Direct observation of surface polarization at hybrid perovskite/Au interfaces by dark transient experiments

A distinctive feature of hybrid perovskite light-absorbing materials is the non-negligible ionic conductivity influencing photovoltaic performance and stability. Moving ions or vacancies can naturally accumulate at the outer interfaces (electrode polarization) upon biasing. Contrary to that approach...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 116; no. 18
Main Authors Caram, Jorge, García-Batlle, Marisé, Almora, Osbel, Arce, Roberto D., Guerrero, Antonio, Garcia-Belmonte, Germà
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 04.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A distinctive feature of hybrid perovskite light-absorbing materials is the non-negligible ionic conductivity influencing photovoltaic performance and stability. Moving ions or vacancies can naturally accumulate at the outer interfaces (electrode polarization) upon biasing. Contrary to that approach, a modulation of conductive or recombination properties could manifest as an alteration in the low-frequency part of the impedance response, either producing inductive or large capacitive features. Under this last view, capacitances are not the response of polarized structures or charging mechanisms, but result from the modulation of currents. This work intends to provide pieces of evidence that assist us in distinguishing between these two dissimilar mechanisms, namely, real charge polarization and delayed current effects under bias in the dark. The analysis relays upon an experimental technique based on transient charging signals using the Sawyer-Tower circuit. Instead of applying an alternating small perturbation over a steady-state voltage (differential capacitance method), transient charging measures the resulting polarization upon a large bias step under the suppression of dc currents. Our findings reveal that real steady-state charge is indeed induced by the applied voltage in the dark, easily interpreted by means of charged real capacitors with values much larger than the geometrical capacitance of the film. The connection between that polarization and the charging of perovskite/contact interfaces is highlighted.
AbstractList A distinctive feature of hybrid perovskite light-absorbing materials is the non-negligible ionic conductivity influencing photovoltaic performance and stability. Moving ions or vacancies can naturally accumulate at the outer interfaces (electrode polarization) upon biasing. Contrary to that approach, a modulation of conductive or recombination properties could manifest as an alteration in the low-frequency part of the impedance response, either producing inductive or large capacitive features. Under this last view, capacitances are not the response of polarized structures or charging mechanisms, but result from the modulation of currents. This work intends to provide pieces of evidence that assist us in distinguishing between these two dissimilar mechanisms, namely, real charge polarization and delayed current effects under bias in the dark. The analysis relays upon an experimental technique based on transient charging signals using the Sawyer-Tower circuit. Instead of applying an alternating small perturbation over a steady-state voltage (differential capacitance method), transient charging measures the resulting polarization upon a large bias step under the suppression of dc currents. Our findings reveal that real steady-state charge is indeed induced by the applied voltage in the dark, easily interpreted by means of charged real capacitors with values much larger than the geometrical capacitance of the film. The connection between that polarization and the charging of perovskite/contact interfaces is highlighted.
Author Arce, Roberto D.
Guerrero, Antonio
Almora, Osbel
Caram, Jorge
García-Batlle, Marisé
Garcia-Belmonte, Germà
Author_xml – sequence: 1
  givenname: Jorge
  surname: Caram
  fullname: Caram, Jorge
  organization: 5Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
– sequence: 2
  givenname: Marisé
  surname: García-Batlle
  fullname: García-Batlle, Marisé
  organization: Institute of Advanced Materials (INAM), Universitat Jaume I
– sequence: 3
  givenname: Osbel
  surname: Almora
  fullname: Almora, Osbel
  organization: 5Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
– sequence: 4
  givenname: Roberto D.
  surname: Arce
  fullname: Arce, Roberto D.
  organization: 5Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
– sequence: 5
  givenname: Antonio
  surname: Guerrero
  fullname: Guerrero, Antonio
  organization: Institute of Advanced Materials (INAM), Universitat Jaume I
– sequence: 6
  givenname: Germà
  surname: Garcia-Belmonte
  fullname: Garcia-Belmonte, Germà
  organization: Institute of Advanced Materials (INAM), Universitat Jaume I
BookMark eNp90M9PwyAUB3BiZuI2PfgfkHjSpBv0jZYel_kzMfGi54ZSiGyzVKCL868X1xkTo56Al897wHeEBo1tFEKnlEwoyWDKJoSQbEaKAzSkJM8ToJQP0DBWIckKRo_QyPtlPLIUYIhWl8YpGbCtvHIbEYxtsNXYd04LqXBr18KZ974uAn7eVs7UuFXObvzKBDWdd9g0Qe24x9UW18KtcHCi8UY1Aau3iM1L3PpjdKjF2quT_TpGT9dXj4vb5P7h5m4xv08kZGlIeKXqgksgikFNBck00xXINC8IURIY1yDpjHPFBGGgq4pUmjFBOZd5LQFgjM76ua2zr53yoVzazjXxyjKFggMjKc-jOu-VdNZ7p3TZxncKty0pKT-zLFm5zzLa6Q8rTdiFEj9q1r92XPQd_kv-O_5PvLHuG5ZtreEDTyWVlw
CODEN APPLAB
CitedBy_id crossref_primary_10_1016_j_nanoen_2020_104982
crossref_primary_10_1063_5_0020554
crossref_primary_10_1021_acs_jpclett_0c01822
crossref_primary_10_3390_nano11123186
crossref_primary_10_1039_D1CP04951H
crossref_primary_10_1002_adts_202400478
crossref_primary_10_1021_acs_chemrev_1c00214
crossref_primary_10_1063_5_0087744
crossref_primary_10_3389_fenrg_2021_629074
crossref_primary_10_1002_solr_202200173
crossref_primary_10_1002_ente_202200814
Cites_doi 10.1103/PhysRev.35.269
10.1039/C4EE02465F
10.1002/adfm.201900881
10.1109/16.725254
10.1021/acs.jpclett.6b02193
10.1039/C6EE02914K
10.1038/s41467-019-09079-z
10.1039/C6CP08424A
10.1021/acsami.6b04104
10.1039/C8EE01447G
10.1016/j.chempr.2016.10.002
10.1038/nphoton.2014.134
10.1021/jz5011187
10.1016/j.solmat.2019.03.003
10.1063/1.4941033
10.1038/nmat4014
10.1007/s11664-014-3095-4
10.1038/nenergy.2016.152
10.1021/jz501373f
10.1002/aenm.201502246
10.1016/0038-1101(90)90123-V
10.1021/acs.jpclett.5b00480
10.1016/j.joule.2019.10.003
10.1039/C8EE02362J
10.1039/C4EE03664F
10.1021/acs.jpclett.7b00045
10.1021/jz5011169
10.1039/C7TA06334B
10.1063/1.5063259
10.1039/C9EE00802K
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0006409
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0006409
apl
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: 871336 - PEROXIS
  funderid: https://doi.org/10.13039/100010661
– fundername: Generalitat Valenciana
  grantid: GRISOLIAP/2018/073
  funderid: https://doi.org/10.13039/501100003359
– fundername: Consejo Nacional de Investigaciones Científicas y Técnicas
  grantid: PUE-054-CONICET
  funderid: https://doi.org/10.13039/501100002923
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c362t-8bed98c30e53d1a06f5fb3c27900ec358f3c1488e5a053fbb0bf55a188c7dc333
ISSN 0003-6951
IngestDate Sun Jun 29 15:03:00 EDT 2025
Tue Jul 01 01:07:53 EDT 2025
Thu Apr 24 23:03:00 EDT 2025
Fri Jun 21 00:19:23 EDT 2024
Wed Nov 11 00:04:52 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License 0003-6951/2020/116(18)/183503/5/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-8bed98c30e53d1a06f5fb3c27900ec358f3c1488e5a053fbb0bf55a188c7dc333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9142-2430
0000-0002-6302-9543
0000-0002-0172-6175
0000-0002-5232-3691
0000-0002-2523-0203
0000-0001-8602-1248
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/5.0006409
PQID 2398350287
PQPubID 2050678
PageCount 5
ParticipantIDs proquest_journals_2398350287
crossref_citationtrail_10_1063_5_0006409
crossref_primary_10_1063_5_0006409
scitation_primary_10_1063_5_0006409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200504
2020-05-04
PublicationDateYYYYMMDD 2020-05-04
PublicationDate_xml – month: 05
  year: 2020
  text: 20200504
  day: 04
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Belisle, Nguyen, Bowring, Calado, Li, Irvine, McGehee, Barnes, O'Regan (c15) 2017
Almora, Zarazua, Mas-Marza, Mora-Sero, Bisquert, Garcia-Belmonte (c9) 2015
Green, Ho-Baillie, Snaith (c2) 2014
Bergmann, Guo, Tanaka, Hermes, Li, Klasen, Bretschneider, Nakamura, Berger, Weber (c10) 2016
Zarazua, Han, Boix, Mhaisalkar, Fabregat-Santiago, Mora-Seró, Bisquert, Garcia-Belmonte (c17) 2016
Jacobs, Shen, Pfeffer, Peng, White, Beck, Catchpole (c21) 2018
Carrillo, Guerrero, Rahimnejad, Almora, Zarazua, Mas-Marza, Bisquert, Garcia-Belmonte (c31) 2016
Ren, Ding, Wu, Zhu, Hayat, Alsaedi, Xu, Li, Yang, Dai (c4) 2017
Jeon, Noh, Kim, Yang, Ryu, Seok (c6) 2014
Juarez-Perez, Sanchez, Badia, Garcia-Belmonte, Kang, Mora-Sero, Bisquert (c8) 2014
Sawyer, Tower (c27) 1930
Tress, Marinova, Moehl, Zakeeruddin, Nazeeruddin, Grätzel (c14) 2015
Bertoluzzi, Boyd, Rolston, Xu, Prasanna, O'Regan, McGehee (c29) 2020
Park, Grätzel, Miyasaka, Zhu, Emery (c3) 2016
Ravishankar, Almora, Echeverría-Arrondo, Ghahremanirad, Aranda, Guerrero, Fabregat-Santiago, Zaban, Garcia-Belmonte, Bisquert (c18) 2017
Weber, Hermes, Turren-Cruz, Gort, Bergmann, Gilson, Hagfeldt, Graetzel, Tress, Berger (c11) 2018
van den Biesen (c25) 1990
Wang, Guerrero, Bou, Al-Mayouf, Bisquert (c28) 2019
Ebadi, Taghavinia, Mohammadpour, Hagfeldt, Tress (c23) 2019
Almora, Guerrero, Garcia-Belmonte (c16) 2016
Pospisil, Guerrero, Zmeskal, Weiter, Gallardo, Navas, Garcia-Belmonte (c30) 2019
Pockett, Eperon, Sakai, Snaith, Peter, Cameron (c20) 2017
Gottesman, Lopez-Varo, Gouda, Jimenez-Tejada, Hu, Tirosh, Zaban, Bisquert (c12) 2016
Sanchez, Gonzalez-Pedro, Lee, Park, Kang, Mora-Sero, Bisquert (c7) 2014
García-Cañadas, Min (c26) 2014
Almora, Lopez-Varo, Cho, Aghazada, Meng, Hou, Echeverría-Arrondo, Zimmermann, Matt, Jiménez-Tejada, Brabec, Nazeeruddin, Garcia-Belmonte (c19) 2019
Ershov, Liu, Li, Buchanan, Wasilewski, Jonscher (c24) 1998
Unger, Hoke, Bailie, Nguyen, Bowring, Heumüller, Christoforod, McGehee (c5) 2014
Moia, Gelmetti, Calado, Fisher, Stringer, Game, Hu, Docampo, Lidzey, Palomares, Nelson, Barnes (c22) 2019
Gottesman, Haltzi, Gouda, Tirosh, Bouhadana, Zaban, Mosconi, De Angelis (c13) 2014
(2023061719264048600_c26) 2014; 43
(2023061719264048600_c25) 1990; 33
(2023061719264048600_c27) 1930; 35
(2023061719264048600_c12) 2016; 1
(2023061719264048600_c23) 2019; 10
(2023061719264048600_c16) 2016; 108
(2023061719264048600_c9) 2015; 6
(2023061719264048600_c8) 2014; 5
(2023061719264048600_c14) 2015; 8
(2023061719264048600_c10) 2016; 8
(2023061719264048600_c6) 2014; 13
(2023061719264048600_c4) 2017; 5
(2023061719264048600_c13) 2014; 5
(2023061719264048600_c19) 2019; 195
(2023061719264048600_c31) 2016; 6
(2023061719264048600_c18) 2017; 8
(2023061719264048600_c3) 2016; 1
(2023061719264048600_c24) 1998; 45
(2023061719264048600_c28) 2019; 12
(2023061719264048600_c15) 2017; 10
(2023061719264048600_c22) 2019; 12
(2023061719264048600_c20) 2017; 19
(2023061719264048600_c1) 2017
(2023061719264048600_c5) 2014; 7
(2023061719264048600_c11) 2018; 11
(2023061719264048600_c21) 2018; 124
(2023061719264048600_c29) 2020; 4
(2023061719264048600_c2) 2014; 8
(2023061719264048600_c30) 2019; 29
(2023061719264048600_c17) 2016; 7
(2023061719264048600_c7) 2014; 5
References_xml – start-page: 043903
  year: 2016
  ident: c16
  publication-title: Appl. Phys. Lett.
– start-page: 915
  year: 2017
  ident: c18
  publication-title: J. Phys. Chem. Lett.
– start-page: 1900881
  year: 2019
  ident: c30
  publication-title: Adv. Funct. Mater.
– start-page: 506
  year: 2014
  ident: c2
  publication-title: Nat. Photonics
– start-page: 269
  year: 1930
  ident: c27
  publication-title: Phys. Rev.
– start-page: 2390
  year: 2014
  ident: c8
  publication-title: J. Phys. Chem. Lett.
– start-page: 19402
  year: 2016
  ident: c10
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 192
  year: 2017
  ident: c15
  publication-title: Energy Environ. Sci.
– start-page: 897
  year: 2014
  ident: c6
  publication-title: Nat. Mater.
– start-page: 2054
  year: 2019
  ident: c28
  publication-title: Energy Environ. Sci.
– start-page: 20327
  year: 2017
  ident: c4
  publication-title: J. Mater. Chem. A
– start-page: 995
  year: 2015
  ident: c14
  publication-title: Energy Environ. Sci.
– start-page: 1502246
  year: 2016
  ident: c31
  publication-title: Adv. Energy Mater.
– start-page: 2357
  year: 2014
  ident: c7
  publication-title: J. Phys. Chem. Lett.
– start-page: 1296
  year: 2019
  ident: c22
  publication-title: Energy Environm. Sci.
– start-page: 1574
  year: 2019
  ident: c23
  publication-title: Nat. Commun.
– start-page: 1645
  year: 2015
  ident: c9
  publication-title: J. Phys. Chem. Lett.
– start-page: 2662
  year: 2014
  ident: c13
  publication-title: J. Phys. Chem. Lett.
– start-page: 5105
  year: 2016
  ident: c17
  publication-title: J. Phys. Chem. Lett.
– start-page: 109
  year: 2020
  ident: c29
  publication-title: Joule
– start-page: 776
  year: 2016
  ident: c12
  publication-title: Chem
– start-page: 1471
  year: 1990
  ident: c25
  publication-title: Solid-State Electron.
– start-page: 291
  year: 2019
  ident: c19
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 2196
  year: 1998
  ident: c24
  publication-title: IEEE Trans. Electron Devices
– start-page: 225702
  year: 2018
  ident: c21
  publication-title: J. Appl. Phys.
– start-page: 2411
  year: 2014
  ident: c26
  publication-title: J. Electron. Mater.
– start-page: 3690
  year: 2014
  ident: c5
  publication-title: Energy Environ. Sci.
– start-page: 2404
  year: 2018
  ident: c11
  publication-title: Energy Environ. Sci.
– start-page: 5959
  year: 2017
  ident: c20
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 16152
  year: 2016
  ident: c3
  publication-title: Nat. Energy
– volume: 35
  start-page: 269
  issue: 3
  year: 1930
  ident: 2023061719264048600_c27
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.35.269
– volume: 7
  start-page: 3690
  year: 2014
  ident: 2023061719264048600_c5
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02465F
– volume: 29
  start-page: 1900881
  issue: 32
  year: 2019
  ident: 2023061719264048600_c30
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900881
– volume: 45
  start-page: 2196
  issue: 10
  year: 1998
  ident: 2023061719264048600_c24
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.725254
– volume: 7
  start-page: 5105
  issue: 24
  year: 2016
  ident: 2023061719264048600_c17
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02193
– volume: 10
  start-page: 192
  issue: 1
  year: 2017
  ident: 2023061719264048600_c15
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02914K
– volume: 10
  start-page: 1574
  issue: 1
  year: 2019
  ident: 2023061719264048600_c23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09079-z
– volume: 19
  start-page: 5959
  issue: 8
  year: 2017
  ident: 2023061719264048600_c20
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08424A
– volume: 8
  start-page: 19402
  issue: 30
  year: 2016
  ident: 2023061719264048600_c10
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04104
– volume: 11
  start-page: 2404
  issue: 9
  year: 2018
  ident: 2023061719264048600_c11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01447G
– volume: 1
  start-page: 776
  issue: 5
  year: 2016
  ident: 2023061719264048600_c12
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.10.002
– volume: 8
  start-page: 506
  issue: 7
  year: 2014
  ident: 2023061719264048600_c2
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.134
– volume: 5
  start-page: 2357
  year: 2014
  ident: 2023061719264048600_c7
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5011187
– start-page: 150
  volume-title: Hybrid Perovskite Solar Cells: The Genesis and Early Developments 2009–2014
  year: 2017
  ident: 2023061719264048600_c1
– volume: 195
  start-page: 291
  year: 2019
  ident: 2023061719264048600_c19
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.03.003
– volume: 108
  start-page: 043903
  issue: 4
  year: 2016
  ident: 2023061719264048600_c16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941033
– volume: 13
  start-page: 897
  year: 2014
  ident: 2023061719264048600_c6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4014
– volume: 43
  start-page: 2411
  issue: 6
  year: 2014
  ident: 2023061719264048600_c26
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-014-3095-4
– volume: 1
  start-page: 16152
  year: 2016
  ident: 2023061719264048600_c3
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.152
– volume: 5
  start-page: 2662
  issue: 15
  year: 2014
  ident: 2023061719264048600_c13
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501373f
– volume: 6
  start-page: 1502246
  issue: 9
  year: 2016
  ident: 2023061719264048600_c31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502246
– volume: 33
  start-page: 1471
  issue: 11
  year: 1990
  ident: 2023061719264048600_c25
  publication-title: Solid-State Electron.
  doi: 10.1016/0038-1101(90)90123-V
– volume: 6
  start-page: 1645
  issue: 9
  year: 2015
  ident: 2023061719264048600_c9
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00480
– volume: 4
  start-page: 109
  year: 2020
  ident: 2023061719264048600_c29
  publication-title: Joule
  doi: 10.1016/j.joule.2019.10.003
– volume: 12
  start-page: 1296
  year: 2019
  ident: 2023061719264048600_c22
  publication-title: Energy Environm. Sci.
  doi: 10.1039/C8EE02362J
– volume: 8
  start-page: 995
  issue: 3
  year: 2015
  ident: 2023061719264048600_c14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03664F
– volume: 8
  start-page: 915
  issue: 5
  year: 2017
  ident: 2023061719264048600_c18
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00045
– volume: 5
  start-page: 2390
  issue: 13
  year: 2014
  ident: 2023061719264048600_c8
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5011169
– volume: 5
  start-page: 20327
  issue: 38
  year: 2017
  ident: 2023061719264048600_c4
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06334B
– volume: 124
  start-page: 225702
  issue: 22
  year: 2018
  ident: 2023061719264048600_c21
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5063259
– volume: 12
  start-page: 2054
  issue: 7
  year: 2019
  ident: 2023061719264048600_c28
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00802K
SSID ssj0005233
Score 2.3942893
Snippet A distinctive feature of hybrid perovskite light-absorbing materials is the non-negligible ionic conductivity influencing photovoltaic performance and...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Bias
Capacitance
Charging
Circuits
Electric potential
Electrode polarization
Electromagnetic absorption
Interface stability
Ion currents
Modulation
Perovskites
Perturbation
Steady state
Voltage
Title Direct observation of surface polarization at hybrid perovskite/Au interfaces by dark transient experiments
URI http://dx.doi.org/10.1063/5.0006409
https://www.proquest.com/docview/2398350287
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJgQ8IBhMFAaygAekKiytm8R5LGzdhMpAopX6FtmOI1BDUyXppPHGf85d7HxUqibgJaqisxv5fj6f75OQt0IkwViNuRMH0nXGMtSO8NEAD2cjHgmuVFW0xZV_uRh_WnrLXu93N7uklO_Vr715Jf_DVXgHfMUs2X_gbDMpvIDfwF94Aofh-Vc8NvJqkMnGtIq6X7HNEwHbdYO3VptmiTmL328wOwsLFWfXxarqizedbKuCEdWAAlXRWOQr7BuxLjBRstMAoOiqsbXuauwixSCtkoIa9fwCdk_lgT8TzgdRpik2OAJpYrzyDdVW57m2eTbYytiEhNUT_ICxOv2J1bMGF3B-VIPdrpViVDnY3dZK2bifdkIgvpqP3JHPzPFDW4JWG5HsBmhJtVK6ltkmQbMGJ997GID2BQuJNjN0V4btiVd7-a--RNPFbBbNz5fzO-RwBDcNEJWHk7PPs2-dOCHG6raL-Gl1eSqfnTZT7yo17U3lHqgxJqKio7TMH5GH9rZBJwY6j0lPr4_Ig04NyiNy1y7PE7IycKIdONEsoRZOtAsnKkpq4ERbOJ1OtrQFE5U3FMFEGzDRDpieksX0fP7x0rG9OBwFKk7pcKnjkCvmao_FQ-H6iZdIpkZB6LpaMY8nTMHNmmtPgFhPpHRl4nliyLkKYsUYOyYH62ytnxGajJQfKMF1HKuxH_tAGAi4OAy5llwz1ifv6sWM6uXDfilpVAVM-CzyIrvuffK6Id2Y6iz7iE5qjkR28xYRlr1kHijXQZ-8abh02yR7qK6zvKWINnHy_Pa_ekHut3vjhByU-Va_BJ22lK8s6v4ARUGnvw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+observation+of+surface+polarization+at+hybrid+perovskite%2FAu+interfaces+by+dark+transient+experiments&rft.jtitle=Applied+physics+letters&rft.au=Garc%C3%ADa-Batlle+Maris%C3%A9&rft.au=Guerrero%2C+Antonio&rft.au=Garcia-Belmonte+Germ%C3%A0&rft.date=2020-05-04&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=116&rft.issue=18&rft_id=info:doi/10.1063%2F5.0006409&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon