Online continual decoding of streaming EEG signal with a balanced and informative memory buffer

Electroencephalography (EEG) based Brain Computer Interface (BCI) systems play a significant role in facilitating how individuals with neurological impairments effectively interact with their environment. In real world applications of BCI system for clinical assistance and rehabilitation training, t...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 176; p. 106338
Main Authors Duan, Tiehang, Wang, Zhenyi, Li, Fang, Doretto, Gianfranco, Adjeroh, Donald A., Yin, Yiyi, Tao, Cui
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) based Brain Computer Interface (BCI) systems play a significant role in facilitating how individuals with neurological impairments effectively interact with their environment. In real world applications of BCI system for clinical assistance and rehabilitation training, the EEG classifier often needs to learn on sequentially arriving subjects in an online manner. As patterns of EEG signals can be significantly different for different subjects, the EEG classifier can easily erase knowledge of learnt subjects after learning on later ones as it performs decoding in online streaming scenario, namely catastrophic forgetting. In this work, we tackle this problem with a memory-based approach, which considers the following conditions: (1) subjects arrive sequentially in an online manner, with no large scale dataset available for joint training beforehand, (2) data volume from the different subjects could be imbalanced, (3) decoding difficulty of the sequential streaming signal vary, (4) continual classification for a long time is required. This online sequential EEG decoding problem is more challenging than classic cross subject EEG decoding as there is no large-scale training data from the different subjects available beforehand. The proposed model keeps a small balanced memory buffer during sequential learning, with memory data dynamically selected based on joint consideration of data volume and informativeness. Furthermore, for the more general scenarios where subject identity is unknown to the EEG decoder, aka. subject agnostic scenario, we propose a kernel based subject shift detection method that identifies underlying subject changes on the fly in a computationally efficient manner. We develop challenging benchmarks of streaming EEG data from sequentially arriving subjects with both balanced and imbalanced data volumes, and performed extensive experiments with a detailed ablation study on the proposed model. The results show the effectiveness of our proposed approach, enabling the decoder to maintain performance on all previously seen subjects over a long period of sequential decoding. The model demonstrates the potential for real-world applications.
AbstractList Electroencephalography (EEG) based Brain Computer Interface (BCI) systems play a significant role in facilitating how individuals with neurological impairments effectively interact with their environment. In real world applications of BCI system for clinical assistance and rehabilitation training, the EEG classifier often needs to learn on sequentially arriving subjects in an online manner. As patterns of EEG signals can be significantly different for different subjects, the EEG classifier can easily erase knowledge of learnt subjects after learning on later ones as it performs decoding in online streaming scenario, namely catastrophic forgetting. In this work, we tackle this problem with a memory-based approach, which considers the following conditions: (1) subjects arrive sequentially in an online manner, with no large scale dataset available for joint training beforehand, (2) data volume from the different subjects could be imbalanced, (3) decoding difficulty of the sequential streaming signal vary, (4) continual classification for a long time is required. This online sequential EEG decoding problem is more challenging than classic cross subject EEG decoding as there is no large-scale training data from the different subjects available beforehand. The proposed model keeps a small balanced memory buffer during sequential learning, with memory data dynamically selected based on joint consideration of data volume and informativeness. Furthermore, for the more general scenarios where subject identity is unknown to the EEG decoder, aka. subject agnostic scenario, we propose a kernel based subject shift detection method that identifies underlying subject changes on the fly in a computationally efficient manner. We develop challenging benchmarks of streaming EEG data from sequentially arriving subjects with both balanced and imbalanced data volumes, and performed extensive experiments with a detailed ablation study on the proposed model. The results show the effectiveness of our proposed approach, enabling the decoder to maintain performance on all previously seen subjects over a long period of sequential decoding. The model demonstrates the potential for real-world applications.Electroencephalography (EEG) based Brain Computer Interface (BCI) systems play a significant role in facilitating how individuals with neurological impairments effectively interact with their environment. In real world applications of BCI system for clinical assistance and rehabilitation training, the EEG classifier often needs to learn on sequentially arriving subjects in an online manner. As patterns of EEG signals can be significantly different for different subjects, the EEG classifier can easily erase knowledge of learnt subjects after learning on later ones as it performs decoding in online streaming scenario, namely catastrophic forgetting. In this work, we tackle this problem with a memory-based approach, which considers the following conditions: (1) subjects arrive sequentially in an online manner, with no large scale dataset available for joint training beforehand, (2) data volume from the different subjects could be imbalanced, (3) decoding difficulty of the sequential streaming signal vary, (4) continual classification for a long time is required. This online sequential EEG decoding problem is more challenging than classic cross subject EEG decoding as there is no large-scale training data from the different subjects available beforehand. The proposed model keeps a small balanced memory buffer during sequential learning, with memory data dynamically selected based on joint consideration of data volume and informativeness. Furthermore, for the more general scenarios where subject identity is unknown to the EEG decoder, aka. subject agnostic scenario, we propose a kernel based subject shift detection method that identifies underlying subject changes on the fly in a computationally efficient manner. We develop challenging benchmarks of streaming EEG data from sequentially arriving subjects with both balanced and imbalanced data volumes, and performed extensive experiments with a detailed ablation study on the proposed model. The results show the effectiveness of our proposed approach, enabling the decoder to maintain performance on all previously seen subjects over a long period of sequential decoding. The model demonstrates the potential for real-world applications.
Electroencephalography (EEG) based Brain Computer Interface (BCI) systems play a significant role in facilitating how individuals with neurological impairments effectively interact with their environment. In real world applications of BCI system for clinical assistance and rehabilitation training, the EEG classifier often needs to learn on sequentially arriving subjects in an online manner. As patterns of EEG signals can be significantly different for different subjects, the EEG classifier can easily erase knowledge of learnt subjects after learning on later ones as it performs decoding in online streaming scenario, namely catastrophic forgetting. In this work, we tackle this problem with a memory-based approach, which considers the following conditions: (1) subjects arrive sequentially in an online manner, with no large scale dataset available for joint training beforehand, (2) data volume from the different subjects could be imbalanced, (3) decoding difficulty of the sequential streaming signal vary, (4) continual classification for a long time is required. This online sequential EEG decoding problem is more challenging than classic cross subject EEG decoding as there is no large-scale training data from the different subjects available beforehand. The proposed model keeps a small balanced memory buffer during sequential learning, with memory data dynamically selected based on joint consideration of data volume and informativeness. Furthermore, for the more general scenarios where subject identity is unknown to the EEG decoder, aka. subject agnostic scenario, we propose a kernel based subject shift detection method that identifies underlying subject changes on the fly in a computationally efficient manner. We develop challenging benchmarks of streaming EEG data from sequentially arriving subjects with both balanced and imbalanced data volumes, and performed extensive experiments with a detailed ablation study on the proposed model. The results show the effectiveness of our proposed approach, enabling the decoder to maintain performance on all previously seen subjects over a long period of sequential decoding. The model demonstrates the potential for real-world applications.
ArticleNumber 106338
Author Li, Fang
Duan, Tiehang
Tao, Cui
Yin, Yiyi
Wang, Zhenyi
Doretto, Gianfranco
Adjeroh, Donald A.
Author_xml – sequence: 1
  givenname: Tiehang
  orcidid: 0000-0003-4323-642X
  surname: Duan
  fullname: Duan, Tiehang
  organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, 32246 United States
– sequence: 2
  givenname: Zhenyi
  orcidid: 0000-0002-2780-9446
  surname: Wang
  fullname: Wang, Zhenyi
  organization: Department of Computer Science, University of Maryland, College Park, MD, 20742, United States
– sequence: 3
  givenname: Fang
  surname: Li
  fullname: Li, Fang
  organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, 32246 United States
– sequence: 4
  givenname: Gianfranco
  orcidid: 0000-0002-8921-6646
  surname: Doretto
  fullname: Doretto, Gianfranco
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26506, United States
– sequence: 5
  givenname: Donald A.
  surname: Adjeroh
  fullname: Adjeroh, Donald A.
  email: Donald.Adjeroh@mail.wvu.edu
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26506, United States
– sequence: 6
  givenname: Yiyi
  orcidid: 0000-0002-7961-9214
  surname: Yin
  fullname: Yin, Yiyi
  organization: Meta AI, Seattle, WA, 98005, United States
– sequence: 7
  givenname: Cui
  surname: Tao
  fullname: Tao, Cui
  email: Tao.Cui@mayo.edu
  organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, 32246 United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38692190$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1vFDEQhq0oiFwC_wAhlzR7-OPWa1MgoegSkCKlgdry2uPEp1072N6g_Ht82oSCAqrRjJ53NPOco9OYIiD0jpItJVR8PGwjLBHqlhG2ayPBuTxBGyoH1bFBslO0IVLxThBJztB5KQdCiJA7_hqdcSkUo4pskL6NU4iAbYo1xMVM2IFNLsQ7nDwuNYOZj81-f41LuIsN-BXqPTZ4NJOJFhw20eEQfcqzqeER8Axzyk94XLyH_Aa98mYq8Pa5XqAfV_vvl1-7m9vrb5dfbjrLBaudUkCoMYMbnXRWcb_z0ksqvJc948oKz5SxPR1bAWeFNIoNQ_vHG8pG2vML9GHd-5DTzwVK1XMoFqZ2I6SlaE56QgfeK9nQ98_oMs7g9EMOs8lP-kVKA3YrYHMqJYP_g1Cij-71Qa_u9dG9Xt232Ke_YjbUpqSZzSZM_wt_XsPQJD0GyLrYAEe_IYOt2qXw7wW_AX95olM
CitedBy_id crossref_primary_10_1007_s11517_024_03246_1
crossref_primary_10_3390_brainsci15020098
Cites_doi 10.1088/1741-2552/aaf3f6
10.1109/TPAMI.2017.2773081
10.1007/s00542-020-05146-4
10.1088/1741-2552/acfe9c
10.1088/1741-2560/12/4/046007
10.1080/10400435.2012.723298
10.1109/T-AFFC.2011.15
10.1109/TBME.2013.2253608
10.1007/978-3-030-58536-5_31
10.1016/j.neunet.2020.05.032
10.1109/CVPR52688.2022.00782
10.15412/J.BCN.03070208
10.3389/fnhum.2021.627100
10.1038/s41597-022-01509-w
10.1016/j.neuroimage.2021.118207
10.1109/TCDS.2018.2826840
10.1109/LSP.2019.2906824
10.1016/j.ymeth.2008.07.006
10.1109/ICCV48922.2021.00882
10.1109/TSP.2020.2990597
10.3389/fnins.2012.00055
10.1016/j.jneumeth.2015.06.010
10.1088/1741-2552/aace8c
10.1073/pnas.1611835114
10.1109/CVPR.2017.587
10.1371/journal.pone.0246913
10.1109/TNSRE.2016.2627556
10.1002/hbm.23730
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2024.106338
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 38692190
10_1016_j_neunet_2024_106338
S0893608024002624
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c362t-99e01aa7dbd8dc93f4f8f816ff85239c6f29ac51b29aedc68a9277006fa12b153
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Fri Jul 11 07:55:13 EDT 2025
Mon Jul 21 05:55:38 EDT 2025
Tue Jul 01 03:32:19 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Tue Jun 18 08:52:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Continual learning
Online Learning
EEG decoding
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-99e01aa7dbd8dc93f4f8f816ff85239c6f29ac51b29aedc68a9277006fa12b153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2780-9446
0000-0003-4323-642X
0000-0002-8921-6646
0000-0002-7961-9214
PMID 38692190
PQID 3050173598
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3050173598
pubmed_primary_38692190
crossref_primary_10_1016_j_neunet_2024_106338
crossref_citationtrail_10_1016_j_neunet_2024_106338
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moghimi, Kushki, Marie Guerguerian, Chau (b31) 2013; 25
(pp. 8927–8937).
Welling (b54) 2009
Chaudhry, Rohrbach, Elhoseiny, Ajanthan, Dokania, Torr (b8) 2019
Wang, Z., Duan, T., Fang, L., Suo, Q., & Gao, M. (2021). Meta Learning on a Sequence of Imbalanced Domains with Difficulty Awareness. In
Rusu, Rabinowitz, Desjardins, Soyer, Kirkpatrick, Kavukcuoglu (b39) 2016
Li, Hoiem (b24) 2018; 40
Vaart (b47) 1998
(pp. 7972–7982).
Volpi, Larlus, Rogez (b48) 2020
Fernando, Banarse, Blundell, Zwols, Ha, Rusu (b12) 2017
Hafeez, Umar Saeed, Arsalan, Anwar, Ashraf, Alsubhi (b15) 2021; 16
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b23) 2018; 15
Arani, Sarfraz, Zonooz (b2) 2022
Fahimi, Zhang, Goh, Lee, Ang, Guan (b11) 2019; 16
Rebuffi, S.-A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2016). iCaRL: Incremental Classifier and Representation Learning. In
Jin, Sadhu, Du, Ren (b18) 2020
von Oswald, Henning, Grewe, Sacramento (b32) 2020
Thompson, Steffert, Ros, Leach, Gruzelier (b46) 2008; 45
Marzbani, Marateb, Mansourian (b29) 2016; 7
Wulfmeier, Bewley, Posner (b56) 2018
Won, Kwon, Ahn, Jun (b55) 2022; 9
Lincong, Wang, Xu, Sun, Yi, Xu (b25) 2023; 20
Prabhu, A., Torr, P., & Dokania, P. (2020). GDumb: A Simple Approach that Questions Our Progress in Continual Learning. In
Wang, Fink, Van Gool, Dai (b51) 2022
Campbell, Choudhury, Hu, Lu, Mukerjee, Rabbi (b6) 2010
Yoon, Yang, Lee, Hwang (b58) 2018
.
Arnold, Manzagol, Babanezhad, Mitliagkas, Roux (b3) 2019
Gadhoumi, Lina, Mormann, Gotman (b13) 2016; 260
Serfling (b42) 2009
Zhang, Yao, Chen, Monaghan (b60) 2019; 26
Zenke, Poole, Ganguli (b59) 2017
Zheng, Lu (b61) 2016
Haugg, Renz, Nicholson, Lor, Götzendorfer, Sladky (b16) 2021; 237
Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., et al. (2019). Learning to Learn without Forgetting by Maximizing Transfer and Minimizing Interference. In
Shin, Lee, Kim, Kim (b43) 2017
Kirkpatrick, Pascanu, Rabinowitz, Veness, Desjardins, Rusu (b20) 2017
Gretton, Borgwardt, Rasch, Schölkopf, Smola (b14) 2012; 13
Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner (b45) 2012; 6
Keriven, Garreau, Poli (b19) 2020; 68
Samek, Meinecke, Müller (b40) 2013; 60
Borra, Fantozzi, Magosso (b5) 2020; 129
Iturrate, Antelis, Minguez (b17) 2009
Xie, Wang, Jiayuan, Yue, Meng, Yi (b57) 2023; 20
Chaudhry, A., Ranzato, M., Rohrbach, M., & Elhoseiny, M. (2019). Efficient Lifelong Learning with A-GEM. In
Ebrahimi, Elhoseiny, Darrell, Rohrbach (b10) 2019
Liu, Liu (b26) 2022
Lopez-Paz, Ranzato (b28) 2017
Mirkovic, Debener, Jaeger, de Vos (b30) 2015; 12
PourKeshavarzi, Zhao, Sabokrou (b33) 2022
Rostami (b38) 2021
Qin, Hu, Peng, Zhao, Liu (b35) 2021
Wang, Chen, Gao, Gao (b49) 2017; 25
Aljundi, Caccia, Belilovsky, Caccia, Lin, Charlin (b1) 2019
Lan, Sourina, Wang, Scherer, Müller-Putz (b22) 2019; 11
Wang, Z., Shen, L., Duan, T., Zhan, D., Fang, L., & Gao, M. (2022). Learning to Learn and Remember Super Long Multi-Domain Task Sequence. In
Duan, Zhu, Lu (b9) 2013
(pp. 5533–5542).
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (b41) 2017; 38
Bhattacharyya, Das, Das, Dey, Dhar (b4) 2021; 27
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi (b21) 2012; 3
Lopez-Paz, Ranzato (b27) 2017
SSVEP-DAN: A Data Alignment Network for SSVEP-based Brain Computer Interfaces (b44) 2023
Wang, Luo, Guo, Du, Cheng, Wang (b52) 2021; 15
10.1016/j.neunet.2024.106338_b34
10.1016/j.neunet.2024.106338_b37
10.1016/j.neunet.2024.106338_b36
Chaudhry (10.1016/j.neunet.2024.106338_b8) 2019
Li (10.1016/j.neunet.2024.106338_b24) 2018; 40
Lan (10.1016/j.neunet.2024.106338_b22) 2019; 11
Volpi (10.1016/j.neunet.2024.106338_b48) 2020
Arani (10.1016/j.neunet.2024.106338_b2) 2022
Haugg (10.1016/j.neunet.2024.106338_b16) 2021; 237
Wang (10.1016/j.neunet.2024.106338_b52) 2021; 15
Zhang (10.1016/j.neunet.2024.106338_b60) 2019; 26
SSVEP-DAN: A Data Alignment Network for SSVEP-based Brain Computer Interfaces (10.1016/j.neunet.2024.106338_b44) 2023
Kirkpatrick (10.1016/j.neunet.2024.106338_b20) 2017
Thompson (10.1016/j.neunet.2024.106338_b46) 2008; 45
Liu (10.1016/j.neunet.2024.106338_b26) 2022
Hafeez (10.1016/j.neunet.2024.106338_b15) 2021; 16
Samek (10.1016/j.neunet.2024.106338_b40) 2013; 60
Moghimi (10.1016/j.neunet.2024.106338_b31) 2013; 25
Rostami (10.1016/j.neunet.2024.106338_b38) 2021
Lopez-Paz (10.1016/j.neunet.2024.106338_b27) 2017
Serfling (10.1016/j.neunet.2024.106338_b42) 2009
Ebrahimi (10.1016/j.neunet.2024.106338_b10) 2019
Wang (10.1016/j.neunet.2024.106338_b49) 2017; 25
Borra (10.1016/j.neunet.2024.106338_b5) 2020; 129
Schirrmeister (10.1016/j.neunet.2024.106338_b41) 2017; 38
Arnold (10.1016/j.neunet.2024.106338_b3) 2019
Fernando (10.1016/j.neunet.2024.106338_b12) 2017
Won (10.1016/j.neunet.2024.106338_b55) 2022; 9
10.1016/j.neunet.2024.106338_b53
10.1016/j.neunet.2024.106338_b7
von Oswald (10.1016/j.neunet.2024.106338_b32) 2020
Welling (10.1016/j.neunet.2024.106338_b54) 2009
Lincong (10.1016/j.neunet.2024.106338_b25) 2023; 20
Iturrate (10.1016/j.neunet.2024.106338_b17) 2009
Gadhoumi (10.1016/j.neunet.2024.106338_b13) 2016; 260
Rusu (10.1016/j.neunet.2024.106338_b39) 2016
Wang (10.1016/j.neunet.2024.106338_b51) 2022
Lawhern (10.1016/j.neunet.2024.106338_b23) 2018; 15
PourKeshavarzi (10.1016/j.neunet.2024.106338_b33) 2022
Qin (10.1016/j.neunet.2024.106338_b35) 2021
Duan (10.1016/j.neunet.2024.106338_b9) 2013
Xie (10.1016/j.neunet.2024.106338_b57) 2023; 20
Gretton (10.1016/j.neunet.2024.106338_b14) 2012; 13
Zenke (10.1016/j.neunet.2024.106338_b59) 2017
Zheng (10.1016/j.neunet.2024.106338_b61) 2016
Bhattacharyya (10.1016/j.neunet.2024.106338_b4) 2021; 27
Shin (10.1016/j.neunet.2024.106338_b43) 2017
Mirkovic (10.1016/j.neunet.2024.106338_b30) 2015; 12
Lopez-Paz (10.1016/j.neunet.2024.106338_b28) 2017
Koelstra (10.1016/j.neunet.2024.106338_b21) 2012; 3
Vaart (10.1016/j.neunet.2024.106338_b47) 1998
Aljundi (10.1016/j.neunet.2024.106338_b1) 2019
Yoon (10.1016/j.neunet.2024.106338_b58) 2018
Keriven (10.1016/j.neunet.2024.106338_b19) 2020; 68
Tangermann (10.1016/j.neunet.2024.106338_b45) 2012; 6
Fahimi (10.1016/j.neunet.2024.106338_b11) 2019; 16
Jin (10.1016/j.neunet.2024.106338_b18) 2020
Campbell (10.1016/j.neunet.2024.106338_b6) 2010
Wulfmeier (10.1016/j.neunet.2024.106338_b56) 2018
10.1016/j.neunet.2024.106338_b50
Marzbani (10.1016/j.neunet.2024.106338_b29) 2016; 7
References_xml – volume: 15
  year: 2018
  ident: b23
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
– year: 2022
  ident: b26
  article-title: Continual learning with recursive gradient optimization
– year: 1998
  ident: b47
  publication-title: Asymptotic Statistics
– start-page: 3987
  year: 2017
  end-page: 3995
  ident: b59
  article-title: Continual learning through synaptic intelligence
  publication-title: Proceedings of the 34th international conference on machine learning - volume 70
– start-page: 2318
  year: 2009
  end-page: 2325
  ident: b17
  article-title: Synchronous EEG brain-actuated wheelchair with automated navigation
  publication-title: 2009 IEEE international conference on robotics and automation
– start-page: 1121
  year: 2009
  end-page: 1128
  ident: b54
  article-title: Herding dynamical weights to learn
  publication-title: Proceedings of the 26th annual international conference on machine learning
– volume: 45
  start-page: 279
  year: 2008
  end-page: 288
  ident: b46
  article-title: EEG applications for sport and performance
  publication-title: Methods
– reference: (pp. 5533–5542).
– volume: 40
  start-page: 2935
  year: 2018
  end-page: 2947
  ident: b24
  article-title: Learning without forgetting
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2022
  ident: b33
  article-title: Looking back on learned experiences for class/task incremental learning
  publication-title: International conference on learning representations
– reference: Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., et al. (2019). Learning to Learn without Forgetting by Maximizing Transfer and Minimizing Interference. In
– year: 2022
  ident: b2
  article-title: Learning fast, learning slow: A general continual learning method based on complementary learning system
  publication-title: International conference on learning representations
– year: 2017
  ident: b20
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proceedings of the National Academy of Sciences
– volume: 15
  year: 2021
  ident: b52
  article-title: Changes in EEG brain connectivity caused by short-term BCI neurofeedback-rehabilitation training: A case study
  publication-title: Frontiers in Human Neuroscience
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b41
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
– volume: 16
  start-page: 1
  year: 2021
  end-page: 21
  ident: b15
  article-title: EEG in game user analysis: A framework for expertise classification during gameplay
  publication-title: PLOS ONE
– volume: 60
  start-page: 2289
  year: 2013
  end-page: 2298
  ident: b40
  article-title: Transferring subspaces between subjects in brain–computer interfacing
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 11172
  year: 2021
  end-page: 11183
  ident: b38
  article-title: Lifelong domain adaptation via consolidated internal distribution
  publication-title: Advances in neural information processing systems, vol. 34
– start-page: 20608
  year: 2021
  end-page: 20620
  ident: b35
  article-title: BNS: Building network structures dynamically for continual learning
  publication-title: Advances in neural information processing systems, vol. 34
– year: 2020
  ident: b18
  article-title: Gradient based memory editing for task-free continual learning
– year: 2022
  ident: b51
  article-title: Continual test-time domain adaptation
– volume: 9
  start-page: 388
  year: 2022
  ident: b55
  article-title: EEG dataset for RSVP and P300 speller brain-computer interfaces
  publication-title: Scientific Data
– volume: 7
  start-page: 143
  year: 2016
  end-page: 158
  ident: b29
  article-title: Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications
  publication-title: Basic and Clinical Neuroscience Journal
– volume: 20
  year: 2023
  ident: b57
  article-title: Cross-dataset transfer learning for Motor Imagery signal classification via multi-task learning and pre-training
  publication-title: Journal of Neural Engineering
– start-page: 2732
  year: 2016
  end-page: 2738
  ident: b61
  article-title: Personalizing EEG-based affective models with transfer learning
  publication-title: Proceedings of the twenty-fifth international joint conference on artificial intelligence
– volume: 27
  year: 2021
  ident: b4
  article-title: Neuro-feedback system for real-time BCI decision prediction
  publication-title: Microsystem Technologies
– volume: 237
  year: 2021
  ident: b16
  article-title: Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis
  publication-title: NeuroImage
– reference: (pp. 7972–7982).
– year: 2019
  ident: b10
  article-title: Uncertainty-guided continual learning with bayesian neural networks
– volume: 25
  start-page: 99
  year: 2013
  end-page: 110
  ident: b31
  article-title: A review of EEG-based brain-computer interfaces as access pathways for individuals with severe disabilities
  publication-title: Assistive Technology
– start-page: 6470
  year: 2017
  end-page: 6479
  ident: b28
  article-title: Gradient episodic memory for continual learning
  publication-title: Proceedings of the 31st international conference on neural information processing systems
– year: 2020
  ident: b48
  article-title: Continual adaptation of visual representations via domain randomization and meta-learning
– year: 2019
  ident: b1
  article-title: Online continual learning with maximally interfered retrieval
  publication-title: Proceedings of the 33rd international conference on neural information processing systems
– year: 2017
  ident: b27
  article-title: Gradient episodic memory for continual learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 129
  start-page: 55
  year: 2020
  end-page: 74
  ident: b5
  article-title: Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination
  publication-title: Neural Networks
– start-page: 1
  year: 2018
  end-page: 9
  ident: b56
  article-title: Incremental adversarial domain adaptation for continually changing environments
  publication-title: 2018 IEEE international conference on robotics and automation
– year: 2019
  ident: b8
  article-title: Continual learning with tiny episodic memories
– reference: Wang, Z., Duan, T., Fang, L., Suo, Q., & Gao, M. (2021). Meta Learning on a Sequence of Imbalanced Domains with Difficulty Awareness. In
– year: 2009
  ident: b42
  article-title: Approximation theorems of mathematical statistics
– volume: 25
  start-page: 1746
  year: 2017
  end-page: 1752
  ident: b49
  article-title: A benchmark dataset for SSVEP-based brain–computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– reference: Wang, Z., Shen, L., Duan, T., Zhan, D., Fang, L., & Gao, M. (2022). Learning to Learn and Remember Super Long Multi-Domain Task Sequence. In
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: b21
  article-title: DEAP: A database for emotion analysis ;using physiological signals
  publication-title: IEEE Transactions on Affective Computing
– reference: Rebuffi, S.-A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2016). iCaRL: Incremental Classifier and Representation Learning. In
– year: 2020
  ident: b32
  article-title: Continual learning with hypernetworks
  publication-title: International conference on learning representations
– year: 2019
  ident: b3
  article-title: Reducing the variance in online optimization by transporting past gradients
  publication-title: Proceedings of the 33rd international conference on neural information processing systems
– start-page: 81
  year: 2013
  end-page: 84
  ident: b9
  article-title: Differential entropy feature for EEG-based emotion classification
  publication-title: 6th international IEEE/eMBS conference on neural engineering
– volume: 6
  start-page: 55
  year: 2012
  ident: b45
  article-title: Review of the BCI competition IV
  publication-title: Frontiers in Neuroscience
– reference: (pp. 8927–8937).
– reference: Prabhu, A., Torr, P., & Dokania, P. (2020). GDumb: A Simple Approach that Questions Our Progress in Continual Learning. In
– volume: 11
  start-page: 85
  year: 2019
  end-page: 94
  ident: b22
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 260
  start-page: 270
  year: 2016
  end-page: 282
  ident: b13
  article-title: Seizure prediction for therapeutic devices: A review
  publication-title: Journal of Neuroscience Methods
– volume: 12
  year: 2015
  ident: b30
  article-title: Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications
  publication-title: Journal of Neural Engineering
– year: 2023
  ident: b44
  article-title: SSVEP-DAN: A data alignment network for SSVEP-based brain computer interfaces
– year: 2017
  ident: b43
  article-title: Continual learning with deep generative replay
  publication-title: Advances in neural information processing systems, vol. 30
– reference: Chaudhry, A., Ranzato, M., Rohrbach, M., & Elhoseiny, M. (2019). Efficient Lifelong Learning with A-GEM. In
– year: 2017
  ident: b12
  article-title: PathNet: Evolution channels gradient descent in super neural networks
– volume: 20
  year: 2023
  ident: b25
  article-title: Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals
  publication-title: Journal of Neural Engineering
– reference: .
– volume: 26
  start-page: 715
  year: 2019
  end-page: 719
  ident: b60
  article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis
  publication-title: IEEE Signal Processing Letters
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: b14
  article-title: A kernel two-sample test
  publication-title: Journal of Machine Learning Research
– start-page: 3
  year: 2010
  end-page: 8
  ident: b6
  article-title: NeuroPhone: Brain-mobile phone interface using a wireless EEG headset
  publication-title: Proceedings of the second ACM SIGCOMm workshop on networking, systems, and applications on mobile handhelds
– volume: 16
  year: 2019
  ident: b11
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: Journal of Neural Engineering
– year: 2018
  ident: b58
  article-title: Lifelong learning with dynamically expandable networks
  publication-title: International conference on learning representations
– volume: 68
  start-page: 3515
  year: 2020
  end-page: 3528
  ident: b19
  article-title: NEWMA: A new method for scalable model-free online change-point detection
  publication-title: IEEE Transactions on Signal Processing
– year: 2016
  ident: b39
  article-title: Progressive neural networks
– volume: 16
  issue: 2
  year: 2019
  ident: 10.1016/j.neunet.2024.106338_b11
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aaf3f6
– year: 1998
  ident: 10.1016/j.neunet.2024.106338_b47
– year: 2022
  ident: 10.1016/j.neunet.2024.106338_b26
– start-page: 6470
  year: 2017
  ident: 10.1016/j.neunet.2024.106338_b28
  article-title: Gradient episodic memory for continual learning
– year: 2022
  ident: 10.1016/j.neunet.2024.106338_b51
– volume: 40
  start-page: 2935
  issue: 12
  year: 2018
  ident: 10.1016/j.neunet.2024.106338_b24
  article-title: Learning without forgetting
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2773081
– volume: 27
  year: 2021
  ident: 10.1016/j.neunet.2024.106338_b4
  article-title: Neuro-feedback system for real-time BCI decision prediction
  publication-title: Microsystem Technologies
  doi: 10.1007/s00542-020-05146-4
– year: 2022
  ident: 10.1016/j.neunet.2024.106338_b2
  article-title: Learning fast, learning slow: A general continual learning method based on complementary learning system
– start-page: 1121
  year: 2009
  ident: 10.1016/j.neunet.2024.106338_b54
  article-title: Herding dynamical weights to learn
– volume: 20
  year: 2023
  ident: 10.1016/j.neunet.2024.106338_b57
  article-title: Cross-dataset transfer learning for Motor Imagery signal classification via multi-task learning and pre-training
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/acfe9c
– volume: 12
  year: 2015
  ident: 10.1016/j.neunet.2024.106338_b30
  article-title: Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/12/4/046007
– year: 2022
  ident: 10.1016/j.neunet.2024.106338_b33
  article-title: Looking back on learned experiences for class/task incremental learning
– year: 2016
  ident: 10.1016/j.neunet.2024.106338_b39
– volume: 25
  start-page: 99
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2024.106338_b31
  article-title: A review of EEG-based brain-computer interfaces as access pathways for individuals with severe disabilities
  publication-title: Assistive Technology
  doi: 10.1080/10400435.2012.723298
– year: 2017
  ident: 10.1016/j.neunet.2024.106338_b43
  article-title: Continual learning with deep generative replay
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.neunet.2024.106338_b21
  article-title: DEAP: A database for emotion analysis ;using physiological signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.15
– year: 2019
  ident: 10.1016/j.neunet.2024.106338_b8
– year: 2020
  ident: 10.1016/j.neunet.2024.106338_b32
  article-title: Continual learning with hypernetworks
– year: 2019
  ident: 10.1016/j.neunet.2024.106338_b3
  article-title: Reducing the variance in online optimization by transporting past gradients
– volume: 60
  start-page: 2289
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2024.106338_b40
  article-title: Transferring subspaces between subjects in brain–computer interfacing
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2013.2253608
– ident: 10.1016/j.neunet.2024.106338_b34
  doi: 10.1007/978-3-030-58536-5_31
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2024.106338_b56
  article-title: Incremental adversarial domain adaptation for continually changing environments
– volume: 129
  start-page: 55
  year: 2020
  ident: 10.1016/j.neunet.2024.106338_b5
  article-title: Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.05.032
– ident: 10.1016/j.neunet.2024.106338_b53
  doi: 10.1109/CVPR52688.2022.00782
– ident: 10.1016/j.neunet.2024.106338_b7
– volume: 13
  start-page: 723
  year: 2012
  ident: 10.1016/j.neunet.2024.106338_b14
  article-title: A kernel two-sample test
  publication-title: Journal of Machine Learning Research
– year: 2018
  ident: 10.1016/j.neunet.2024.106338_b58
  article-title: Lifelong learning with dynamically expandable networks
– start-page: 2732
  year: 2016
  ident: 10.1016/j.neunet.2024.106338_b61
  article-title: Personalizing EEG-based affective models with transfer learning
– start-page: 3987
  year: 2017
  ident: 10.1016/j.neunet.2024.106338_b59
  article-title: Continual learning through synaptic intelligence
– year: 2023
  ident: 10.1016/j.neunet.2024.106338_b44
– volume: 7
  start-page: 143
  year: 2016
  ident: 10.1016/j.neunet.2024.106338_b29
  article-title: Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications
  publication-title: Basic and Clinical Neuroscience Journal
  doi: 10.15412/J.BCN.03070208
– year: 2009
  ident: 10.1016/j.neunet.2024.106338_b42
– start-page: 20608
  year: 2021
  ident: 10.1016/j.neunet.2024.106338_b35
  article-title: BNS: Building network structures dynamically for continual learning
– start-page: 2318
  year: 2009
  ident: 10.1016/j.neunet.2024.106338_b17
  article-title: Synchronous EEG brain-actuated wheelchair with automated navigation
– volume: 15
  year: 2021
  ident: 10.1016/j.neunet.2024.106338_b52
  article-title: Changes in EEG brain connectivity caused by short-term BCI neurofeedback-rehabilitation training: A case study
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2021.627100
– volume: 9
  start-page: 388
  year: 2022
  ident: 10.1016/j.neunet.2024.106338_b55
  article-title: EEG dataset for RSVP and P300 speller brain-computer interfaces
  publication-title: Scientific Data
  doi: 10.1038/s41597-022-01509-w
– volume: 237
  year: 2021
  ident: 10.1016/j.neunet.2024.106338_b16
  article-title: Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118207
– volume: 11
  start-page: 85
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2024.106338_b22
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2018.2826840
– volume: 20
  year: 2023
  ident: 10.1016/j.neunet.2024.106338_b25
  article-title: Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals
  publication-title: Journal of Neural Engineering
– volume: 26
  start-page: 715
  issue: 5
  year: 2019
  ident: 10.1016/j.neunet.2024.106338_b60
  article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2019.2906824
– volume: 45
  start-page: 279
  issue: 4
  year: 2008
  ident: 10.1016/j.neunet.2024.106338_b46
  article-title: EEG applications for sport and performance
  publication-title: Methods
  doi: 10.1016/j.ymeth.2008.07.006
– year: 2019
  ident: 10.1016/j.neunet.2024.106338_b1
  article-title: Online continual learning with maximally interfered retrieval
– start-page: 3
  year: 2010
  ident: 10.1016/j.neunet.2024.106338_b6
  article-title: NeuroPhone: Brain-mobile phone interface using a wireless EEG headset
– year: 2020
  ident: 10.1016/j.neunet.2024.106338_b18
– ident: 10.1016/j.neunet.2024.106338_b50
  doi: 10.1109/ICCV48922.2021.00882
– start-page: 81
  year: 2013
  ident: 10.1016/j.neunet.2024.106338_b9
  article-title: Differential entropy feature for EEG-based emotion classification
– ident: 10.1016/j.neunet.2024.106338_b37
– volume: 68
  start-page: 3515
  year: 2020
  ident: 10.1016/j.neunet.2024.106338_b19
  article-title: NEWMA: A new method for scalable model-free online change-point detection
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2020.2990597
– volume: 6
  start-page: 55
  year: 2012
  ident: 10.1016/j.neunet.2024.106338_b45
  article-title: Review of the BCI competition IV
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00055
– year: 2017
  ident: 10.1016/j.neunet.2024.106338_b27
  article-title: Gradient episodic memory for continual learning
  publication-title: Advances in Neural Information Processing Systems
– year: 2019
  ident: 10.1016/j.neunet.2024.106338_b10
– volume: 260
  start-page: 270
  year: 2016
  ident: 10.1016/j.neunet.2024.106338_b13
  article-title: Seizure prediction for therapeutic devices: A review
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2015.06.010
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2024.106338_b23
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aace8c
– year: 2017
  ident: 10.1016/j.neunet.2024.106338_b20
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1611835114
– ident: 10.1016/j.neunet.2024.106338_b36
  doi: 10.1109/CVPR.2017.587
– year: 2020
  ident: 10.1016/j.neunet.2024.106338_b48
– volume: 16
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.neunet.2024.106338_b15
  article-title: EEG in game user analysis: A framework for expertise classification during gameplay
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0246913
– year: 2017
  ident: 10.1016/j.neunet.2024.106338_b12
– volume: 25
  start-page: 1746
  issue: 10
  year: 2017
  ident: 10.1016/j.neunet.2024.106338_b49
  article-title: A benchmark dataset for SSVEP-based brain–computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2627556
– start-page: 11172
  year: 2021
  ident: 10.1016/j.neunet.2024.106338_b38
  article-title: Lifelong domain adaptation via consolidated internal distribution
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.neunet.2024.106338_b41
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
SSID ssj0006843
Score 2.4486663
Snippet Electroencephalography (EEG) based Brain Computer Interface (BCI) systems play a significant role in facilitating how individuals with neurological impairments...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106338
SubjectTerms Continual learning
EEG decoding
Online Learning
Title Online continual decoding of streaming EEG signal with a balanced and informative memory buffer
URI https://dx.doi.org/10.1016/j.neunet.2024.106338
https://www.ncbi.nlm.nih.gov/pubmed/38692190
https://www.proquest.com/docview/3050173598
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXrz4fqwvIniN20eapkeR1VVxL7rgLSRpAitud9Hdgxd_uzNNqwiK4KkkTGiZSWYmzTdfCDnVPHNZVkpmrYgYz4xlkDc7ZkwkjNSFKQQWON8NxWDEbx6zxyVy0dbCIKyy8f3Bp9feuunpNdrszcbj3n0EoVZgqSjHjUSCnKCc5zjLz96_YB5CBuQcCDOUbsvnaoxX5RaVQ0RlwqFLpFil8nN4-i39rMPQ5TpZbfJHeh4-cYMsuWqTrLV3M9BmqW4RFThEKULRx0g7SkvYaGKgolNPsUJET7DR719RxHCAAP6SpZoaBDuCXqiuStrwqqJPpBME5b5Rs8ArVbbJ6LL_cDFgzWUKzEKMmrOicFGsdV6aUpa2SD330stYeC9hL1pY4ZNC2yw28HClFWCnJM9Bf17HiQG_uEM61bRye4TmcVKT5pgE8pk4lUYLnlk8ovSQL_m4S9JWh8o2TON44cWzaiFlTypoXqHmVdB8l7DPUbPAtPGHfN6aR32bMQqCwR8jT1prKlhMeEKiKzddvCpwfuChkNSwS3aDmT-_JZWiAPce7f_7vQdkBVsBPnhIOvOXhTuClGZujus5e0yWz69vB8MPn8f1Gg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7R5EAvtEALoQVciauVfXq9R4RCEx65FCRulu21pSDYIEgO_HtmYm-kSlRIPa1219ZaM_Y34_U3MwAnuihdWTaSWysSXpTGcvSbHTcmEUbq2tSCApyvp2J8W1zclXcbcNbFwhCtMmJ_wPQVWscnwyjN4dNsNvyToKkVFCpa0EYiKz5Bn7JTlT3on04ux9M1IAsZyHPYnlOHLoJuRfNq3bJ1RKrMCnwkcgpUed9C_csDXVmi86-wFV1IdhpGuQ0brt2BL115BhZX6y6okEaUERt9RplHWYN7TbJVbO4ZBYnoR7oZjX4zonFgA_oryzQzxHdE0TDdNiymViVYZI_Ey31lZklVVb7B7fno5mzMYz0FbtFMLXhduyTVumpMIxtb577w0stUeC9xO1pb4bNa2zI1eHGNFaiqrKpQfl6nmUFo_A69dt66fWBVmq3y5pgMXZo0l0aLorR0SunRZfLpAPJOhsrGZONU8-JBdayyexUkr0jyKkh-AHzd6ykk2_igfdWpR_01aRTagw96_uq0qXA90SGJbt18-aIQ_xCkKK_hAPaCmtdjyaWoEeGTg__-7jFsjm-ur9TVZHr5Az7Tm8Am_Am9xfPSHaKHszBHcQa_AQiS98s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+continual+decoding+of+streaming+EEG+signal+with+a+balanced+and+informative+memory+buffer&rft.jtitle=Neural+networks&rft.au=Duan%2C+Tiehang&rft.au=Wang%2C+Zhenyi&rft.au=Li%2C+Fang&rft.au=Doretto%2C+Gianfranco&rft.date=2024-08-01&rft.issn=0893-6080&rft.volume=176&rft.spage=106338&rft_id=info:doi/10.1016%2Fj.neunet.2024.106338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2024_106338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon