OS-SSVEP: One-shot SSVEP classification

It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, wh...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 180; p. 106734
Main Authors Deng, Yang, Ji, Zhiwei, Wang, Yijun, Zhou, S. Kevin
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2024.106734

Cover

Loading…
Abstract It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, which combines a dual domain cross-subject fusion network (CSDuDoFN) with the task-related and task-discriminant component analysis (TRCA and TDCA) based on data augmentation. The CSDuDoFN framework is designed to comprehensively transfer information from source subjects, while TRCA and TDCA are employed to exploit the information from the single available calibration trial of the target subject. Specifically, CSDuDoFN uses multi-reference least-squares transformation (MLST) to map data from both the source subjects and the target subject into the domain of sine-cosine templates, thereby reducing cross-subject domain gap and benefiting transfer learning. In addition, CSDuDoFN is fed with both transformed and original data, with an adequate fusion of their features occurring at different network layers. To capitalize on the calibration trial of the target subject, OS-SSVEP utilizes source aliasing matrix estimation (SAME)-based data augmentation to incorporate into the training process of the ensemble TRCA (eTRCA) and TDCA models. Ultimately, the outputs of CSDuDoFN, eTRCA, and TDCA are combined for the SSVEP classification. The effectiveness of our proposed approach is comprehensively evaluated on three publicly available SSVEP datasets, achieving the best performance on two datasets and competitive performance on the third. Further, it is worth noting that our method follows a different technical route from the current state-of-the-art (SOTA) method and the two are complementary. The performance is significantly improved when our method is combined with the SOTA method. This study underscores the potential to integrate the SSVEP-based brain-computer interface (BCI) into daily life. The corresponding source code is accessible at https://github.com/Sungden/One-shot-SSVEP-classification.
AbstractList It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, which combines a dual domain cross-subject fusion network (CSDuDoFN) with the task-related and task-discriminant component analysis (TRCA and TDCA) based on data augmentation. The CSDuDoFN framework is designed to comprehensively transfer information from source subjects, while TRCA and TDCA are employed to exploit the information from the single available calibration trial of the target subject. Specifically, CSDuDoFN uses multi-reference least-squares transformation (MLST) to map data from both the source subjects and the target subject into the domain of sine-cosine templates, thereby reducing cross-subject domain gap and benefiting transfer learning. In addition, CSDuDoFN is fed with both transformed and original data, with an adequate fusion of their features occurring at different network layers. To capitalize on the calibration trial of the target subject, OS-SSVEP utilizes source aliasing matrix estimation (SAME)-based data augmentation to incorporate into the training process of the ensemble TRCA (eTRCA) and TDCA models. Ultimately, the outputs of CSDuDoFN, eTRCA, and TDCA are combined for the SSVEP classification. The effectiveness of our proposed approach is comprehensively evaluated on three publicly available SSVEP datasets, achieving the best performance on two datasets and competitive performance on the third. Further, it is worth noting that our method follows a different technical route from the current state-of-the-art (SOTA) method and the two are complementary. The performance is significantly improved when our method is combined with the SOTA method. This study underscores the potential to integrate the SSVEP-based brain-computer interface (BCI) into daily life. The corresponding source code is accessible at https://github.com/Sungden/One-shot-SSVEP-classification.
It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, which combines a dual domain cross-subject fusion network (CSDuDoFN) with the task-related and task-discriminant component analysis (TRCA and TDCA) based on data augmentation. The CSDuDoFN framework is designed to comprehensively transfer information from source subjects, while TRCA and TDCA are employed to exploit the information from the single available calibration trial of the target subject. Specifically, CSDuDoFN uses multi-reference least-squares transformation (MLST) to map data from both the source subjects and the target subject into the domain of sine-cosine templates, thereby reducing cross-subject domain gap and benefiting transfer learning. In addition, CSDuDoFN is fed with both transformed and original data, with an adequate fusion of their features occurring at different network layers. To capitalize on the calibration trial of the target subject, OS-SSVEP utilizes source aliasing matrix estimation (SAME)-based data augmentation to incorporate into the training process of the ensemble TRCA (eTRCA) and TDCA models. Ultimately, the outputs of CSDuDoFN, eTRCA, and TDCA are combined for the SSVEP classification. The effectiveness of our proposed approach is comprehensively evaluated on three publicly available SSVEP datasets, achieving the best performance on two datasets and competitive performance on the third. Further, it is worth noting that our method follows a different technical route from the current state-of-the-art (SOTA) method and the two are complementary. The performance is significantly improved when our method is combined with the SOTA method. This study underscores the potential to integrate the SSVEP-based brain-computer interface (BCI) into daily life. The corresponding source code is accessible at https://github.com/Sungden/One-shot-SSVEP-classification.It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, which combines a dual domain cross-subject fusion network (CSDuDoFN) with the task-related and task-discriminant component analysis (TRCA and TDCA) based on data augmentation. The CSDuDoFN framework is designed to comprehensively transfer information from source subjects, while TRCA and TDCA are employed to exploit the information from the single available calibration trial of the target subject. Specifically, CSDuDoFN uses multi-reference least-squares transformation (MLST) to map data from both the source subjects and the target subject into the domain of sine-cosine templates, thereby reducing cross-subject domain gap and benefiting transfer learning. In addition, CSDuDoFN is fed with both transformed and original data, with an adequate fusion of their features occurring at different network layers. To capitalize on the calibration trial of the target subject, OS-SSVEP utilizes source aliasing matrix estimation (SAME)-based data augmentation to incorporate into the training process of the ensemble TRCA (eTRCA) and TDCA models. Ultimately, the outputs of CSDuDoFN, eTRCA, and TDCA are combined for the SSVEP classification. The effectiveness of our proposed approach is comprehensively evaluated on three publicly available SSVEP datasets, achieving the best performance on two datasets and competitive performance on the third. Further, it is worth noting that our method follows a different technical route from the current state-of-the-art (SOTA) method and the two are complementary. The performance is significantly improved when our method is combined with the SOTA method. This study underscores the potential to integrate the SSVEP-based brain-computer interface (BCI) into daily life. The corresponding source code is accessible at https://github.com/Sungden/One-shot-SSVEP-classification.
ArticleNumber 106734
Author Deng, Yang
Ji, Zhiwei
Zhou, S. Kevin
Wang, Yijun
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-9420-8467
  surname: Deng
  fullname: Deng, Yang
  email: dengy21@mail.ustc.edu.cn
  organization: School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
– sequence: 2
  givenname: Zhiwei
  surname: Ji
  fullname: Ji, Zhiwei
  email: Zhiwei.Ji@njau.edu.cn
  organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
– sequence: 3
  givenname: Yijun
  surname: Wang
  fullname: Wang, Yijun
  email: wangyj@semi.ac.cn
  organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
– sequence: 4
  givenname: S. Kevin
  surname: Zhou
  fullname: Zhou, S. Kevin
  email: skevinzhou@ustc.edu.cn
  organization: School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39332212$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1Lw0AQhhep2A_9ByK96SV1djfZJD0IUuoHFCpUvS6bzQS3pEnd3Qj-e9OmevCgp2GG531hniHpVXWFhJxTmFCg4no9qbCp0E8YsLA9iZiHR2RAkzgNWJywHhlAkvJAQAJ9MnRuDQAiCfkJ6fOUc8YoG5DL5SpYrV7nT9PxssLAvdV-vN_HulTOmcJo5U1dnZLjQpUOzw5zRF7u5s-zh2CxvH-c3S4CzQXzgYIcdAJZwjiNKc10wTMaUi2UAB7FMWSCpUqrKEHQYabzMGYhVUUKeZYii_iIXHW9W1u_N-i83BinsSxVhXXjJKcUYpbSiLfoxQFtsg3mcmvNRtlP-f1cC4QdoG3tnMXiB6Egdw7lWnYO5c6h7By2semvmDZ-L8FbZcr_wjddGFtJHwatdNpgpTE3FrWXeW3-LvgCDmqLkg
CitedBy_id crossref_primary_10_1016_j_rineng_2025_104203
crossref_primary_10_1007_s11517_025_03340_y
Cites_doi 10.1002/hbm.23730
10.1109/TNSRE.2023.3235804
10.1109/TNSRE.2021.3114340
10.1109/TNSRE.2006.875576
10.1142/S0129065714500130
10.1109/TNSRE.2022.3225878
10.1016/j.neunet.2024.106100
10.1109/TBME.2021.3105331
10.1088/1741-2552/aaf12e
10.1016/j.neunet.2023.04.045
10.1088/1741-2552/ab914e
10.1109/TNSRE.2023.3305202
10.1088/1741-2552/ac823e
10.1109/TNNLS.2021.3135696
10.1109/TNSRE.2020.3019276
10.1371/journal.pone.0140703
10.1109/CVPR.2016.308
10.1088/1741-2560/12/4/046008
10.1088/1741-2552/ac9861
10.1109/TBME.2017.2694818
10.1109/TNSRE.2020.3038718
10.1145/3503161.3548269
10.1016/S1388-2457(02)00057-3
10.1109/TBME.2006.886577
10.1088/1741-2552/ace380
10.1145/3386252
10.3389/fnins.2020.00627
10.1109/TNSRE.2016.2627556
10.1088/1741-2552/ab2373
10.1109/TBME.2021.3110440
10.1088/1741-2552/abcb6e
10.1016/j.compbiomed.2023.107806
10.1088/1741-2552/aae5d8
10.1109/TBME.2021.3133594
10.1088/1741-2552/aace8c
10.1088/1741-2560/6/4/046002
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2024.106734
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 39332212
10_1016_j_neunet_2024_106734
S0893608024006580
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-a0d0c80b8231711bcf3b141c6a6035770b629aca58e0c4bcd47241af90db9e253
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Fri Jul 11 02:06:00 EDT 2025
Mon Jul 21 06:02:02 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Tue Jul 01 03:32:21 EDT 2025
Sat Nov 09 15:59:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords One-shot classification
Brain-computer interface (BCI)
Data augmentation
Steady-state visual evoked potential (SSVEP)
Transfer learning
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-a0d0c80b8231711bcf3b141c6a6035770b629aca58e0c4bcd47241af90db9e253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9420-8467
PMID 39332212
PQID 3110729153
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3110729153
pubmed_primary_39332212
crossref_primary_10_1016_j_neunet_2024_106734
crossref_citationtrail_10_1016_j_neunet_2024_106734
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hospedales, Antoniou, Micaelli, Storkey (b11) 2021; 44
Liu, Chen, Li, Wang, Gao, Gao (b20) 2021; 69
Chiang, Wei, Nakanishi, Jung (b7) 2021; 18
Liu, Chen, Shi, Wang, Gao, Gao (b21) 2021; 29
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (b28) 2017; 38
Wang, Zhai, Xiong, Hu, Xia (b36) 2021; 33
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b38) 2002; 113
Li, Xiang, Kesavadas (b17) 2020; 28
Wang, Chen, Gao, Gao (b32) 2016; 25
Chen, Zhang, Pan, Xu, Guan (b6) 2023; 164
Nakanishi, Wang, Chen, Wang, Gao, Jung (b26) 2017; 65
Liu, Huang, Wang, Chen, Gao (b22) 2020; 14
Xiao, Xu, Yue, Pan, Xu, Ming (b42) 2022; 19
Abiri, Borhani, Sellers, Jiang, Zhao (b1) 2019; 16
Lin, Zhang, Wu, Gao (b18) 2006; 53
Wong, Wang, Nakanishi, Wang, Rosa, Chen (b40) 2021; 69
Ke, Liu, Ming (b14) 2023
Zhang, Qiu, Zhang, Wang, Wang, He (b43) 2022; 19
(pp. 51–59).
Jin, Wang, Xu, Liu, Wang, Cichocki (b13) 2021
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b15) 2018; 15
Wang, Wang, Gao, Hong, Gao (b34) 2006; 14
Chen, Yang, Chen, Wang, Gao (b5) 2021; 18
Luo, Xu, Zhou, Xiao, Jung, Ming (b23) 2022
Wang, Liu, Wu, Li, Liu, Chen (b33) 2023; 31
Guney, Oblokulov, Ozkan (b9) 2021; 69
Wong, Wan, Wang, Wang, Nan, Lao (b39) 2020; 17
Wang, Yao, Kwok, Ni (b35) 2020; 53
Maaten, Hinton (b24) 2008
Vinyals, Blundell, Lillicrap, Wierstra (b31) 2016; 29
Li, X., Wei, W., Qiu, S., & He, H. (2022). TFF-Former: Temporal-frequency fusion transformer for zero-training decoding of two BCI tasks. In
Bin, Gao, Yan, Hong, Gao (b3) 2009; 6
Deng, Sun, Wang, Wang, Zhou (b8) 2023; 20
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b29) 2014; 15
Waytowich, Lawhern, Garcia, Cummings, Faller, Sajda (b37) 2018; 15
Nakanishi, Wang, Wang, Jung (b27) 2015; 10
Huang, Zhang, Xiong, Wang, Wan, Li (b12) 2023
Bian, Wu, Liu, Wu (b2) 2022; 31
Chen, Wang, Gao, Jung, Gao (b4) 2015; 12
Zhang, Zhou, Jin, Wang, Cichocki (b44) 2014; 24
Zhang, Zhou, Zhao, Onishi, Jin, Wang (b45) 2011
Mei, Luo, Xu, Zhao, Wen, Wang (b25) 2024; 168
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In
Wong, Wang, Wang, Lao, Rosa, Xu (b41) 2020; 28
Guney, Ozkan (b10) 2023; 20
(pp. 2818–2826).
Liu, Chen, Li, Ding, Yu, Guan (b19) 2024; 172
Chen (10.1016/j.neunet.2024.106734_b4) 2015; 12
Chen (10.1016/j.neunet.2024.106734_b5) 2021; 18
Ke (10.1016/j.neunet.2024.106734_b14) 2023
Lawhern (10.1016/j.neunet.2024.106734_b15) 2018; 15
Wong (10.1016/j.neunet.2024.106734_b41) 2020; 28
Luo (10.1016/j.neunet.2024.106734_b23) 2022
Nakanishi (10.1016/j.neunet.2024.106734_b27) 2015; 10
Liu (10.1016/j.neunet.2024.106734_b22) 2020; 14
Li (10.1016/j.neunet.2024.106734_b17) 2020; 28
Liu (10.1016/j.neunet.2024.106734_b21) 2021; 29
Abiri (10.1016/j.neunet.2024.106734_b1) 2019; 16
Lin (10.1016/j.neunet.2024.106734_b18) 2006; 53
Wang (10.1016/j.neunet.2024.106734_b35) 2020; 53
Liu (10.1016/j.neunet.2024.106734_b19) 2024; 172
Waytowich (10.1016/j.neunet.2024.106734_b37) 2018; 15
Chen (10.1016/j.neunet.2024.106734_b6) 2023; 164
Mei (10.1016/j.neunet.2024.106734_b25) 2024; 168
Huang (10.1016/j.neunet.2024.106734_b12) 2023
Guney (10.1016/j.neunet.2024.106734_b10) 2023; 20
Maaten (10.1016/j.neunet.2024.106734_b24) 2008
Schirrmeister (10.1016/j.neunet.2024.106734_b28) 2017; 38
Bian (10.1016/j.neunet.2024.106734_b2) 2022; 31
Srivastava (10.1016/j.neunet.2024.106734_b29) 2014; 15
Liu (10.1016/j.neunet.2024.106734_b20) 2021; 69
Wang (10.1016/j.neunet.2024.106734_b34) 2006; 14
Wolpaw (10.1016/j.neunet.2024.106734_b38) 2002; 113
Guney (10.1016/j.neunet.2024.106734_b9) 2021; 69
Bin (10.1016/j.neunet.2024.106734_b3) 2009; 6
10.1016/j.neunet.2024.106734_b30
Deng (10.1016/j.neunet.2024.106734_b8) 2023; 20
Hospedales (10.1016/j.neunet.2024.106734_b11) 2021; 44
Nakanishi (10.1016/j.neunet.2024.106734_b26) 2017; 65
Wong (10.1016/j.neunet.2024.106734_b39) 2020; 17
Wong (10.1016/j.neunet.2024.106734_b40) 2021; 69
10.1016/j.neunet.2024.106734_b16
Wang (10.1016/j.neunet.2024.106734_b33) 2023; 31
Jin (10.1016/j.neunet.2024.106734_b13) 2021
Wang (10.1016/j.neunet.2024.106734_b36) 2021; 33
Xiao (10.1016/j.neunet.2024.106734_b42) 2022; 19
Vinyals (10.1016/j.neunet.2024.106734_b31) 2016; 29
Wang (10.1016/j.neunet.2024.106734_b32) 2016; 25
Zhang (10.1016/j.neunet.2024.106734_b45) 2011
Zhang (10.1016/j.neunet.2024.106734_b44) 2014; 24
Zhang (10.1016/j.neunet.2024.106734_b43) 2022; 19
Chiang (10.1016/j.neunet.2024.106734_b7) 2021; 18
References_xml – year: 2023
  ident: b14
  article-title: Enhancing SSVEP identification with less individual calibration data using periodically repeated component analysis
  publication-title: IEEE Transactions on Biomedical Engineering
– year: 2008
  ident: b24
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– reference: (pp. 51–59).
– volume: 6
  year: 2009
  ident: b3
  article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method
  publication-title: Journal of Neural Engineering
– year: 2021
  ident: b13
  article-title: Robust similarity measurement based on a novel time filter for SSVEPs detection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Li, X., Wei, W., Qiu, S., & He, H. (2022). TFF-Former: Temporal-frequency fusion transformer for zero-training decoding of two BCI tasks. In
– volume: 28
  start-page: 2681
  year: 2020
  end-page: 2690
  ident: b17
  article-title: Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 69
  start-page: 932
  year: 2021
  end-page: 944
  ident: b9
  article-title: A deep neural network for ssvep-based brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 14
  start-page: 627
  year: 2020
  ident: b22
  article-title: BETA: A large benchmark database toward SSVEP-BCI application
  publication-title: Frontiers in Neuroscience
– volume: 29
  start-page: 1998
  year: 2021
  end-page: 2007
  ident: b21
  article-title: Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 14
  start-page: 234
  year: 2006
  end-page: 240
  ident: b34
  article-title: A practical VEP-based brain-computer interface
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 164
  start-page: 521
  year: 2023
  end-page: 534
  ident: b6
  article-title: A transformer-based deep neural network model for SSVEP classification
  publication-title: Neural Networks
– volume: 24
  year: 2014
  ident: b44
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
  publication-title: International Journal of Neural Systems
– volume: 10
  year: 2015
  ident: b27
  article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials
  publication-title: PLoS One
– volume: 29
  year: 2016
  ident: b31
  article-title: Matching networks for one shot learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 69
  start-page: 795
  year: 2021
  end-page: 806
  ident: b20
  article-title: Align and pool for EEG headset domain adaptation (ALPHA) to facilitate dry electrode based SSVEP-BCI
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: b38
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
– volume: 25
  start-page: 1746
  year: 2016
  end-page: 1752
  ident: b32
  article-title: A benchmark dataset for SSVEP-based brain–computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 31
  start-page: 863
  year: 2023
  end-page: 874
  ident: b33
  article-title: A generalized zero-shot learning scheme for SSVEP-based BCI system
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 17
  year: 2020
  ident: b39
  article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs
  publication-title: Journal of Neural Engineering
– volume: 20
  year: 2023
  ident: b10
  article-title: Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training
  publication-title: Journal of Neural Engineering
– volume: 12
  year: 2015
  ident: b4
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface
  publication-title: Journal of Neural Engineering
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In
– volume: 19
  year: 2022
  ident: b42
  article-title: Fixed template network and dynamic template network: Novel network designs for decoding steady-state visual evoked potentials
  publication-title: Journal of Neural Engineering
– volume: 31
  start-page: 446
  year: 2022
  end-page: 455
  ident: b2
  article-title: Small data least-squares transformation (sd-LST) for fast calibration of SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– reference: (pp. 2818–2826).
– volume: 172
  year: 2024
  ident: b19
  article-title: Aggregating intrinsic information to enhance BCI performance through federated learning
  publication-title: Neural Networks
– volume: 65
  start-page: 104
  year: 2017
  end-page: 112
  ident: b26
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 28
  start-page: 2123
  year: 2020
  end-page: 2135
  ident: b41
  article-title: Inter-and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 16
  year: 2019
  ident: b1
  article-title: A comprehensive review of EEG-based brain–computer interface paradigms
  publication-title: Journal of Neural Engineering
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b28
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
– volume: 53
  start-page: 2610
  year: 2006
  end-page: 2614
  ident: b18
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 18
  year: 2021
  ident: b7
  article-title: Boosting template-based SSVEP decoding by cross-domain transfer learning
  publication-title: Journal of Neural Engineering
– volume: 53
  start-page: 1
  year: 2020
  end-page: 34
  ident: b35
  article-title: Generalizing from a few examples: A survey on few-shot learning
  publication-title: ACM Computing Surveys (csur)
– volume: 20
  year: 2023
  ident: b8
  article-title: TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network
  publication-title: Journal of Neural Engineering
– volume: 15
  year: 2018
  ident: b15
  article-title: et: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
– volume: 18
  year: 2021
  ident: b5
  article-title: A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy
  publication-title: Journal of Neural Engineering
– volume: 69
  start-page: 2018
  year: 2021
  end-page: 2028
  ident: b40
  article-title: Online adaptation boosts SSVEP-based BCI performance
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 19
  year: 2022
  ident: b43
  article-title: Bidirectional Siamese correlation analysis method for enhancing the detection of SSVEPs
  publication-title: Journal of Neural Engineering
– start-page: 287
  year: 2011
  end-page: 295
  ident: b45
  article-title: Multiway canonical correlation analysis for frequency components recognition in SSVEP-based BCIs
  publication-title: Neural information processing: 18th international conference, ICONIP 2011, shanghai, China, November 13-17, 2011, proceedings, part i 18
– volume: 44
  start-page: 5149
  year: 2021
  end-page: 5169
  ident: b11
  article-title: Meta-learning in neural networks: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2022
  ident: b23
  article-title: Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 168
  year: 2024
  ident: b25
  article-title: MetaBCI: An open-source platform for brain–computer interfaces
  publication-title: Computers in Biology and Medicine
– volume: 15
  year: 2018
  ident: b37
  article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials
  publication-title: Journal of Neural Engineering
– year: 2023
  ident: b12
  article-title: Cross-subject transfer method based on domain generalization for facilitating calibration of SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 33
  start-page: 2159
  year: 2021
  end-page: 2167
  ident: b36
  article-title: An MVMD-CCA recognition algorithm in SSVEP-based BCI and its application in robot control
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b29
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.neunet.2024.106734_b28
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– volume: 31
  start-page: 863
  year: 2023
  ident: 10.1016/j.neunet.2024.106734_b33
  article-title: A generalized zero-shot learning scheme for SSVEP-based BCI system
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3235804
– volume: 29
  start-page: 1998
  year: 2021
  ident: 10.1016/j.neunet.2024.106734_b21
  article-title: Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3114340
– volume: 14
  start-page: 234
  issue: 2
  year: 2006
  ident: 10.1016/j.neunet.2024.106734_b34
  article-title: A practical VEP-based brain-computer interface
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2006.875576
– volume: 24
  issue: 04
  year: 2014
  ident: 10.1016/j.neunet.2024.106734_b44
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065714500130
– volume: 31
  start-page: 446
  year: 2022
  ident: 10.1016/j.neunet.2024.106734_b2
  article-title: Small data least-squares transformation (sd-LST) for fast calibration of SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3225878
– volume: 172
  year: 2024
  ident: 10.1016/j.neunet.2024.106734_b19
  article-title: Aggregating intrinsic information to enhance BCI performance through federated learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2024.106100
– volume: 69
  start-page: 795
  issue: 2
  year: 2021
  ident: 10.1016/j.neunet.2024.106734_b20
  article-title: Align and pool for EEG headset domain adaptation (ALPHA) to facilitate dry electrode based SSVEP-BCI
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2021.3105331
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.neunet.2024.106734_b29
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 16
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2024.106734_b1
  article-title: A comprehensive review of EEG-based brain–computer interface paradigms
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aaf12e
– volume: 164
  start-page: 521
  year: 2023
  ident: 10.1016/j.neunet.2024.106734_b6
  article-title: A transformer-based deep neural network model for SSVEP classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.04.045
– volume: 18
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2024.106734_b5
  article-title: A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ab914e
– year: 2023
  ident: 10.1016/j.neunet.2024.106734_b12
  article-title: Cross-subject transfer method based on domain generalization for facilitating calibration of SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3305202
– year: 2008
  ident: 10.1016/j.neunet.2024.106734_b24
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 19
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2024.106734_b43
  article-title: Bidirectional Siamese correlation analysis method for enhancing the detection of SSVEPs
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac823e
– volume: 29
  year: 2016
  ident: 10.1016/j.neunet.2024.106734_b31
  article-title: Matching networks for one shot learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 44
  start-page: 5149
  issue: 9
  year: 2021
  ident: 10.1016/j.neunet.2024.106734_b11
  article-title: Meta-learning in neural networks: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 33
  start-page: 2159
  issue: 5
  year: 2021
  ident: 10.1016/j.neunet.2024.106734_b36
  article-title: An MVMD-CCA recognition algorithm in SSVEP-based BCI and its application in robot control
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3135696
– volume: 28
  start-page: 2123
  issue: 10
  year: 2020
  ident: 10.1016/j.neunet.2024.106734_b41
  article-title: Inter-and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.3019276
– volume: 10
  issue: 10
  year: 2015
  ident: 10.1016/j.neunet.2024.106734_b27
  article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140703
– start-page: 287
  year: 2011
  ident: 10.1016/j.neunet.2024.106734_b45
  article-title: Multiway canonical correlation analysis for frequency components recognition in SSVEP-based BCIs
– ident: 10.1016/j.neunet.2024.106734_b30
  doi: 10.1109/CVPR.2016.308
– volume: 12
  issue: 4
  year: 2015
  ident: 10.1016/j.neunet.2024.106734_b4
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/12/4/046008
– volume: 19
  issue: 5
  year: 2022
  ident: 10.1016/j.neunet.2024.106734_b42
  article-title: Fixed template network and dynamic template network: Novel network designs for decoding steady-state visual evoked potentials
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac9861
– year: 2022
  ident: 10.1016/j.neunet.2024.106734_b23
  article-title: Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 65
  start-page: 104
  issue: 1
  year: 2017
  ident: 10.1016/j.neunet.2024.106734_b26
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2017.2694818
– volume: 28
  start-page: 2681
  issue: 12
  year: 2020
  ident: 10.1016/j.neunet.2024.106734_b17
  article-title: Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.3038718
– ident: 10.1016/j.neunet.2024.106734_b16
  doi: 10.1145/3503161.3548269
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.neunet.2024.106734_b38
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 53
  start-page: 2610
  issue: 12
  year: 2006
  ident: 10.1016/j.neunet.2024.106734_b18
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2006.886577
– volume: 20
  issue: 4
  year: 2023
  ident: 10.1016/j.neunet.2024.106734_b8
  article-title: TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ace380
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.neunet.2024.106734_b35
  article-title: Generalizing from a few examples: A survey on few-shot learning
  publication-title: ACM Computing Surveys (csur)
  doi: 10.1145/3386252
– year: 2021
  ident: 10.1016/j.neunet.2024.106734_b13
  article-title: Robust similarity measurement based on a novel time filter for SSVEPs detection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 14
  start-page: 627
  year: 2020
  ident: 10.1016/j.neunet.2024.106734_b22
  article-title: BETA: A large benchmark database toward SSVEP-BCI application
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2020.00627
– volume: 25
  start-page: 1746
  issue: 10
  year: 2016
  ident: 10.1016/j.neunet.2024.106734_b32
  article-title: A benchmark dataset for SSVEP-based brain–computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2627556
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2024.106734_b39
  article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ab2373
– volume: 69
  start-page: 932
  issue: 2
  year: 2021
  ident: 10.1016/j.neunet.2024.106734_b9
  article-title: A deep neural network for ssvep-based brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2021.3110440
– volume: 18
  issue: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106734_b7
  article-title: Boosting template-based SSVEP decoding by cross-domain transfer learning
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/abcb6e
– volume: 168
  year: 2024
  ident: 10.1016/j.neunet.2024.106734_b25
  article-title: MetaBCI: An open-source platform for brain–computer interfaces
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.107806
– volume: 15
  issue: 6
  year: 2018
  ident: 10.1016/j.neunet.2024.106734_b37
  article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aae5d8
– volume: 69
  start-page: 2018
  issue: 6
  year: 2021
  ident: 10.1016/j.neunet.2024.106734_b40
  article-title: Online adaptation boosts SSVEP-based BCI performance
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2021.3133594
– year: 2023
  ident: 10.1016/j.neunet.2024.106734_b14
  article-title: Enhancing SSVEP identification with less individual calibration data using periodically repeated component analysis
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2024.106734_b15
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aace8c
– volume: 6
  issue: 4
  year: 2009
  ident: 10.1016/j.neunet.2024.106734_b3
  article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/6/4/046002
– volume: 20
  issue: 1
  year: 2023
  ident: 10.1016/j.neunet.2024.106734_b10
  article-title: Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training
  publication-title: Journal of Neural Engineering
SSID ssj0006843
Score 2.4583278
Snippet It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106734
SubjectTerms Adult
Algorithms
Brain-computer interface (BCI)
Brain-Computer Interfaces
Calibration
Data augmentation
Discriminant Analysis
Electroencephalography - methods
Evoked Potentials, Visual - physiology
Humans
Least-Squares Analysis
Male
Neural Networks, Computer
One-shot classification
Photic Stimulation - methods
Steady-state visual evoked potential (SSVEP)
Transfer learning
Title OS-SSVEP: One-shot SSVEP classification
URI https://dx.doi.org/10.1016/j.neunet.2024.106734
https://www.ncbi.nlm.nih.gov/pubmed/39332212
https://www.proquest.com/docview/3110729153
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4ftRHWUHwlDbZZLNZb6W0VIVWqJXeQl6LFdkW21797Sb7UDyUgscsEzZ8k8xMyDczANxiomwo4xhSZgykOmSQG5xCxlPNlYl5muYs3yEbTOjjNJrWQLfKhfG0ytL2FzY9t9bll3aJZnsxm7XHyLla5lNFae5H_b3dV69ze7r19UvzYLxgzjlh6KWr9Lmc45XZdWY9ozKkLV9LjdBN7mlT-Jm7of4B2Cvjx6BTLPEQ1Gx2BPar3gxBeVSPwd1oDMfj197zfTDKLFy-zVdBPg60j5c9QSjXyQmY9Hsv3QEsmyJA7XzNCkpkkOZI-ee7GGOlU6IwxZpJhkgUx0ixMJFaRtwiTZU2NHZOWqYJMiqxYUROQT2bZ_YcBFKzyMhI2cRqilOlIoMkj6RTU4ot4Q1AKiyELiuG-8YVH6Kihr2LAkHhERQFgg0Af2YtiooZW-TjCmbxR_PCGfUtM28qrQh3KPxLh8zsfL0UxN9qw8RZ8wY4K9T1sxaSEGfEcHjx7_9egl0_KkgtV6C--lzbaxearFQz33tNsNN5eBoMvwG9Y-DE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6kHvTi-1GfKwieYpNNNpv1JkWpryq0ld5CXouKbEXb_2-yj4IHETzuboYNM8k3E_LNDMApodrFKk0R49YiZmKOhCU54iI3QttU5HnJ8u3z3ojdjpPxAnSbXJhAq6yxv8L0Eq3rN51am52P19fOAHtXy0OqKCv9qD-3L4bqVKwFi5c3d73-HJC5qMhzfjwKAk0GXUnzKtyscIFUGbPzUE6Nst881G8RaOmJrtdgpQ4ho8tqluuw4IoNWG3aM0T1bt2Es8cBGgyer54uosfCoa-XyTQqnyMTQubAESrNsgWj66tht4fqvgjIeHczRQpbbATW4QYvJUSbnGrCiOGKY5qkKdY8zpRRiXDYMG0sS72fVnmGrc5cnNBtaBWTwu1CpAxPrEq0y5xhJNc6sViJRHlL5cRR0Qba6EKaumh46F3xLht22JusNCiDBmWlwTagudRHVTTjj_Fpo2b5w_jS4_ofkieNVaTfF-GyQxVuMvuSNBxs48wDeht2KnPN50Iz6nGMxHv__u8xLPWGD_fy_qZ_tw_L4UvFcTmA1vRz5g59pDLVR_VK_AaBcON1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OS-SSVEP%3A+One-shot+SSVEP+classification&rft.jtitle=Neural+networks&rft.au=Deng%2C+Yang&rft.au=Ji%2C+Zhiwei&rft.au=Wang%2C+Yijun&rft.au=Zhou%2C+S+Kevin&rft.date=2024-12-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=180&rft.spage=106734&rft_id=info:doi/10.1016%2Fj.neunet.2024.106734&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon