remains to be established.
The hybrid approach, comprising Elastic Network Models coupled with information theory, Protein Structure Network, and sequence evolution analysis was employed to investigate intrinsic dynamics and allosteric properties of DNMT3A resolved in autoinhibitory and active states.
The conformational transition between two states is characterized by global motions, and the homo-dimer displays the similar dynamic properties as tetramer, acting as the basic functional unit. The hinge residues with restricted fluctuations are clustered at the dimer interface, which are predicted to enjoy remarkably efficient signal transduction properties. The allosteric pathways through the dimer interface are achieved by a cascade of interactions predominantly involving conserved and co-evolved residues.
Our results suggest that structural topology coupled with global motions indicates the structural origin of the functional transformation of DNMT3A. The comprehensive analysis further highlights the pivotal role of the dimer interface of DNMT3A both in defining the quaternary structure dynamics and establishing interdomain communications.
Understanding the global motions of DNMT3As not only provides mechanical insights into the functions of such molecular machines, but also reveals the mediators that determine their allosteric regulations. DNMT3A, as de novo DNA methyltransferase, is essential for regulating gene expression through cellular development and differentiation. The functions of DNMT3A rely on its oligomeric states and allosteric regulations between its catalytic domain and binding partners. Despite recent resolution of autoinhibitory and active DNMT3A/3L crystal structures, the mechanism of their functional motions and interdomain allostery in regulating the activity remains to be established.BACKGROUNDDNMT3A, as de novo DNA methyltransferase, is essential for regulating gene expression through cellular development and differentiation. The functions of DNMT3A rely on its oligomeric states and allosteric regulations between its catalytic domain and binding partners. Despite recent resolution of autoinhibitory and active DNMT3A/3L crystal structures, the mechanism of their functional motions and interdomain allostery in regulating the activity remains to be established.The hybrid approach, comprising Elastic Network Models coupled with information theory, Protein Structure Network, and sequence evolution analysis was employed to investigate intrinsic dynamics and allosteric properties of DNMT3A resolved in autoinhibitory and active states.METHODSThe hybrid approach, comprising Elastic Network Models coupled with information theory, Protein Structure Network, and sequence evolution analysis was employed to investigate intrinsic dynamics and allosteric properties of DNMT3A resolved in autoinhibitory and active states.The conformational transition between two states is characterized by global motions, and the homo-dimer displays the similar dynamic properties as tetramer, acting as the basic functional unit. The hinge residues with restricted fluctuations are clustered at the dimer interface, which are predicted to enjoy remarkably efficient signal transduction properties. The allosteric pathways through the dimer interface are achieved by a cascade of interactions predominantly involving conserved and co-evolved residues.RESULTSThe conformational transition between two states is characterized by global motions, and the homo-dimer displays the similar dynamic properties as tetramer, acting as the basic functional unit. The hinge residues with restricted fluctuations are clustered at the dimer interface, which are predicted to enjoy remarkably efficient signal transduction properties. The allosteric pathways through the dimer interface are achieved by a cascade of interactions predominantly involving conserved and co-evolved residues.Our results suggest that structural topology coupled with global motions indicates the structural origin of the functional transformation of DNMT3A. The comprehensive analysis further highlights the pivotal role of the dimer interface of DNMT3A both in defining the quaternary structure dynamics and establishing interdomain communications.CONCLUSIONSOur results suggest that structural topology coupled with global motions indicates the structural origin of the functional transformation of DNMT3A. The comprehensive analysis further highlights the pivotal role of the dimer interface of DNMT3A both in defining the quaternary structure dynamics and establishing interdomain communications.Understanding the global motions of DNMT3As not only provides mechanical insights into the functions of such molecular machines, but also reveals the mediators that determine their allosteric regulations.GENERAL SIGNIFICANCEUnderstanding the global motions of DNMT3As not only provides mechanical insights into the functions of such molecular machines, but also reveals the mediators that determine their allosteric regulations. DNMT3A, as de novo DNA methyltransferase, is essential for regulating gene expression through cellular development and differentiation. The functions of DNMT3A rely on its oligomeric states and allosteric regulations between its catalytic domain and binding partners. Despite recent resolution of autoinhibitory and active DNMT3A/3L crystal structures, the mechanism of their functional motions and interdomain allostery in regulating the activity remains to be established. The hybrid approach, comprising Elastic Network Models coupled with information theory, Protein Structure Network, and sequence evolution analysis was employed to investigate intrinsic dynamics and allosteric properties of DNMT3A resolved in autoinhibitory and active states. The conformational transition between two states is characterized by global motions, and the homo-dimer displays the similar dynamic properties as tetramer, acting as the basic functional unit. The hinge residues with restricted fluctuations are clustered at the dimer interface, which are predicted to enjoy remarkably efficient signal transduction properties. The allosteric pathways through the dimer interface are achieved by a cascade of interactions predominantly involving conserved and co-evolved residues. Our results suggest that structural topology coupled with global motions indicates the structural origin of the functional transformation of DNMT3A. The comprehensive analysis further highlights the pivotal role of the dimer interface of DNMT3A both in defining the quaternary structure dynamics and establishing interdomain communications. Understanding the global motions of DNMT3As not only provides mechanical insights into the functions of such molecular machines, but also reveals the mediators that determine their allosteric regulations. [Display omitted] •First insights into the intrinsic dynamics of DNMT3A in autoinhibitory and active states•Dimer interfaces in both states dictate allosteric communications•Network and evolutionary analysis highlights key residues in protein dynamics |
Author | Yan, Wenying Luo, Cheng Liang, Zhongjie Hu, Junchi Hu, Guang Jiang, Hualiang |
Author_xml | – sequence: 1 givenname: Zhongjie surname: Liang fullname: Liang, Zhongjie organization: Center for Systems Biology, Soochow University, Suzhou 215006, China – sequence: 2 givenname: Junchi surname: Hu fullname: Hu, Junchi organization: Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China – sequence: 3 givenname: Wenying surname: Yan fullname: Yan, Wenying organization: Center for Systems Biology, Soochow University, Suzhou 215006, China – sequence: 4 givenname: Hualiang surname: Jiang fullname: Jiang, Hualiang organization: Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China – sequence: 5 givenname: Guang surname: Hu fullname: Hu, Guang email: huguang@suda.edu.cn organization: Center for Systems Biology, Soochow University, Suzhou 215006, China – sequence: 6 givenname: Cheng surname: Luo fullname: Luo, Cheng email: cluo@simm.ac.cn organization: Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29674125$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vFSEUxYmpsa_Vb2AMSzczwvzHhUnTWjWpuqlrcgfu9PHCwBMYzfsGfuwyvtaFC2UD3PzOuck5Z-TEeYeEvOSs5Ix3b3blOMIdurJifChZUzLePiEbPvRVMTDWnZANq1lTNLxrT8lZjDuWTyvaZ-S0El3f8KrdkF9XqMx-i8G4O5q2SIO3SP1EtZkxUOMShgkU5tf6yVg0iuqDg9moSMFpCtb6mLE830Pa_oRDpIvTGOzh0XRanErGO7A0BXBx8mGGdbBuuvry-ba-eE6eTmAjvni4z8m36_e3lx-Lm68fPl1e3BSq7qpUQC26kSlgLUwCKzH2iLXWirf1oDg0oBoUMIqMAO8EQ-g05yP2oKe6FVifk9dH333w3xeMSc4mKrQWHPolyopVg-h4P4iMvnpAl3FGLffBzBAO8jG9DDRHQAUfY8DpD8KZXEuSO3ksSa4lSdbIXFKWvf1Lpkz6HUcOx9j_id8dxZhD-mEwyKgMOoXaBFRJam_-bXAPbVqy7A |
CitedBy_id | crossref_primary_10_3390_molecules27061841 crossref_primary_10_3389_fcell_2022_916725 crossref_primary_10_1021_acs_jcim_0c00447 crossref_primary_10_1093_bib_bbz029 crossref_primary_10_3390_molecules26175153 crossref_primary_10_3390_ijms25126789 crossref_primary_10_3389_fmolb_2020_586970 crossref_primary_10_1007_s10910_023_01511_6 crossref_primary_10_1016_j_drudis_2019_08_006 crossref_primary_10_1039_D2CP02031A crossref_primary_10_1016_j_sbi_2020_08_009 crossref_primary_10_1093_molbev_msae184 crossref_primary_10_1016_j_sbi_2019_11_002 crossref_primary_10_3389_fmolb_2021_744646 crossref_primary_10_1371_journal_pcbi_1010009 crossref_primary_10_1016_j_str_2021_05_005 |
Cites_doi | 10.1016/B978-0-12-386931-9.00016-7 10.1371/journal.pcbi.1003624 10.1016/j.tibs.2011.01.002 10.1016/j.sbi.2007.09.011 10.1038/nature06146 10.1155/2017/2483264 10.1093/nar/gkx067 10.1074/jbc.M111.254987 10.1371/journal.pcbi.1003679 10.1016/B978-0-12-387685-0.00007-X 10.1038/embor.2009.218 10.1016/j.bbamem.2016.01.010 10.1016/j.bpj.2015.06.004 10.1021/acs.jcim.6b00039 10.1016/j.bpj.2015.08.011 10.1074/jbc.M109.089433 10.1371/journal.pcbi.1003744 10.1016/j.sbi.2015.03.001 10.1016/j.jmb.2015.06.001 10.1093/nar/gkq147 10.1021/ct400096f 10.1039/C6RA18243G 10.1021/cr3002356 10.1146/annurev.bb.24.060195.001453 10.1093/nar/gkr753 10.1016/S0006-3495(01)76033-X 10.1093/bioinformatics/btr168 10.1016/j.str.2008.01.004 10.1073/pnas.0601587103 10.1002/cbic.201000195 10.1074/jbc.M111.284687 10.1371/journal.pone.0086547 10.1073/pnas.1019629108 10.1110/ps.051767306 10.1074/jbc.M413412200 10.1016/j.bbagen.2017.09.005 10.1371/journal.pcbi.1002201 10.1038/msb4100075 10.1016/j.bbagen.2015.02.003 10.1016/j.jtbi.2014.01.023 10.1007/978-1-4419-9967-2_1 10.1038/nprot.2012.004 10.1016/j.sbi.2016.06.017 10.3109/10409239609108722 10.1529/biophysj.105.063305 10.1002/prot.21613 10.1038/ng.2917 10.1016/j.leukres.2013.07.032 10.1080/10409230290771492 10.1016/S1359-0278(97)00024-2 10.1371/journal.pbio.1001651 10.1021/acs.jcim.5b00454 10.1093/bioinformatics/btu336 10.1093/nar/gkw408 10.1016/j.jmb.2006.01.035 10.1103/PhysRevE.90.022719 10.1371/journal.pcbi.1000931 10.1038/nature13899 10.1093/molbev/mss097 10.1146/annurev.biophys.093008.131258 10.1016/j.bbagen.2017.05.018 10.1074/jbc.M110.209882 10.1038/ng.788 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbagen.2018.04.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1679 |
ExternalDocumentID | 29674125 10_1016_j_bbagen_2018_04_015 S0304416518301089 |
Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 |
ID | FETCH-LOGICAL-c362t-a396b0ca05af9e29b7ee3ddc1538c1a4ac4e9ab90caa1690ea6d11be7adf359e3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri Jul 11 14:52:43 EDT 2025 Thu Apr 03 07:03:26 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 00:22:10 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Elastic network models, network theory, coevolution analysis Conformational dynamics Allosteric communication |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-a396b0ca05af9e29b7ee3ddc1538c1a4ac4e9ab90caa1690ea6d11be7adf359e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 29674125 |
PQID | 2028961789 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2028961789 pubmed_primary_29674125 crossref_primary_10_1016_j_bbagen_2018_04_015 crossref_citationtrail_10_1016_j_bbagen_2018_04_015 elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_04_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jin, Robertson (bb0015) 2013; 754 Gowher, Liebert, Hermann, Xu, Jeltsch (bb0040) 2005; 280 Zhou, Xie, Hu, Hu, Patel, Zhang, Yu, Huang, Jiang, Liang, Zheng, Luo (bb0210) 2015; 55 Marcos, Crehuet, Bahar (bb0290) 2011; 7 Raimondi, Felline, Seeber, Mariani, Fanelli (bb0200) 2013; 9 Jurkowska, Jurkowski, Jeltsch (bb0030) 2011; 12 Invernizzi, Tiberti, Lambrughi, Lindorff-Larsen, Papaleo (bb0195) 2014; 10 Bakan, Dutta, Mao, Liu, Chennubhotla, Lezon, Bahar (bb0270) 2014; 30 Di Paola, Giuliani (bb0170) 2015; 31 Liu, Bahar (bb0305) 2012; 29 Di Paola, De Ruvo, Paci, Santoni, Giuliani (bb0165) 2013; 113 General, Liu, Blackburn, Mao, Gierasch, Bahar (bb0245) 2014; 10 Chennubhotla, Bahar (bb0155) 2007; 3 Bahar, Cheng, Lee, Kaya, Zhang (bb0275) 2015; 109 Blacklock, Verkhivker (bb0190) 2014; 10 Yan, Xu, Gu, Pan, Lu, Shen, Shi, Zhu, Tang, Zhang, Liang, Mi, Song, Li, Chen, Chen (bb0310) 2011; 43 Cheng (bb0010) 1995; 24 Zhang, Liu, Lin, Luo, Perry, Wang, Song (bb0070) 2015; 427 Hu, Di Paola, Liang, Giuliani (bb0185) 2017; 2017 Bahar, Atilgan, Erman (bb0130) 1997; 2 Bakan, Meireles, Bahar (bb0240) 2011; 27 Guzel, Kurkcuoglu (bb0230) 2017; 1861 Dima, Thirumalai (bb0180) 2006; 15 Blacklock, Verkhivker (bb0215) 2014; 9 Emekli, Schneidman-Duhovny, Wolfson, Nussinov, Haliloglu (bb0280) 2008; 70 Jurkowska, Rajavelu, Anspach, Urbanke, Jankevicius, Ragozin, Nellen, Jeltsch (bb0110) 2011; 286 Cooper, Roberts, White, Luyten, Bower, Morgan, Roberts, Lindsay, Dryden (bb0090) 2017; 45 Liu, Gierasch, Bahar (bb0285) 2010; 6 Guo, Wang, Li, Ding, Xiao, Yin, He, Shi, Dong, Li, Tian, Wang, Cong, Xu (bb0100) 2015; 517 Doncheva, Assenov, Domingues, Albrecht (bb0300) 2012; 7 Zhang, Jurkowska, Soeroes, Rajavelu, Dhayalan, Bock, Rathert, Brandt, Reinhardt, Fischle, Jeltsch (bb0050) 2010; 38 Zhang, Bruice (bb0080) 2006; 103 Gowher, Loutchanwoot, Vorobjeva, Handa, Jurkowska, Jurkowski, Jeltsch (bb0085) 2006; 357 Doncheva, Klein, Domingues, Albrecht (bb0260) 2011; 36 Felline, Ghitti, Musco, Fanelli (bb0225) 2017; 1861 Rajavelu, Jurkowska, Fritz, Jeltsch (bb0075) 2012; 40 Atilgan, Durell, Jernigan, Demirel, Keskin, Bahar (bb0135) 2001; 80 Cheng, Blumenthal (bb0020) 2008; 16 Sankpal, Rao (bb0035) 2002; 37 Bahar, Chennubhotla, Tobi (bb0235) 2007; 17 Ma, Meng, Lai (bb0295) 2016; 56 Otani, Nankumo, Arita, Inamoto, Ariyoshi, Shirakawa (bb0045) 2009; 10 Dhayalan, Rajavelu, Rathert, Tamas, Jurkowska, Ragozin, Jeltsch (bb0055) 2010; 285 Takeshita, Suetake, Yamashita, Suga, Narita, Nakagawa, Tajima (bb0060) 2011; 108 Bahar, Lezon, Yang, Eyal (bb0140) 2010; 39 Rodgers, Townsend, Burnell, Jones, Richards, McLeish, Pohl, Wilson, Cann (bb0145) 2013; 11 Jia, Jurkowska, Zhang, Jeltsch, Cheng (bb0095) 2007; 449 Zheng, Brooks (bb0255) 2005; 89 Ahmad, Rao (bb0005) 1996; 31 Chennubhotla, Bahar (bb0160) 2006; 2 Jiang, Yuan, Zhang, Liang, Guo, Li, Pu (bb0220) 2016; 6 Holz-Schietinger, Reich (bb0120) 2015; 1850 Holz-Schietinger, Matje, Harrison, Reich (bb0105) 2011; 286 Tatton-Brown, Seal, Ruark, Harmer, Ramsay, Del, Zachariou, Hanks, O'Brien, Aksglaede, Baralle, Dabir, Gener, Goudie, Homfray, Kumar, Pilz, Selicorni, Temple, Van Maldergem, Yachelevich, van Montfort, Rahman (bb0320) 2014; 46 Chedin (bb0025) 2011; 101 Sumbul, Acuner-Ozbabacan, Haliloglu (bb0250) 2015; 109 Jeltsch, Jurkowska (bb0115) 2013; 117 Su, Qi, Li, Zhu, Du HJ, Hao, Wang (bb0150) 2014; 90 Stolzenberg, Michino, LeVine, Weinstein, Shi (bb0125) 2016; 1858 Ashkenazy, Abadi, Martz, Chay, Mayrose, Pupko, Ben-Tal (bb0265) 2016; 44 Shivarov, Gueorguieva, Stoimenov, Tiu (bb0315) 2013; 37 Hu, Yan, Zhou, Shen (bb0175) 2014; 348 Syeda, Fagan, Wean, Avvakumov, Walker, Xue, Dhe-Paganon, Brenner (bb0065) 2011; 286 Schueler-Furman, Wodak (bb0205) 2016; 41 General (10.1016/j.bbagen.2018.04.015_bb0245) 2014; 10 Holz-Schietinger (10.1016/j.bbagen.2018.04.015_bb0105) 2011; 286 Zhou (10.1016/j.bbagen.2018.04.015_bb0210) 2015; 55 Jiang (10.1016/j.bbagen.2018.04.015_bb0220) 2016; 6 Raimondi (10.1016/j.bbagen.2018.04.015_bb0200) 2013; 9 Otani (10.1016/j.bbagen.2018.04.015_bb0045) 2009; 10 Jeltsch (10.1016/j.bbagen.2018.04.015_bb0115) 2013; 117 Ashkenazy (10.1016/j.bbagen.2018.04.015_bb0265) 2016; 44 Su (10.1016/j.bbagen.2018.04.015_bb0150) 2014; 90 Felline (10.1016/j.bbagen.2018.04.015_bb0225) 2017; 1861 Marcos (10.1016/j.bbagen.2018.04.015_bb0290) 2011; 7 Bahar (10.1016/j.bbagen.2018.04.015_bb0140) 2010; 39 Stolzenberg (10.1016/j.bbagen.2018.04.015_bb0125) 2016; 1858 Invernizzi (10.1016/j.bbagen.2018.04.015_bb0195) 2014; 10 Bahar (10.1016/j.bbagen.2018.04.015_bb0275) 2015; 109 Bahar (10.1016/j.bbagen.2018.04.015_bb0235) 2007; 17 Bahar (10.1016/j.bbagen.2018.04.015_bb0130) 1997; 2 Takeshita (10.1016/j.bbagen.2018.04.015_bb0060) 2011; 108 Holz-Schietinger (10.1016/j.bbagen.2018.04.015_bb0120) 2015; 1850 Hu (10.1016/j.bbagen.2018.04.015_bb0185) 2017; 2017 Dima (10.1016/j.bbagen.2018.04.015_bb0180) 2006; 15 Jurkowska (10.1016/j.bbagen.2018.04.015_bb0030) 2011; 12 Liu (10.1016/j.bbagen.2018.04.015_bb0305) 2012; 29 Jin (10.1016/j.bbagen.2018.04.015_bb0015) 2013; 754 Zhang (10.1016/j.bbagen.2018.04.015_bb0080) 2006; 103 Schueler-Furman (10.1016/j.bbagen.2018.04.015_bb0205) 2016; 41 Guzel (10.1016/j.bbagen.2018.04.015_bb0230) 2017; 1861 Tatton-Brown (10.1016/j.bbagen.2018.04.015_bb0320) 2014; 46 Atilgan (10.1016/j.bbagen.2018.04.015_bb0135) 2001; 80 Zhang (10.1016/j.bbagen.2018.04.015_bb0050) 2010; 38 Chennubhotla (10.1016/j.bbagen.2018.04.015_bb0160) 2006; 2 Bakan (10.1016/j.bbagen.2018.04.015_bb0240) 2011; 27 Blacklock (10.1016/j.bbagen.2018.04.015_bb0190) 2014; 10 Shivarov (10.1016/j.bbagen.2018.04.015_bb0315) 2013; 37 Gowher (10.1016/j.bbagen.2018.04.015_bb0040) 2005; 280 Bakan (10.1016/j.bbagen.2018.04.015_bb0270) 2014; 30 Sumbul (10.1016/j.bbagen.2018.04.015_bb0250) 2015; 109 Zhang (10.1016/j.bbagen.2018.04.015_bb0070) 2015; 427 Zheng (10.1016/j.bbagen.2018.04.015_bb0255) 2005; 89 Blacklock (10.1016/j.bbagen.2018.04.015_bb0215) 2014; 9 Syeda (10.1016/j.bbagen.2018.04.015_bb0065) 2011; 286 Chedin (10.1016/j.bbagen.2018.04.015_bb0025) 2011; 101 Doncheva (10.1016/j.bbagen.2018.04.015_bb0300) 2012; 7 Ahmad (10.1016/j.bbagen.2018.04.015_bb0005) 1996; 31 Guo (10.1016/j.bbagen.2018.04.015_bb0100) 2015; 517 Hu (10.1016/j.bbagen.2018.04.015_bb0175) 2014; 348 Jia (10.1016/j.bbagen.2018.04.015_bb0095) 2007; 449 Di Paola (10.1016/j.bbagen.2018.04.015_bb0170) 2015; 31 Liu (10.1016/j.bbagen.2018.04.015_bb0285) 2010; 6 Rodgers (10.1016/j.bbagen.2018.04.015_bb0145) 2013; 11 Jurkowska (10.1016/j.bbagen.2018.04.015_bb0110) 2011; 286 Emekli (10.1016/j.bbagen.2018.04.015_bb0280) 2008; 70 Cooper (10.1016/j.bbagen.2018.04.015_bb0090) 2017; 45 Cheng (10.1016/j.bbagen.2018.04.015_bb0020) 2008; 16 Rajavelu (10.1016/j.bbagen.2018.04.015_bb0075) 2012; 40 Gowher (10.1016/j.bbagen.2018.04.015_bb0085) 2006; 357 Sankpal (10.1016/j.bbagen.2018.04.015_bb0035) 2002; 37 Di Paola (10.1016/j.bbagen.2018.04.015_bb0165) 2013; 113 Yan (10.1016/j.bbagen.2018.04.015_bb0310) 2011; 43 Doncheva (10.1016/j.bbagen.2018.04.015_bb0260) 2011; 36 Ma (10.1016/j.bbagen.2018.04.015_bb0295) 2016; 56 Cheng (10.1016/j.bbagen.2018.04.015_bb0010) 1995; 24 Chennubhotla (10.1016/j.bbagen.2018.04.015_bb0155) 2007; 3 Dhayalan (10.1016/j.bbagen.2018.04.015_bb0055) 2010; 285 |
References_xml | – volume: 16 start-page: 341 year: 2008 end-page: 350 ident: bb0020 article-title: Mammalian DNA methyltransferases: a structural perspective publication-title: Structure – volume: 9 start-page: 2504 year: 2013 end-page: 2518 ident: bb0200 article-title: A mixed protein structure network and elastic network model approach to predict the structural communication in biomolecular systems: the PDZ2 domain from tyrosine phosphatase 1E as a case study publication-title: J. Chem. Theory Comput. – volume: 10 year: 2014 ident: bb0245 article-title: ATPase subdomain IA is a mediator of interdomain allostery in Hsp70 molecular chaperones publication-title: PLoS Comput. Biol. – volume: 31 start-page: 361 year: 1996 end-page: 380 ident: bb0005 article-title: Chemistry and biology of DNA methyltransferases publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 2 start-page: 36 year: 2006 ident: bb0160 article-title: Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES publication-title: Mol. Syst. Biol. – volume: 43 start-page: 309 year: 2011 end-page: 315 ident: bb0310 article-title: Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia publication-title: Nat. Genet. – volume: 286 start-page: 15344 year: 2011 end-page: 15351 ident: bb0065 article-title: The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1 publication-title: J. Biol. Chem. – volume: 108 start-page: 9055 year: 2011 end-page: 9059 ident: bb0060 article-title: Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1) publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 17 start-page: 633 year: 2007 end-page: 640 ident: bb0235 article-title: Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation publication-title: Curr. Opin. Struct. Biol. – volume: 109 start-page: 1190 year: 2015 end-page: 1201 ident: bb0250 article-title: Allosteric dynamic control of binding publication-title: Biophys. J. – volume: 37 start-page: 1445 year: 2013 end-page: 1450 ident: bb0315 article-title: DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients publication-title: Leuk. Res. – volume: 109 start-page: 1101 year: 2015 end-page: 1109 ident: bb0275 article-title: Structure-encoded global motions and their role in mediating protein-substrate interactions publication-title: Biophys. J. – volume: 286 start-page: 41479 year: 2011 end-page: 41488 ident: bb0105 article-title: Oligomerization of DNMT3A controls the mechanism of de novo DNA methylation publication-title: J. Biol. Chem. – volume: 427 start-page: 2520 year: 2015 end-page: 2531 ident: bb0070 article-title: Crystal structure of human DNA methyltransferase 1 publication-title: J. Mol. Biol. – volume: 357 start-page: 928 year: 2006 end-page: 941 ident: bb0085 article-title: Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase publication-title: J. Mol. Biol. – volume: 101 start-page: 255 year: 2011 end-page: 285 ident: bb0025 article-title: The DNMT3 family of mammalian de novo DNA methyltransferases publication-title: Prog. Mol. Biol. Transl. Sci. – volume: 6 start-page: 106327 year: 2016 end-page: 106339 ident: bb0220 article-title: Use of network model to explore dynamic and allosteric properties of three GPCR homodimers publication-title: RSC Adv. – volume: 27 start-page: 1575 year: 2011 end-page: 1577 ident: bb0240 article-title: ProDy: protein dynamics inferred from theory and experiments publication-title: Bioinformatics – volume: 90 start-page: 22719 year: 2014 ident: bb0150 article-title: Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. – volume: 285 start-page: 26114 year: 2010 end-page: 26120 ident: bb0055 article-title: The Dnmt3a PWWP domain reads histone 3Lysine 36 trimethylation and guides DNA methylation publication-title: J. Biol. Chem. – volume: 2 start-page: 173 year: 1997 end-page: 181 ident: bb0130 article-title: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential publication-title: Fold. Des. – volume: 7 start-page: 670 year: 2012 end-page: 685 ident: bb0300 article-title: Topological analysis and interactive visualization of biological networks and protein structures publication-title: Nat. Protoc. – volume: 280 start-page: 13341 year: 2005 end-page: 13348 ident: bb0040 article-title: Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L publication-title: J. Biol. Chem. – volume: 286 start-page: 24200 year: 2011 end-page: 24207 ident: bb0110 article-title: Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L publication-title: J. Biol. Chem. – volume: 754 start-page: 3 year: 2013 end-page: 29 ident: bb0015 article-title: DNA methyltransferases, DNA damage repair, and cancer publication-title: Adv. Exp. Med. Biol. – volume: 31 start-page: 43 year: 2015 end-page: 48 ident: bb0170 article-title: Protein contact network topology: a natural language for allostery publication-title: Curr. Opin. Struct. Biol. – volume: 2017 start-page: 2483264 year: 2017 ident: bb0185 article-title: Comparative study of elastic network model and protein contact network for protein complexes: the hemoglobin case publication-title: Biomed. Res. Int. – volume: 29 start-page: 2253 year: 2012 end-page: 2263 ident: bb0305 article-title: Sequence evolution correlates with structural dynamics publication-title: Mol. Biol. Evol. – volume: 39 start-page: 23 year: 2010 end-page: 42 ident: bb0140 article-title: Global dynamics of proteins: bridging between structure and function publication-title: Annu. Rev. Biophys. – volume: 3 start-page: 1716 year: 2007 end-page: 1726 ident: bb0155 article-title: Signal propagation in proteins and relation to equilibrium fluctuations publication-title: PLoS Comput. Biol. – volume: 103 start-page: 6148 year: 2006 end-page: 6153 ident: bb0080 article-title: The mechanism of M.HhaI DNA C5 cytosine methyltransferase enzyme: a quantum mechanics/molecular mechanics approach publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 year: 2014 ident: bb0195 article-title: Communication routes in ARID domains between distal residues in helix 5 and the DNA-binding loops publication-title: PLoS Comput. Biol. – volume: 517 start-page: 640 year: 2015 end-page: 644 ident: bb0100 article-title: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A publication-title: Nature – volume: 55 start-page: 2623 year: 2015 end-page: 2632 ident: bb0210 article-title: Molecular mechanism underlying PRMT1 dimerization for SAM binding and methylase activity publication-title: J. Chem. Inf. Model. – volume: 7 year: 2011 ident: bb0290 article-title: Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members publication-title: PLoS Comput. Biol. – volume: 80 start-page: 505 year: 2001 end-page: 515 ident: bb0135 article-title: Anisotropy of fluctuation dynamics of proteins with an elastic network model publication-title: Biophys. J. – volume: 15 start-page: 258 year: 2006 end-page: 268 ident: bb0180 article-title: Determination of network of residues that regulate allostery in protein families using sequence analysis publication-title: Protein Sci. – volume: 40 start-page: 569 year: 2012 end-page: 580 ident: bb0075 article-title: Function and disruption of DNA methyltransferase 3a cooperative DNA binding and nucleoprotein filament formation publication-title: Nucleic Acids Res. – volume: 117 start-page: 445 year: 2013 end-page: 464 ident: bb0115 article-title: Multimerization of the dnmt3a DNA methyltransferase and its functional implications publication-title: Prog. Mol. Biol. Transl. Sci. – volume: 348 start-page: 55 year: 2014 end-page: 64 ident: bb0175 article-title: Residue interaction network analysis of Dronpa and a DNA clamp publication-title: J. Theor. Biol. – volume: 11 year: 2013 ident: bb0145 article-title: Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors publication-title: PLoS Biol. – volume: 10 year: 2014 ident: bb0190 article-title: Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications publication-title: PLoS Comput. Biol. – volume: 37 start-page: 167 year: 2002 end-page: 197 ident: bb0035 article-title: Structure, function, and mechanism of HhaI DNA methyltransferases publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 44 start-page: W344 year: 2016 end-page: W350 ident: bb0265 article-title: ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules publication-title: Nucleic Acids Res. – volume: 6 year: 2010 ident: bb0285 article-title: Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs publication-title: PLoS Comput. Biol. – volume: 46 start-page: 385 year: 2014 end-page: 388 ident: bb0320 article-title: Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability publication-title: Nat. Genet. – volume: 10 start-page: 1235 year: 2009 end-page: 1241 ident: bb0045 article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain publication-title: EMBO Rep. – volume: 1861 start-page: 2367 year: 2017 end-page: 2381 ident: bb0225 article-title: Dissecting intrinsic and ligand-induced structural communication in the beta3 headpiece of integrins publication-title: Biochim. Biophys. Acta – volume: 449 start-page: 248 year: 2007 end-page: 251 ident: bb0095 article-title: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation publication-title: Nature – volume: 36 start-page: 179 year: 2011 end-page: 182 ident: bb0260 article-title: Analyzing and visualizing residue networks of protein structures publication-title: Trends Biochem. Sci. – volume: 56 start-page: 1725 year: 2016 end-page: 1733 ident: bb0295 article-title: Motions of allosteric and Orthosteric ligand-binding sites in proteins are highly correlated publication-title: J. Chem. Inf. Model. – volume: 38 start-page: 4246 year: 2010 end-page: 4253 ident: bb0050 article-title: Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail publication-title: Nucleic Acids Res. – volume: 70 start-page: 1219 year: 2008 end-page: 1227 ident: bb0280 article-title: HingeProt: automated prediction of hinges in protein structures publication-title: Proteins – volume: 89 start-page: 167 year: 2005 end-page: 178 ident: bb0255 article-title: Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin publication-title: Biophys. J. – volume: 41 start-page: 159 year: 2016 end-page: 171 ident: bb0205 article-title: Computational approaches to investigating allostery publication-title: Curr. Opin. Struct. Biol. – volume: 9 year: 2014 ident: bb0215 article-title: Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling publication-title: PLoS One – volume: 1861 start-page: 3131 year: 2017 end-page: 3141 ident: bb0230 article-title: Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 12 start-page: 206 year: 2011 end-page: 222 ident: bb0030 article-title: Structure and function of mammalian DNA methyltransferases publication-title: Chembiochem – volume: 24 start-page: 293 year: 1995 end-page: 318 ident: bb0010 article-title: Structure and function of DNA methyltransferases publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 45 start-page: 3395 year: 2017 end-page: 3406 ident: bb0090 article-title: DNA target recognition domains in the type I restriction and modification systems of Staphylococcus aureus publication-title: Nucleic Acids Res. – volume: 30 start-page: 2681 year: 2014 end-page: 2683 ident: bb0270 article-title: Evol and ProDy for bridging protein sequence evolution and structural dynamics publication-title: Bioinformatics – volume: 1850 start-page: 1131 year: 2015 end-page: 1139 ident: bb0120 article-title: De novo DNA methyltransferase DNMT3A: regulation of oligomeric state and mechanism of action in response to pH changes publication-title: Biochim. Biophys. Acta – volume: 1858 start-page: 1652 year: 2016 end-page: 1662 ident: bb0125 article-title: Computational approaches to detect allosteric pathways in transmembrane molecular machines publication-title: Biochim. Biophys. Acta – volume: 113 start-page: 1598 year: 2013 end-page: 1613 ident: bb0165 article-title: Protein contact networks: an emerging paradigm in chemistry publication-title: Chem. Rev. – volume: 117 start-page: 445 year: 2013 ident: 10.1016/j.bbagen.2018.04.015_bb0115 article-title: Multimerization of the dnmt3a DNA methyltransferase and its functional implications publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/B978-0-12-386931-9.00016-7 – volume: 10 year: 2014 ident: 10.1016/j.bbagen.2018.04.015_bb0245 article-title: ATPase subdomain IA is a mediator of interdomain allostery in Hsp70 molecular chaperones publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003624 – volume: 36 start-page: 179 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0260 article-title: Analyzing and visualizing residue networks of protein structures publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.01.002 – volume: 17 start-page: 633 year: 2007 ident: 10.1016/j.bbagen.2018.04.015_bb0235 article-title: Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2007.09.011 – volume: 449 start-page: 248 year: 2007 ident: 10.1016/j.bbagen.2018.04.015_bb0095 article-title: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation publication-title: Nature doi: 10.1038/nature06146 – volume: 2017 start-page: 2483264 year: 2017 ident: 10.1016/j.bbagen.2018.04.015_bb0185 article-title: Comparative study of elastic network model and protein contact network for protein complexes: the hemoglobin case publication-title: Biomed. Res. Int. doi: 10.1155/2017/2483264 – volume: 45 start-page: 3395 year: 2017 ident: 10.1016/j.bbagen.2018.04.015_bb0090 article-title: DNA target recognition domains in the type I restriction and modification systems of Staphylococcus aureus publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx067 – volume: 286 start-page: 24200 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0110 article-title: Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.254987 – volume: 10 year: 2014 ident: 10.1016/j.bbagen.2018.04.015_bb0190 article-title: Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003679 – volume: 101 start-page: 255 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0025 article-title: The DNMT3 family of mammalian de novo DNA methyltransferases publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/B978-0-12-387685-0.00007-X – volume: 10 start-page: 1235 year: 2009 ident: 10.1016/j.bbagen.2018.04.015_bb0045 article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain publication-title: EMBO Rep. doi: 10.1038/embor.2009.218 – volume: 1858 start-page: 1652 year: 2016 ident: 10.1016/j.bbagen.2018.04.015_bb0125 article-title: Computational approaches to detect allosteric pathways in transmembrane molecular machines publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2016.01.010 – volume: 109 start-page: 1101 year: 2015 ident: 10.1016/j.bbagen.2018.04.015_bb0275 article-title: Structure-encoded global motions and their role in mediating protein-substrate interactions publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.06.004 – volume: 56 start-page: 1725 year: 2016 ident: 10.1016/j.bbagen.2018.04.015_bb0295 article-title: Motions of allosteric and Orthosteric ligand-binding sites in proteins are highly correlated publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00039 – volume: 109 start-page: 1190 year: 2015 ident: 10.1016/j.bbagen.2018.04.015_bb0250 article-title: Allosteric dynamic control of binding publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.08.011 – volume: 285 start-page: 26114 year: 2010 ident: 10.1016/j.bbagen.2018.04.015_bb0055 article-title: The Dnmt3a PWWP domain reads histone 3Lysine 36 trimethylation and guides DNA methylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.089433 – volume: 10 year: 2014 ident: 10.1016/j.bbagen.2018.04.015_bb0195 article-title: Communication routes in ARID domains between distal residues in helix 5 and the DNA-binding loops publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003744 – volume: 31 start-page: 43 year: 2015 ident: 10.1016/j.bbagen.2018.04.015_bb0170 article-title: Protein contact network topology: a natural language for allostery publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2015.03.001 – volume: 427 start-page: 2520 year: 2015 ident: 10.1016/j.bbagen.2018.04.015_bb0070 article-title: Crystal structure of human DNA methyltransferase 1 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.06.001 – volume: 38 start-page: 4246 year: 2010 ident: 10.1016/j.bbagen.2018.04.015_bb0050 article-title: Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq147 – volume: 9 start-page: 2504 year: 2013 ident: 10.1016/j.bbagen.2018.04.015_bb0200 article-title: A mixed protein structure network and elastic network model approach to predict the structural communication in biomolecular systems: the PDZ2 domain from tyrosine phosphatase 1E as a case study publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400096f – volume: 6 start-page: 106327 year: 2016 ident: 10.1016/j.bbagen.2018.04.015_bb0220 article-title: Use of network model to explore dynamic and allosteric properties of three GPCR homodimers publication-title: RSC Adv. doi: 10.1039/C6RA18243G – volume: 113 start-page: 1598 year: 2013 ident: 10.1016/j.bbagen.2018.04.015_bb0165 article-title: Protein contact networks: an emerging paradigm in chemistry publication-title: Chem. Rev. doi: 10.1021/cr3002356 – volume: 24 start-page: 293 year: 1995 ident: 10.1016/j.bbagen.2018.04.015_bb0010 article-title: Structure and function of DNA methyltransferases publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.bb.24.060195.001453 – volume: 40 start-page: 569 year: 2012 ident: 10.1016/j.bbagen.2018.04.015_bb0075 article-title: Function and disruption of DNA methyltransferase 3a cooperative DNA binding and nucleoprotein filament formation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr753 – volume: 80 start-page: 505 year: 2001 ident: 10.1016/j.bbagen.2018.04.015_bb0135 article-title: Anisotropy of fluctuation dynamics of proteins with an elastic network model publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76033-X – volume: 27 start-page: 1575 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0240 article-title: ProDy: protein dynamics inferred from theory and experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr168 – volume: 16 start-page: 341 year: 2008 ident: 10.1016/j.bbagen.2018.04.015_bb0020 article-title: Mammalian DNA methyltransferases: a structural perspective publication-title: Structure doi: 10.1016/j.str.2008.01.004 – volume: 103 start-page: 6148 year: 2006 ident: 10.1016/j.bbagen.2018.04.015_bb0080 article-title: The mechanism of M.HhaI DNA C5 cytosine methyltransferase enzyme: a quantum mechanics/molecular mechanics approach publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0601587103 – volume: 12 start-page: 206 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0030 article-title: Structure and function of mammalian DNA methyltransferases publication-title: Chembiochem doi: 10.1002/cbic.201000195 – volume: 286 start-page: 41479 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0105 article-title: Oligomerization of DNMT3A controls the mechanism of de novo DNA methylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.284687 – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2018.04.015_bb0215 article-title: Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling publication-title: PLoS One doi: 10.1371/journal.pone.0086547 – volume: 108 start-page: 9055 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0060 article-title: Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1) publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1019629108 – volume: 15 start-page: 258 year: 2006 ident: 10.1016/j.bbagen.2018.04.015_bb0180 article-title: Determination of network of residues that regulate allostery in protein families using sequence analysis publication-title: Protein Sci. doi: 10.1110/ps.051767306 – volume: 280 start-page: 13341 year: 2005 ident: 10.1016/j.bbagen.2018.04.015_bb0040 article-title: Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L publication-title: J. Biol. Chem. doi: 10.1074/jbc.M413412200 – volume: 1861 start-page: 3131 year: 2017 ident: 10.1016/j.bbagen.2018.04.015_bb0230 article-title: Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2017.09.005 – volume: 7 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0290 article-title: Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002201 – volume: 2 start-page: 36 year: 2006 ident: 10.1016/j.bbagen.2018.04.015_bb0160 article-title: Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100075 – volume: 1850 start-page: 1131 year: 2015 ident: 10.1016/j.bbagen.2018.04.015_bb0120 article-title: De novo DNA methyltransferase DNMT3A: regulation of oligomeric state and mechanism of action in response to pH changes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2015.02.003 – volume: 348 start-page: 55 year: 2014 ident: 10.1016/j.bbagen.2018.04.015_bb0175 article-title: Residue interaction network analysis of Dronpa and a DNA clamp publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2014.01.023 – volume: 754 start-page: 3 year: 2013 ident: 10.1016/j.bbagen.2018.04.015_bb0015 article-title: DNA methyltransferases, DNA damage repair, and cancer publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4419-9967-2_1 – volume: 7 start-page: 670 year: 2012 ident: 10.1016/j.bbagen.2018.04.015_bb0300 article-title: Topological analysis and interactive visualization of biological networks and protein structures publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.004 – volume: 41 start-page: 159 year: 2016 ident: 10.1016/j.bbagen.2018.04.015_bb0205 article-title: Computational approaches to investigating allostery publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2016.06.017 – volume: 31 start-page: 361 year: 1996 ident: 10.1016/j.bbagen.2018.04.015_bb0005 article-title: Chemistry and biology of DNA methyltransferases publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409239609108722 – volume: 89 start-page: 167 year: 2005 ident: 10.1016/j.bbagen.2018.04.015_bb0255 article-title: Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin publication-title: Biophys. J. doi: 10.1529/biophysj.105.063305 – volume: 70 start-page: 1219 year: 2008 ident: 10.1016/j.bbagen.2018.04.015_bb0280 article-title: HingeProt: automated prediction of hinges in protein structures publication-title: Proteins doi: 10.1002/prot.21613 – volume: 46 start-page: 385 year: 2014 ident: 10.1016/j.bbagen.2018.04.015_bb0320 article-title: Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability publication-title: Nat. Genet. doi: 10.1038/ng.2917 – volume: 37 start-page: 1445 year: 2013 ident: 10.1016/j.bbagen.2018.04.015_bb0315 article-title: DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients publication-title: Leuk. Res. doi: 10.1016/j.leukres.2013.07.032 – volume: 37 start-page: 167 year: 2002 ident: 10.1016/j.bbagen.2018.04.015_bb0035 article-title: Structure, function, and mechanism of HhaI DNA methyltransferases publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409230290771492 – volume: 2 start-page: 173 year: 1997 ident: 10.1016/j.bbagen.2018.04.015_bb0130 article-title: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential publication-title: Fold. Des. doi: 10.1016/S1359-0278(97)00024-2 – volume: 11 year: 2013 ident: 10.1016/j.bbagen.2018.04.015_bb0145 article-title: Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001651 – volume: 55 start-page: 2623 year: 2015 ident: 10.1016/j.bbagen.2018.04.015_bb0210 article-title: Molecular mechanism underlying PRMT1 dimerization for SAM binding and methylase activity publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00454 – volume: 30 start-page: 2681 year: 2014 ident: 10.1016/j.bbagen.2018.04.015_bb0270 article-title: Evol and ProDy for bridging protein sequence evolution and structural dynamics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu336 – volume: 44 start-page: W344 year: 2016 ident: 10.1016/j.bbagen.2018.04.015_bb0265 article-title: ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw408 – volume: 357 start-page: 928 year: 2006 ident: 10.1016/j.bbagen.2018.04.015_bb0085 article-title: Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.01.035 – volume: 90 start-page: 22719 year: 2014 ident: 10.1016/j.bbagen.2018.04.015_bb0150 article-title: Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.90.022719 – volume: 3 start-page: 1716 year: 2007 ident: 10.1016/j.bbagen.2018.04.015_bb0155 article-title: Signal propagation in proteins and relation to equilibrium fluctuations publication-title: PLoS Comput. Biol. – volume: 6 year: 2010 ident: 10.1016/j.bbagen.2018.04.015_bb0285 article-title: Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000931 – volume: 517 start-page: 640 year: 2015 ident: 10.1016/j.bbagen.2018.04.015_bb0100 article-title: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A publication-title: Nature doi: 10.1038/nature13899 – volume: 29 start-page: 2253 year: 2012 ident: 10.1016/j.bbagen.2018.04.015_bb0305 article-title: Sequence evolution correlates with structural dynamics publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss097 – volume: 39 start-page: 23 year: 2010 ident: 10.1016/j.bbagen.2018.04.015_bb0140 article-title: Global dynamics of proteins: bridging between structure and function publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.093008.131258 – volume: 1861 start-page: 2367 year: 2017 ident: 10.1016/j.bbagen.2018.04.015_bb0225 article-title: Dissecting intrinsic and ligand-induced structural communication in the beta3 headpiece of integrins publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2017.05.018 – volume: 286 start-page: 15344 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0065 article-title: The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.209882 – volume: 43 start-page: 309 year: 2011 ident: 10.1016/j.bbagen.2018.04.015_bb0310 article-title: Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia publication-title: Nat. Genet. doi: 10.1038/ng.788 |
SSID | ssj0000595 ssj0025309 |
Score | 2.3480587 |
Snippet | DNMT3A, as de novo DNA methyltransferase, is essential for regulating gene expression through cellular development and differentiation. The functions of DNMT3A... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1667 |
SubjectTerms | Allosteric communication Allosteric Regulation Catalytic Domain Conformational dynamics Dimerization DNA (Cytosine-5-)-Methyltransferases - chemistry Elastic network models, network theory, coevolution analysis Histones - metabolism Humans Information Theory Models, Chemical Models, Molecular Motion Protein Binding Protein Conformation Protein Domains Signal Transduction Structure-Activity Relationship |
Title | Deciphering the role of dimer interface in intrinsic dynamics and allosteric pathways underlying the functional transformation of DNMT3A |
URI | https://dx.doi.org/10.1016/j.bbagen.2018.04.015 https://www.ncbi.nlm.nih.gov/pubmed/29674125 https://www.proquest.com/docview/2028961789 |
Volume | 1862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CQmkvJU1fzost9Lq1Je1K3qNxEtyY-NAmNLdlXyouqWxsh-BLzvnZmdFKSQstgZwkLSOt2BnNfKt5AXxWme9TvVOeemu5KPOcW2cN96lT3ltpepZ-6J9N8tGFOL2UlxswbHNhKKyy0f1Rp9fauhnpNqvZnU-n3e_k1EM4IVEocVPRpyQ-IQqS8i-3j2EeCB9k9CQITtRt-lwd42UtfrRUBTXp1wVPqTnuv83T_-BnbYZOtuF1gx_ZIL7iG9gI1Q68iB0l1zvwctg2cHsLd0fBTed1ft9PhjiPUSQhm5XMT3-HBaNCEYvSuIBndIFkyDHmY4v6JTOVZ-SVp0oKOE6ti2_Mesko62xxtW4fSoYx_k9kqz9A8KyimY4mZ-fZ4B1cnByfD0e8abzAHdqzFTeZym3PmZ40pQqpskUImfeOtKNLjDBOBGWsQhJDbrZgcp8kNhTGl5lUIXsPm9WsCh-B2dKVUhTSOetFGfJ-6hDOe6uy3Mogkw5k7Xpr11Qlp-YYV7oNP_ulI5c0cUn3hEYudYA_3DWPVTmeoC9aVuq_pEuj4Xjizk8t5zWyj7wppgqz6yUS4V6VEixVBz5EkXh4l1TliNRSufvseffgFV3FwOB92FwtrsMBwp-VPazl-xC2Bl_Howkdx99-jO8Bjq0KCQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVKhcEBRow9NIXK1kH97ExyilSmmTC6nUm-WxvSiobKIkFco_4Gczs94tILWqxG0f47Xl8c589rwAPunMDznfqUw9oszLopDo0EqfOu09KttHPtCfzorJZf7lSl3twbiNhWG3ykb2R5leS-vmSa-Zzd5qseh9ZaMewQlFi5I2FUP9CPY5O5XqwP7o7Hwy-yOQVV18heklN2gj6Go3L0T6bzkRajKsc55yfdy7NdR9CLTWRKfP4GkDIcUojvI57IXqEB7HopK7QzgYtzXcXsCvk-AWqzrE75sgqCfYmVAsS-EXP8JacK6IdWldoCu-ITJimvCxSv1G2MoLNsxzMgV6ztWLf9rdRnDg2fp6136UdWM8UhTbv3DwsuKeTmbTeTZ6CZenn-fjiWxqL0hHKm0rbaYL7DvbV7bUIdU4CCHz3rGAdInNrcuDtqiJxLKlLdjCJwmGgfVlpnTIXkGnWlbhGASWrmS-OIc-L0MxTB0heo86K1AFlXQha-fbuCYxOdfHuDatB9p3E7lkmEumnxviUhfkbatVTMzxAP2gZaX5Z4EZ0h0PtPzYct4Q-9igYquwvNkQEW1XOcZSd-EoLonbsaS6ILCWqtf_3e8HOJjMpxfm4mx2_gae8JvoJ_wWOtv1TXhHaGiL75vV_htFBQsX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+role+of+dimer+interface+in+intrinsic+dynamics+and+allosteric+pathways+underlying+the+functional+transformation+of+DNMT3A&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Liang%2C+Zhongjie&rft.au=Hu%2C+Junchi&rft.au=Yan%2C+Wenying&rft.au=Jiang%2C+Hualiang&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1862&rft.issue=7&rft.spage=1667&rft.epage=1679&rft_id=info:doi/10.1016%2Fj.bbagen.2018.04.015&rft.externalDocID=S0304416518301089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |