Optical Orthogonal Signature Pattern Codes With Maximum Collision Parameter 2 and Weight 4

An optical orthogonal signature pattern code (OOSPC) finds application in transmitting 2-D images through multicore fiber in code-division multiple-access (CDMA) communication systems. Observing a one-to-one correspondence between an OOSPC and a certain combinatorial subject, called a packing design...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 56; no. 7; pp. 3613 - 3620
Main Author Sawa, Masanori
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An optical orthogonal signature pattern code (OOSPC) finds application in transmitting 2-D images through multicore fiber in code-division multiple-access (CDMA) communication systems. Observing a one-to-one correspondence between an OOSPC and a certain combinatorial subject, called a packing design, we present a construction of optimal OOSPCs with weight 4 and maximum collision parameter 2, which generalizes a well-known Köhler construction of optimal optical orthogonal codes (OOC) with weight 4 and maximum collision parameter 2. Using this new construction enables one to obtain infinitely many optimal OOSPCs, whose existence was previously unknown. We prove that for a multiple n of 4, there exists no optimal OOSPC of size 6 n with weight 4 and maximum collision parameter 2, together with a report which shows a gap between optimal OOCs and optimal OOSPCs when 6 and n are not coprime. We also present a recursive construction of OOSPCs which are asymptotically optimal with respect to the Johnson bound. As a by-product, we obtain an asymptotically optimal (m, n, 4, 2)-OOSPC for all positive integers m and n.
AbstractList An optical orthogonal signature pattern code (OOSPC) finds application in transmitting 2-D images through multicore fiber in code-division multiple-access (CDMA) communication systems. Observing a one-to-one correspondence between an OOSPC and a certain combinatorial subject, called a packing design, we present a construction of optimal OOSPCs with weight 4 and maximum collision parameter 2 , which generalizes a well-known Koehler construction of optimal optical orthogonal codes (OOC) with weight 4 and maximum collision parameter 2 . Using this new construction enables one to obtain infinitely many optimal OOSPCs, whose existence was previously unknown. We prove that for a multiple n of 4 , there exists no optimal OOSPC of size 6 n with weight 4 and maximum collision parameter 2 , together with a report which shows a gap between optimal OOCs and optimal OOSPCs when 6 and n are not coprime. We also present a recursive construction of OOSPCs which are asymptotically optimal with respect to the Johnson bound. As a by-product, we obtain an asymptotically optimal ( m , n ,4,2 ) -OOSPC for all positive integers m and n .
An optical orthogonal signature pattern code (OOSPC) finds application in transmitting 2-D images through multicore fiber in code-division multiple-access (CDMA) communication systems. Observing a one-to-one correspondence between an OOSPC and a certain combinatorial subject, called a packing design, we present a construction of optimal OOSPCs with weight 4 and maximum collision parameter 2, which generalizes a well-known Köhler construction of optimal optical orthogonal codes (OOC) with weight 4 and maximum collision parameter 2. Using this new construction enables one to obtain infinitely many optimal OOSPCs, whose existence was previously unknown. We prove that for a multiple n of 4, there exists no optimal OOSPC of size 6 n with weight 4 and maximum collision parameter 2, together with a report which shows a gap between optimal OOCs and optimal OOSPCs when 6 and n are not coprime. We also present a recursive construction of OOSPCs which are asymptotically optimal with respect to the Johnson bound. As a by-product, we obtain an asymptotically optimal (m, n, 4, 2)-OOSPC for all positive integers m and n.
An optical orthogonal signature pattern code (OOSPC) finds application in transmitting 2-D images through multicore fiber in code-division multiple-access (CDMA) communication systems. Observing a one-to-one correspondence between an OOSPC and a certain combinatorial subject, called a packing design, we present a construction of optimal OOSPCs with weight $4$ and maximum collision parameter $2$, which generalizes a well-known Kohler construction of optimal optical orthogonal codes (OOC) with weight $4$ and maximum collision parameter $2$. Using this new construction enables one to obtain infinitely many optimal OOSPCs, whose existence was previously unknown. We prove that for a multiple $n$ of $4$, there exists no optimal OOSPC of size $6times n$ with weight $4$ and maximum collision parameter $2$, together with a report which shows a gap between optimal OOCs and optimal OOSPCs when $6$ and $n$ are not coprime. We also present a recursive construction of OOSPCs which are asymptotically optimal with respect to the Johnson bound. As a by-product, we obtain an asymptotically optimal $(m,n,4,2)$-OOSPC for all positive integers $m$ and $n$. [PUBLICATION ABSTRACT]
Author Sawa, Masanori
Author_xml – sequence: 1
  givenname: Masanori
  surname: Sawa
  fullname: Sawa, Masanori
  email: sawa@is.nagoya-u.ac.jp
  organization: Nagoya Univ., Nagoya, Japan
BookMark eNp9kM1LKzEUxYMoWKt7wU1w42o0mZl8LaWoT_BRwYrgJtzO3LaRmUlNMvD8741U3sKFq_v1OxfOOSL7gx-QkFPOLjln5mpxv7gsWZ5KVutaqz0y4UKowkhR75MJY1wXpq71ITmK8S2PteDlhLzOt8k10NF5SBu_9kNun9x6gDQGpI-QEoaBznyLkb64tKF_4Z_rxz6vus5F54cMBegxc7SkMLT0Bd16k2h9TA5W0EU8-a5T8nx7s5j9KR7md_ez64eiqWSZCgOag64qJrBkErBsl0uzahts2pXhkmujtaiWULFWwVIjU8BkKzhI3SgmTDUlF7u_2-DfR4zJ9i422HUwoB-jVaKSmiutM3n-g3zzY8iWo5XMGGUULzMkd1ATfIwBV7ZxCVJ2mgK4znJmvwK3OXD7Fbj9DjwL2Q_hNrgewsdvkrOdxCHif1zko8nXT09cjKQ
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_disc_2015_08_005
crossref_primary_10_1109_TIT_2017_2788140
crossref_primary_10_1109_TIT_2017_2787593
crossref_primary_10_1016_j_disc_2019_03_006
crossref_primary_10_1587_transfun_E102_A_1416
crossref_primary_10_1080_15598608_2012_647536
crossref_primary_10_1002_jcd_21812
crossref_primary_10_1109_TIT_2014_2381259
crossref_primary_10_1007_s10623_016_0310_8
crossref_primary_10_1016_j_disc_2021_112552
crossref_primary_10_1016_j_disc_2013_09_005
crossref_primary_10_1007_s10623_022_01078_4
crossref_primary_10_1016_j_disc_2013_02_019
crossref_primary_10_1007_s10623_019_00675_0
crossref_primary_10_1007_s10623_025_01587_y
crossref_primary_10_1007_s10623_017_0409_6
Cites_doi 10.1109/TIT.2003.818387
10.1109/49.372419
10.1109/26.649764
10.1016/j.jcta.2006.03.017
10.1109/18.135636
10.1109/TIT.2003.810628
10.1016/0097-3165(84)90077-3
10.1016/j.ffa.2003.09.004
10.1109/TIT.1962.1057714
10.1007/BF02941286
10.1109/18.30982
10.1016/S0012-365X(03)00266-8
10.1016/0012-365X(72)90027-1
10.1016/j.jcta.2008.03.003
10.1109/18.887852
10.1016/j.jcta.2007.01.002
10.1109/ISIT.2005.1523334
10.1016/0012-365X(91)90452-8
10.1109/18.370146
10.1109/49.286683
10.1007/BF01200480
10.1007/BF01418528
10.1109/68.163765
10.1080/15598608.2012.647536
10.1137/S0895480100377234
10.1109/26.486611
10.1109/18.53748
10.1007/11863854_4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2010.2048487
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 3620
ExternalDocumentID 2080645201
10_1109_TIT_2010_2048487
5484987
Genre orig-research
Feature
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c362t-9a81a83305e206ae2dbb9fdcecdf9161898853ba30d7ab8e07a06d51a68c70593
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Fri Jul 11 15:29:55 EDT 2025
Mon Jun 30 06:21:43 EDT 2025
Tue Jul 01 02:34:26 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Aug 26 16:40:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-9a81a83305e206ae2dbb9fdcecdf9161898853ba30d7ab8e07a06d51a68c70593
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://nagoya.repo.nii.ac.jp/records/12617
PQID 609979712
PQPubID 36024
PageCount 8
ParticipantIDs proquest_journals_609979712
proquest_miscellaneous_753681788
ieee_primary_5484987
crossref_citationtrail_10_1109_TIT_2010_2048487
crossref_primary_10_1109_TIT_2010_2048487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-July
2010-07-00
20100701
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref36
ref14
ref31
piotrowski (ref26) 1985
ref30
ref33
ref11
niskanen (ref28) 2003
ref10
yang (ref6) 1997; 45
ref2
ref1
ref19
ref18
fitting (ref21) 1915; 11
chu (ref34) 2003; 49
(ref27) 2008
sawa (ref35) 2007
nguyen (ref32) 1992; 38
ref24
beth (ref16) 1993; 1
ref23
omrani (ref5) 2006
ref25
ref20
ref22
stergrd (ref29) 2007
schonheim (ref17) 1966; 1
ref8
ref7
ref9
ref4
ref3
References_xml – volume: 49
  start-page: 3072
  year: 2003
  ident: ref34
  article-title: a new recursive construction for optical orthogonal codes
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2003.818387
– ident: ref2
  doi: 10.1109/49.372419
– volume: 45
  start-page: 1426
  year: 1997
  ident: ref6
  article-title: performance comparison of multiwavelength cdma and wdma<formula formulatype="inline"><tex notation="tex">$+$</tex></formula>cdma for fiber-optic networks
  publication-title: IEEE Trans Commun
  doi: 10.1109/26.649764
– ident: ref30
  doi: 10.1016/j.jcta.2006.03.017
– volume: 38
  start-page: 940
  year: 1992
  ident: ref32
  article-title: Constructions of binary constant weight cyclic codes and cyclically permutable codes
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.135636
– ident: ref8
  doi: 10.1109/TIT.2003.810628
– year: 2007
  ident: ref35
  publication-title: On combinatorial designs via compositions and finite groups
– volume: 1
  year: 1993
  ident: ref16
  publication-title: Design TheoryEncyclopedia of Mathematics and its Applications 69
– ident: ref36
  doi: 10.1016/0097-3165(84)90077-3
– ident: ref33
  doi: 10.1016/j.ffa.2003.09.004
– ident: ref18
  doi: 10.1109/TIT.1962.1057714
– ident: ref22
  doi: 10.1007/BF02941286
– ident: ref10
  doi: 10.1109/18.30982
– ident: ref14
  doi: 10.1016/S0012-365X(03)00266-8
– ident: ref31
  doi: 10.1016/0012-365X(72)90027-1
– ident: ref19
  doi: 10.1016/j.jcta.2008.03.003
– ident: ref11
  doi: 10.1109/18.887852
– ident: ref20
  doi: 10.1016/j.jcta.2007.01.002
– start-page: l
  year: 1985
  ident: ref26
  article-title: Untersuchungen über S-zyklische Quadrupelsysteme
  publication-title: Diss Univ Hamburg
– ident: ref15
  doi: 10.1109/ISIT.2005.1523334
– ident: ref23
  doi: 10.1016/0012-365X(91)90452-8
– ident: ref7
  doi: 10.1109/18.370146
– ident: ref1
  doi: 10.1109/49.286683
– ident: ref24
  doi: 10.1007/BF01200480
– year: 2003
  ident: ref28
  publication-title: Cliquer User's Guide Version 1 0
– year: 2008
  ident: ref27
  publication-title: The GAP Group GAPGroups Algorithms and Programming
– ident: ref13
  doi: 10.1007/BF01418528
– ident: ref3
  doi: 10.1109/68.163765
– ident: ref25
  doi: 10.1080/15598608.2012.647536
– ident: ref12
  doi: 10.1137/S0895480100377234
– ident: ref4
  doi: 10.1109/26.486611
– volume: 1
  start-page: 363
  year: 1966
  ident: ref17
  article-title: on maximal systems of <formula formulatype="inline"><tex notation="tex">$k$</tex></formula>-tuples
  publication-title: Syudia Sci Math Hungary
– ident: ref9
  doi: 10.1109/18.53748
– year: 2007
  ident: ref29
  publication-title: private communication
– volume: 11
  start-page: 140
  year: 1915
  ident: ref21
  article-title: Zyklische Lösung des Steinerschen problems
  publication-title: Nieuw Arch Wisk
– start-page: 34
  year: 2006
  ident: ref5
  publication-title: Lecture Note in Computer Science
  doi: 10.1007/11863854_4
SSID ssj0014512
Score 2.0817335
Snippet An optical orthogonal signature pattern code (OOSPC) finds application in transmitting 2-D images through multicore fiber in code-division multiple-access...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3613
SubjectTerms Asymptotic properties
Autocorrelation
Automorphism group
Broadcasting
Byproducts
Code Division Multiple Access
Codes
Collision parameters
Combinatorial analysis
Construction
Data transmission
H -design
Information processing
Multiaccess communication
Multicore processing
Optical design
Optical fiber communication
Optical fiber networks
optical orthogonal code (OOC)
optical orthogonal signature pattern code (OOSPC)
Optical receivers
Optics
Optimization
packing design
Parameter optimization
Pixel
Signatures
space code-division multiple access
Title Optical Orthogonal Signature Pattern Codes With Maximum Collision Parameter 2 and Weight 4
URI https://ieeexplore.ieee.org/document/5484987
https://www.proquest.com/docview/609979712
https://www.proquest.com/docview/753681788
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS91AFD6oK13U-ii9tZVZdFNo7s1jMplZFqmoYBV6RekmzFMv1kS8CZT--p6ZPBCV4i6QmWTgnDPn_R2Az5k1yBVORiotWERppiLOMho55RzTTKPSCGifP9jRBT25yq9W4OvYC2OtDcVnduofQy7f1Lr1obIZWtcUfeRVWEXHrevVGjMGNE86ZPAEBRh9jiElGYvZ_Hje1XB5kFrqi-ceqaAwU-XZRRy0y-EmnA7n6opKbqdto6b67xPIxtce_C286c1M8q3jiy1YsdU2bA4jHEgv0duw8QiPcAd-nd2H0DY5e2hu6mtvpJOfi-sO_JOcByjOihzUxi7J5aK5Iafyz-KuvSM-_BCa1HGRr_by_0iJrAy5DKFXQnfh4vD7_OAo6ocvRBp1WhMJyRPJM7wObBozaVOjlHBGW22c8Cj7gqOmVzKLTSEVt3EhY2byRDKuCz8n8B2sVXVl3wOhiUVG4UUhHKOFk5w5m2tjhHAq1zSbwGygR6l7ZHI_ION3GTyUWJRIwdJTsOwpOIEv4477DpXjP2t3PEHGdT0tJrA3kLzsxXZZMt9HLIoknQAZ36K8-SSKrGzdLkt07xhPkP8-vPzdPVjvCgx8Re9HWGseWvsJ7ZZG7QeG_Qe79OnR
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JaxRBFH7EeFAPRhPFSVzq4EWwZ3qpruUowTDRTCI4IcFLUWsymHSHTDeIv96q6oWgIt4auqq74L1Xb_8ewNvCGs8VTiYqpyTBuFAJIwVOnHKOaKK90ohon8dkfoo_nZfnG_B-7IWx1sbiMzsNjzGXb2rdhlDZzFvX2PvI9-C-1_tl1nVrjTkDXGYdNnjmRdh7HUNSMuWz5eGyq-IKMLU4lM_dUUJxqsofV3HULwdbsBhO1pWVfJ-2jZrqn7-BNv7v0Z_A497QRB86zngKG7bahq1hiAPqZXobHt1BJNyBbyc3MbiNTm6by_oimOno6-qig_9EXyIYZ4X2a2PX6GzVXKKF_LG6bq9RCEDENnW_KNR7hX_kSFYGncXgK8LP4PTg43J_nvTjFxLttVqTcMkyyQp_Idg8JdLmRinujLbaOB5w9jnzul7JIjVUKmZTKlNiykwSpmmYFPgcNqu6si8A4cx6VmGUckcwdZIRZ0ttDOdOlRoXE5gN9BC6xyYPIzKuRPRRUi48BUWgoOgpOIF3446bDpfjH2t3AkHGdT0tJrA3kFz0grsWJHQSc5rlE0DjWy9xIY0iK1u3a-EdPMIyytju37_7Bh7Ml4sjcXR4_HkPHnblBqG-9yVsNretfeWtmEa9jsz7CxPa7Ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Orthogonal+Signature+Pattern+Codes+With+Maximum+Collision+Parameter+2+and+Weight+4&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Sawa%2C+Masanori&rft.date=2010-07-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=56&rft.issue=7&rft.spage=3613&rft.epage=3620&rft_id=info:doi/10.1109%2FTIT.2010.2048487&rft.externalDocID=5484987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon