Two-timescale recurrent neural networks for distributed minimax optimization
In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex–concave minimax problems subject to linear equality and nonlinear ineq...
Saved in:
Published in | Neural networks Vol. 165; pp. 527 - 539 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2023.06.003 |
Cover
Loading…
Abstract | In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex–concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization. |
---|---|
AbstractList | In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex-concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization.In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex-concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization. In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex-concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization. |
Author | Xia, Zicong Liu, Yang Wang, Jiasen Wang, Jun |
Author_xml | – sequence: 1 givenname: Zicong surname: Xia fullname: Xia, Zicong organization: School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 2 givenname: Yang orcidid: 0000-0003-3761-0104 surname: Liu fullname: Liu, Yang email: liuyang@zjnu.edu.cn organization: School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 3 givenname: Jiasen surname: Wang fullname: Wang, Jiasen organization: Future Network Research Center, Purple Mountain Laboratories, Nanjing 211111, China – sequence: 4 givenname: Jun orcidid: 0000-0002-1305-5735 surname: Wang fullname: Wang, Jun email: jwang.cs@cityu.edu.hk organization: Department of Computer Science and School of Data Science, City University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37348433$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFO3DAQhi0EgoX2DSqUYy8JE9tJHA6VKtQC0kpc9m459kTyNrEX2ymFp6-3Cz30UE4zGv3fr9F3To6dd0jIpxqqGur2als5XBymigJlFbQVADsiq1p0fUk7QY_JCkTPyhYEnJHzGLcA0ArOTskZ6xjPG1uR9ebJl8nOGLWasAiolxDQpSKXBzXlkZ58-BGL0YfC2JiCHZaEppits7P6Vfhdpu2LSta7D-RkVFPEj6_zgmy-f9vc3JXrh9v7m6_rUrOWplIoA1xx09COjb1mHRXDMCqDooeG1w0AB6PGdjT7o2461veA9cAb03Kj2AX5fKjdBf-4YExytlHjNCmHfomSCtpz2mQuRy9fo8swo5G7kJ8Oz_JNQA7wQ0AHH2PA8W-kBrn3LLfy4FnuPUtoZfacset_MG3THwcpKDu9B385wJgd_bQYZNQWnUZjs_8kjbf_L_gN-iKdLA |
CitedBy_id | crossref_primary_10_1016_j_neunet_2024_106525 crossref_primary_10_1016_j_neunet_2024_106348 crossref_primary_10_1016_j_neunet_2024_106291 crossref_primary_10_1109_TNSE_2024_3401748 crossref_primary_10_1016_j_neunet_2023_10_011 crossref_primary_10_1016_j_neunet_2023_10_022 crossref_primary_10_1109_TCSI_2024_3351942 crossref_primary_10_1016_j_cnsns_2024_107999 crossref_primary_10_1016_j_ins_2024_121775 crossref_primary_10_1016_j_neunet_2023_12_011 crossref_primary_10_1109_TETCI_2024_3405370 crossref_primary_10_1016_j_aej_2024_12_074 |
Cites_doi | 10.1109/MCS.2008.919306 10.1016/j.neunet.2021.05.020 10.1090/S0002-9939-09-10170-3 10.1109/TSMC.2022.3221937 10.1016/j.automatica.2013.02.062 10.1007/BF00932858 10.1109/TNNLS.2016.2538288 10.1016/j.neunet.2019.10.008 10.1109/TNNLS.2017.2652478 10.1109/MSP.2020.3003851 10.1109/TNN.2007.910736 10.1109/TNNLS.2015.2425301 10.1109/TNNLS.2016.2549566 10.1109/TAC.2018.2872200 10.1109/TAC.2015.2449811 10.1109/TAC.2013.2278132 10.1109/TCYB.2021.3088884 10.1016/j.arcontrol.2019.05.006 10.1016/j.automatica.2021.109899 10.1109/TAC.2018.2862471 10.1109/TNNLS.2018.2884788 10.1109/81.995659 10.1016/j.neunet.2021.11.013 10.1109/TCYB.2020.3031687 10.1016/j.neunet.2014.09.009 10.1109/TCYB.2019.2948424 10.1016/j.neunet.2019.02.002 10.1109/TNN.2004.824405 10.1109/TNNLS.2020.2973760 10.1109/TNNLS.2021.3098668 10.1162/089976604322860730 10.1109/TNNLS.2020.3027471 10.1109/TAC.2023.3244122 10.1109/TAC.2015.2504962 10.1017/S0962492900002518 10.1007/s10957-009-9522-7 10.1023/A:1010909632198 10.1109/TITS.2022.3209159 10.1109/TNNLS.2013.2244908 10.1109/TAC.2016.2616646 10.1109/TNNLS.2019.2957105 10.1137/060677586 10.1109/TAC.2020.2979274 10.1016/j.neunet.2019.07.019 10.1109/TNN.2006.881046 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neunet.2023.06.003 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 539 |
ExternalDocumentID | 37348433 10_1016_j_neunet_2023_06_003 S0893608023003040 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China grantid: 11202019 funderid: http://dx.doi.org/10.13039/501100002920 – fundername: Natural Science Foundation of Zhejiang Province of China grantid: LR20F030001; LD19A010001 funderid: http://dx.doi.org/10.13039/501100004731 – fundername: Jinhua Science and Technology Project grantid: 2022-1-042 – fundername: National Natural Science Foundation of China grantid: 62173308 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c362t-8ad04a4d5273f9c3728bbfade89054150040daf6fdfadec573990e1b45d64da3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Tue Aug 05 09:55:29 EDT 2025 Thu Apr 03 07:10:10 EDT 2025 Tue Jul 01 03:32:15 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 Fri Feb 23 02:35:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Minimax optimization Distributed optimization Recurrent neural networks Neurodynamic optimization |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-8ad04a4d5273f9c3728bbfade89054150040daf6fdfadec573990e1b45d64da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3761-0104 0000-0002-1305-5735 |
PMID | 37348433 |
PQID | 2829425573 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2829425573 pubmed_primary_37348433 crossref_primary_10_1016_j_neunet_2023_06_003 crossref_citationtrail_10_1016_j_neunet_2023_06_003 elsevier_sciencedirect_doi_10_1016_j_neunet_2023_06_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 2023-Aug 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Notarnicola, Franceschelli, Notarstefano (b34) 2019; 64 Mateos-Núñez, Cortés (b30) 2017; 62 Yu, Liu, Zheng, Zhu (b53) 2021; 134 Khalil (b16) 2002 Gao, Liao (b9) 2023 Liu, Xia, Gui (b27) 2023 Wan, P., & Lemmon, M. D. (2009). Event-triggered distributed optimization in sensor networks. In Xia, Liu, Qiu, Ruan, Cao (b47) 2023; 34 Xia, Liu, Kou, Wang (b45) 2022 Gao, Liao, Xue (b10) 2004; 15 Bazaraa, Sherali, Shetty (b2) 2006 Xia, Liu, Wang (b48) 2023; 53 Kim, Boyd (b17) 2008; 19 Gharesifard, Cortés (b11) 2013; 49 Jia, Qin, Xue (b14) 2019; 119 Liu, Wang (b23) 2006; 17 Razaviyayn, Huang, Lu, Nouiehed, Sanjabi, Hong (b35) 2020; 37 Liu, Wang (b25) 2013; 24 Yang, Wang, Liu (b51) 2019; 64 Che, Wang (b7) 2021; 32 Che, Wang (b6) 2019; 30 Leung, Wang, Li (b20) 2022; 52 Yang, Yi, Wu, Yuan, Wu, Meng, Hong, Wang, Lin, Johansson (b52) 2019; 47 Han (b13) 1977; 22 Jiang, Qin, Xue, Liu (b15) 2022; 146 Li, Yan, Wang (b21) 2015; 61 Le, Wang (b18) 2017; 28 Wang, Wang (b40) 2022; 33 Cortes (b8) 2008; 28 Gharesifard, Cortés (b12) 2014; 59 Varagnolo, Zanella, Cenedese, Pillonetto, Schenato (b38) 2016; 61 Boggs, Tolle (b4) 1995; 4 Teo, Yang (b37) 2001; 101 Lou, Hong, Xie, Shi, Johansson (b29) 2016; 61 Mokhtari, Ozdaglar, Pattathil (b31) 2022 Xia, Liu, Lu, Cao, Rutkowski (b46) 2021; 51 (pp. 1069–1083). Che, Wang (b5) 2019; 114 Liu, Wang (b26) 2015; 26 Xia, Leung, Wang (b44) 2002; 49 Bertsekas (b3) 2009 Leung, Wang (b19) 2021; 32 Wang, Wang, Li (b41) 2020; 65 Wen, Luan, Qin (b42) 2021; 143 Barron, E. N., Goebel, R., & Jensen, R. R. (2010). Best response dynamics for continuous games. In Rockafellar (b36) 1970 Nocedal, Wright (b33) 2006 (pp. 49–60). Liu, Yang, Wang (b28) 2017; 28 Liu, Wang (b24) 2008; 19 Liu, Le, Li (b22) 2021; 51 Nedic, Ozdaglar (b32) 2009; 142 Xia (b43) 2004; 16 Yang, Liu, Wang (b49) 2018; 29 Yang, Shen (b50) 2022; 23 Zhao, Liu (b54) 2019; 122 Varagnolo (10.1016/j.neunet.2023.06.003_b38) 2016; 61 Liu (10.1016/j.neunet.2023.06.003_b26) 2015; 26 Yu (10.1016/j.neunet.2023.06.003_b53) 2021; 134 Xia (10.1016/j.neunet.2023.06.003_b44) 2002; 49 Boggs (10.1016/j.neunet.2023.06.003_b4) 1995; 4 Lou (10.1016/j.neunet.2023.06.003_b29) 2016; 61 Zhao (10.1016/j.neunet.2023.06.003_b54) 2019; 122 Mateos-Núñez (10.1016/j.neunet.2023.06.003_b30) 2017; 62 Nedic (10.1016/j.neunet.2023.06.003_b32) 2009; 142 Wang (10.1016/j.neunet.2023.06.003_b41) 2020; 65 Yang (10.1016/j.neunet.2023.06.003_b52) 2019; 47 Leung (10.1016/j.neunet.2023.06.003_b19) 2021; 32 Xia (10.1016/j.neunet.2023.06.003_b45) 2022 Che (10.1016/j.neunet.2023.06.003_b5) 2019; 114 Cortes (10.1016/j.neunet.2023.06.003_b8) 2008; 28 Che (10.1016/j.neunet.2023.06.003_b7) 2021; 32 Nocedal (10.1016/j.neunet.2023.06.003_b33) 2006 Notarnicola (10.1016/j.neunet.2023.06.003_b34) 2019; 64 Che (10.1016/j.neunet.2023.06.003_b6) 2019; 30 Xia (10.1016/j.neunet.2023.06.003_b43) 2004; 16 Leung (10.1016/j.neunet.2023.06.003_b20) 2022; 52 Liu (10.1016/j.neunet.2023.06.003_b24) 2008; 19 Gao (10.1016/j.neunet.2023.06.003_b9) 2023 Liu (10.1016/j.neunet.2023.06.003_b27) 2023 Liu (10.1016/j.neunet.2023.06.003_b28) 2017; 28 Gao (10.1016/j.neunet.2023.06.003_b10) 2004; 15 Gharesifard (10.1016/j.neunet.2023.06.003_b11) 2013; 49 Jia (10.1016/j.neunet.2023.06.003_b14) 2019; 119 Mokhtari (10.1016/j.neunet.2023.06.003_b31) 2022 10.1016/j.neunet.2023.06.003_b39 Liu (10.1016/j.neunet.2023.06.003_b22) 2021; 51 Bazaraa (10.1016/j.neunet.2023.06.003_b2) 2006 Yang (10.1016/j.neunet.2023.06.003_b50) 2022; 23 10.1016/j.neunet.2023.06.003_b1 Rockafellar (10.1016/j.neunet.2023.06.003_b36) 1970 Xia (10.1016/j.neunet.2023.06.003_b48) 2023; 53 Jiang (10.1016/j.neunet.2023.06.003_b15) 2022; 146 Kim (10.1016/j.neunet.2023.06.003_b17) 2008; 19 Bertsekas (10.1016/j.neunet.2023.06.003_b3) 2009 Yang (10.1016/j.neunet.2023.06.003_b49) 2018; 29 Xia (10.1016/j.neunet.2023.06.003_b47) 2023; 34 Gharesifard (10.1016/j.neunet.2023.06.003_b12) 2014; 59 Liu (10.1016/j.neunet.2023.06.003_b25) 2013; 24 Xia (10.1016/j.neunet.2023.06.003_b46) 2021; 51 Wen (10.1016/j.neunet.2023.06.003_b42) 2021; 143 Han (10.1016/j.neunet.2023.06.003_b13) 1977; 22 Li (10.1016/j.neunet.2023.06.003_b21) 2015; 61 Liu (10.1016/j.neunet.2023.06.003_b23) 2006; 17 Khalil (10.1016/j.neunet.2023.06.003_b16) 2002 Razaviyayn (10.1016/j.neunet.2023.06.003_b35) 2020; 37 Le (10.1016/j.neunet.2023.06.003_b18) 2017; 28 Yang (10.1016/j.neunet.2023.06.003_b51) 2019; 64 Teo (10.1016/j.neunet.2023.06.003_b37) 2001; 101 Wang (10.1016/j.neunet.2023.06.003_b40) 2022; 33 |
References_xml | – volume: 37 start-page: 55 year: 2020 end-page: 66 ident: b35 article-title: Nonconvex min-max optimization: Applications, challenges, and recent theoretical advances publication-title: IEEE Signal Processing Magazine – volume: 28 start-page: 1747 year: 2017 end-page: 1758 ident: b28 article-title: A collective neurodynamic approach to distributed constrained optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 101 start-page: 333 year: 2001 end-page: 349 ident: b37 article-title: Portfolio selection problem with minimax type risk function publication-title: Annals of Operations Research – year: 2009 ident: b3 article-title: Convex optimization theory – volume: 15 start-page: 622 year: 2004 end-page: 628 ident: b10 article-title: A neural network for a class of convex quadratic minimax problems with constraints publication-title: IEEE Transactions on Neural Networks – year: 2002 ident: b16 article-title: Nonlinear systems – volume: 49 start-page: 1683 year: 2013 end-page: 1692 ident: b11 article-title: Distributed convergence to Nash equilibria in two-network zero-sum games publication-title: Automatica – volume: 52 start-page: 12785 year: 2022 end-page: 12794 ident: b20 article-title: Decentralized robust portfolio optimization based on cooperative-competitive multiagent systems publication-title: IEEE Transactions on Cybernetics – volume: 24 start-page: 812 year: 2013 end-page: 824 ident: b25 article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 59 start-page: 781 year: 2014 end-page: 786 ident: b12 article-title: Distributed continuous-time convex optimization on weight-balanced digraphs publication-title: IEEE Transactions on Automatic Control – year: 1970 ident: b36 article-title: Convex analysis – volume: 28 start-page: 620 year: 2017 end-page: 629 ident: b18 article-title: A two-time-scale neurodynamic approach to constrained minimax optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 32 start-page: 2825 year: 2021 end-page: 2836 ident: b19 article-title: Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 19 start-page: 558 year: 2008 end-page: 570 ident: b24 article-title: A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming publication-title: IEEE Transactions on Neural Networks – volume: 26 start-page: 2891 year: 2015 end-page: 2900 ident: b26 article-title: A projection neural network for constrained quadratic minimax optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 47 start-page: 278 year: 2019 end-page: 305 ident: b52 article-title: A survey of distributed optimization publication-title: Annual Reviews in Control – volume: 61 start-page: 10 year: 2015 end-page: 21 ident: b21 article-title: A one-layer recurrent neural network for constrained nonconvex optimization publication-title: Neural Networks – volume: 16 start-page: 863 year: 2004 end-page: 883 ident: b43 article-title: An extended projection neural network for constrained optimization constraints publication-title: Neural Computation – volume: 146 start-page: 161 year: 2022 end-page: 173 ident: b15 article-title: A second-order accelerated neurodynamic approach for distributed convex optimization publication-title: Neural Networks – volume: 29 start-page: 981 year: 2018 end-page: 992 ident: b49 article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 51 start-page: 5631 year: 2021 end-page: 5636 ident: b46 article-title: Penalty method for constrained distributed quaternion-variable optimization publication-title: IEEE Transactions on Cybernetics – volume: 143 start-page: 52 year: 2021 end-page: 65 ident: b42 article-title: A continuous-time neurodynamic approach and its discretization for distributed convex optimization over multi-agent systems publication-title: Neural Networks – year: 2023 ident: b9 article-title: Novel continuous-and discrete-time neural networks for solving quadratic minimax problems with linear equality constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 49 start-page: 447 year: 2002 end-page: 458 ident: b44 article-title: A projection neural network and its application to constrained optimization problems publication-title: IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications – year: 2022 ident: b45 article-title: Clifford-valued distributed optimization based on recurrent neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems, – volume: 51 start-page: 2466 year: 2021 end-page: 2475 ident: b22 article-title: A distributed optimization algorithm based on multiagent network for economic Dispatch With Region partitioning publication-title: IEEE Transactions on Cybernetics – volume: 61 start-page: 994 year: 2016 end-page: 1009 ident: b38 article-title: Newton–Raphson consensus for distributed convex optimization publication-title: IEEE Transactions on Automatic Control – volume: 134 year: 2021 ident: b53 article-title: Distributed discrete-time convex optimization with nonidentical local constraints over time-varying unbalanced directed graphs publication-title: Automatica – year: 2006 ident: b33 article-title: Numerical optimization – volume: 34 start-page: 534 year: 2023 end-page: 542 ident: b47 article-title: An RNN-based algorithm for decentralized-partial-consensus constrained optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 22 start-page: 297 year: 1977 end-page: 309 ident: b13 article-title: A globally convergent method for nonlinear programming publication-title: Journal of Optimization Theory and Applications – reference: (pp. 49–60). – volume: 142 start-page: 205 year: 2009 end-page: 228 ident: b32 article-title: Subgradient methods for saddle-point problems publication-title: Journal of Optimization Theory and Applications – volume: 114 start-page: 15 year: 2019 end-page: 27 ident: b5 article-title: A collaborative neurodynamic approach to global and combinatorial optimization publication-title: Neural Networks – volume: 30 start-page: 2503 year: 2019 end-page: 2514 ident: b6 article-title: A two-timescale duplex neurodynamic approach to biconvex optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 23 start-page: 24401 year: 2022 end-page: 24413 ident: b50 article-title: A minimax framework for two-agent scheduling with inertial constraints publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 122 start-page: 144 year: 2019 end-page: 151 ident: b54 article-title: A consensus algorithm based on collective neurodynamic system for distributed optimization with linear and bound constraints publication-title: Neural Networks – year: 2006 ident: b2 article-title: Nonlinear programming: Theory and algorithms – volume: 119 start-page: 46 year: 2019 end-page: 56 ident: b14 article-title: A generalized neural network for distributed nonsmooth optimization with inequality constraint publication-title: Neural Networks – volume: 19 start-page: 1344 year: 2008 end-page: 1367 ident: b17 article-title: A minimax theorem with applications to machine learning, signal processing, and finance publication-title: SIAM Journal on Optimization – reference: Wan, P., & Lemmon, M. D. (2009). Event-triggered distributed optimization in sensor networks. In – year: 2022 ident: b31 article-title: A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach – year: 2023 ident: b27 article-title: Multi-objective distributed optimization via a predefined-time multi-agent approach publication-title: IEEE Transactions on Automatic Control – volume: 28 start-page: 36 year: 2008 end-page: 73 ident: b8 article-title: Discontinuous dynamical systems publication-title: IEEE Control Systems Magazine – volume: 32 start-page: 36 year: 2021 end-page: 48 ident: b7 article-title: A two-timescale duplex neurodynamic approach to mixed-integer optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 33 start-page: 37 year: 2022 end-page: 47 ident: b40 article-title: Two-timescale multilayer recurrent neural networks for nonlinear programming publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 64 start-page: 2559 year: 2019 end-page: 2566 ident: b34 article-title: A duality-based approach for distributed min–max optimization publication-title: IEEE Transactions on Automatic Control – volume: 17 start-page: 1500 year: 2006 end-page: 1510 ident: b23 article-title: A simplified dual neural network for quadratic programming with its KWTA application publication-title: IEEE Transactions on Neural Networks – volume: 4 start-page: 1 year: 1995 end-page: 51 ident: b4 article-title: Sequential quadratic programming publication-title: Acta Numerica – volume: 62 start-page: 2720 year: 2017 end-page: 2735 ident: b30 article-title: Distributed saddle-point subgradient algorithms with Laplacian averaging publication-title: IEEE Transactions on Automatic Control – volume: 61 start-page: 2920 year: 2016 end-page: 2935 ident: b29 article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications publication-title: IEEE Transactions on Automatic Control – volume: 53 start-page: 3141 year: 2023 end-page: 3151 ident: b48 article-title: A collaborative neurodynamic approach to distributed global optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics – reference: Barron, E. N., Goebel, R., & Jensen, R. R. (2010). Best response dynamics for continuous games. In – reference: (pp. 1069–1083). – volume: 65 start-page: 5296 year: 2020 end-page: 5311 ident: b41 article-title: Distributed finite-time optimization for integrator chain multiagent systems with disturbances publication-title: IEEE Transactions on Automatic Control – volume: 64 start-page: 1358 year: 2019 end-page: 1372 ident: b51 article-title: Cooperative-competitive multi-agent systems for distributed minimax optimization subject to bounded constraints publication-title: IEEE Transactions on Automatic Control – volume: 28 start-page: 36 issue: 3 year: 2008 ident: 10.1016/j.neunet.2023.06.003_b8 article-title: Discontinuous dynamical systems publication-title: IEEE Control Systems Magazine doi: 10.1109/MCS.2008.919306 – year: 2002 ident: 10.1016/j.neunet.2023.06.003_b16 – volume: 143 start-page: 52 year: 2021 ident: 10.1016/j.neunet.2023.06.003_b42 article-title: A continuous-time neurodynamic approach and its discretization for distributed convex optimization over multi-agent systems publication-title: Neural Networks doi: 10.1016/j.neunet.2021.05.020 – ident: 10.1016/j.neunet.2023.06.003_b1 doi: 10.1090/S0002-9939-09-10170-3 – volume: 53 start-page: 3141 issue: 5 year: 2023 ident: 10.1016/j.neunet.2023.06.003_b48 article-title: A collaborative neurodynamic approach to distributed global optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.2022.3221937 – volume: 49 start-page: 1683 issue: 6 year: 2013 ident: 10.1016/j.neunet.2023.06.003_b11 article-title: Distributed convergence to Nash equilibria in two-network zero-sum games publication-title: Automatica doi: 10.1016/j.automatica.2013.02.062 – volume: 22 start-page: 297 year: 1977 ident: 10.1016/j.neunet.2023.06.003_b13 article-title: A globally convergent method for nonlinear programming publication-title: Journal of Optimization Theory and Applications doi: 10.1007/BF00932858 – volume: 28 start-page: 620 issue: 3 year: 2017 ident: 10.1016/j.neunet.2023.06.003_b18 article-title: A two-time-scale neurodynamic approach to constrained minimax optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2538288 – volume: 122 start-page: 144 year: 2019 ident: 10.1016/j.neunet.2023.06.003_b54 article-title: A consensus algorithm based on collective neurodynamic system for distributed optimization with linear and bound constraints publication-title: Neural Networks doi: 10.1016/j.neunet.2019.10.008 – volume: 29 start-page: 981 issue: 4 year: 2018 ident: 10.1016/j.neunet.2023.06.003_b49 article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2652478 – volume: 37 start-page: 55 issue: 5 year: 2020 ident: 10.1016/j.neunet.2023.06.003_b35 article-title: Nonconvex min-max optimization: Applications, challenges, and recent theoretical advances publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2020.3003851 – volume: 19 start-page: 558 issue: 4 year: 2008 ident: 10.1016/j.neunet.2023.06.003_b24 article-title: A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2007.910736 – volume: 26 start-page: 2891 issue: 11 year: 2015 ident: 10.1016/j.neunet.2023.06.003_b26 article-title: A projection neural network for constrained quadratic minimax optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2425301 – volume: 28 start-page: 1747 issue: 8 year: 2017 ident: 10.1016/j.neunet.2023.06.003_b28 article-title: A collective neurodynamic approach to distributed constrained optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2549566 – volume: 64 start-page: 2559 issue: 6 year: 2019 ident: 10.1016/j.neunet.2023.06.003_b34 article-title: A duality-based approach for distributed min–max optimization publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2018.2872200 – volume: 61 start-page: 994 issue: 4 year: 2016 ident: 10.1016/j.neunet.2023.06.003_b38 article-title: Newton–Raphson consensus for distributed convex optimization publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2015.2449811 – volume: 59 start-page: 781 issue: 3 year: 2014 ident: 10.1016/j.neunet.2023.06.003_b12 article-title: Distributed continuous-time convex optimization on weight-balanced digraphs publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2013.2278132 – volume: 52 start-page: 12785 issue: 12 year: 2022 ident: 10.1016/j.neunet.2023.06.003_b20 article-title: Decentralized robust portfolio optimization based on cooperative-competitive multiagent systems publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2021.3088884 – volume: 47 start-page: 278 year: 2019 ident: 10.1016/j.neunet.2023.06.003_b52 article-title: A survey of distributed optimization publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2019.05.006 – volume: 134 year: 2021 ident: 10.1016/j.neunet.2023.06.003_b53 article-title: Distributed discrete-time convex optimization with nonidentical local constraints over time-varying unbalanced directed graphs publication-title: Automatica doi: 10.1016/j.automatica.2021.109899 – volume: 64 start-page: 1358 issue: 5 year: 2019 ident: 10.1016/j.neunet.2023.06.003_b51 article-title: Cooperative-competitive multi-agent systems for distributed minimax optimization subject to bounded constraints publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2018.2862471 – volume: 30 start-page: 2503 issue: 8 year: 2019 ident: 10.1016/j.neunet.2023.06.003_b6 article-title: A two-timescale duplex neurodynamic approach to biconvex optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2884788 – volume: 49 start-page: 447 issue: 4 year: 2002 ident: 10.1016/j.neunet.2023.06.003_b44 article-title: A projection neural network and its application to constrained optimization problems publication-title: IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications doi: 10.1109/81.995659 – volume: 146 start-page: 161 year: 2022 ident: 10.1016/j.neunet.2023.06.003_b15 article-title: A second-order accelerated neurodynamic approach for distributed convex optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2021.11.013 – volume: 51 start-page: 5631 issue: 11 year: 2021 ident: 10.1016/j.neunet.2023.06.003_b46 article-title: Penalty method for constrained distributed quaternion-variable optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.3031687 – volume: 61 start-page: 10 year: 2015 ident: 10.1016/j.neunet.2023.06.003_b21 article-title: A one-layer recurrent neural network for constrained nonconvex optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.009 – year: 2006 ident: 10.1016/j.neunet.2023.06.003_b33 – volume: 51 start-page: 2466 issue: 5 year: 2021 ident: 10.1016/j.neunet.2023.06.003_b22 article-title: A distributed optimization algorithm based on multiagent network for economic Dispatch With Region partitioning publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2019.2948424 – ident: 10.1016/j.neunet.2023.06.003_b39 – volume: 114 start-page: 15 year: 2019 ident: 10.1016/j.neunet.2023.06.003_b5 article-title: A collaborative neurodynamic approach to global and combinatorial optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2019.02.002 – volume: 15 start-page: 622 issue: 3 year: 2004 ident: 10.1016/j.neunet.2023.06.003_b10 article-title: A neural network for a class of convex quadratic minimax problems with constraints publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.824405 – volume: 32 start-page: 36 issue: 1 year: 2021 ident: 10.1016/j.neunet.2023.06.003_b7 article-title: A two-timescale duplex neurodynamic approach to mixed-integer optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.2973760 – volume: 34 start-page: 534 issue: 1 year: 2023 ident: 10.1016/j.neunet.2023.06.003_b47 article-title: An RNN-based algorithm for decentralized-partial-consensus constrained optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3098668 – volume: 16 start-page: 863 issue: 4 year: 2004 ident: 10.1016/j.neunet.2023.06.003_b43 article-title: An extended projection neural network for constrained optimization constraints publication-title: Neural Computation doi: 10.1162/089976604322860730 – volume: 33 start-page: 37 issue: 1 year: 2022 ident: 10.1016/j.neunet.2023.06.003_b40 article-title: Two-timescale multilayer recurrent neural networks for nonlinear programming publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3027471 – year: 2023 ident: 10.1016/j.neunet.2023.06.003_b27 article-title: Multi-objective distributed optimization via a predefined-time multi-agent approach publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2023.3244122 – volume: 61 start-page: 2920 issue: 10 year: 2016 ident: 10.1016/j.neunet.2023.06.003_b29 article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2015.2504962 – volume: 4 start-page: 1 year: 1995 ident: 10.1016/j.neunet.2023.06.003_b4 article-title: Sequential quadratic programming publication-title: Acta Numerica doi: 10.1017/S0962492900002518 – volume: 142 start-page: 205 year: 2009 ident: 10.1016/j.neunet.2023.06.003_b32 article-title: Subgradient methods for saddle-point problems publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-009-9522-7 – year: 2009 ident: 10.1016/j.neunet.2023.06.003_b3 – year: 1970 ident: 10.1016/j.neunet.2023.06.003_b36 – year: 2022 ident: 10.1016/j.neunet.2023.06.003_b45 article-title: Clifford-valued distributed optimization based on recurrent neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems, – year: 2022 ident: 10.1016/j.neunet.2023.06.003_b31 – year: 2023 ident: 10.1016/j.neunet.2023.06.003_b9 article-title: Novel continuous-and discrete-time neural networks for solving quadratic minimax problems with linear equality constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 101 start-page: 333 issue: 1–4 year: 2001 ident: 10.1016/j.neunet.2023.06.003_b37 article-title: Portfolio selection problem with minimax type risk function publication-title: Annals of Operations Research doi: 10.1023/A:1010909632198 – volume: 23 start-page: 24401 issue: 12 year: 2022 ident: 10.1016/j.neunet.2023.06.003_b50 article-title: A minimax framework for two-agent scheduling with inertial constraints publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2022.3209159 – volume: 24 start-page: 812 issue: 5 year: 2013 ident: 10.1016/j.neunet.2023.06.003_b25 article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2244908 – volume: 62 start-page: 2720 issue: 6 year: 2017 ident: 10.1016/j.neunet.2023.06.003_b30 article-title: Distributed saddle-point subgradient algorithms with Laplacian averaging publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2616646 – volume: 32 start-page: 2825 issue: 7 year: 2021 ident: 10.1016/j.neunet.2023.06.003_b19 article-title: Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2957105 – volume: 19 start-page: 1344 issue: 3 year: 2008 ident: 10.1016/j.neunet.2023.06.003_b17 article-title: A minimax theorem with applications to machine learning, signal processing, and finance publication-title: SIAM Journal on Optimization doi: 10.1137/060677586 – volume: 65 start-page: 5296 issue: 12 year: 2020 ident: 10.1016/j.neunet.2023.06.003_b41 article-title: Distributed finite-time optimization for integrator chain multiagent systems with disturbances publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2020.2979274 – volume: 119 start-page: 46 year: 2019 ident: 10.1016/j.neunet.2023.06.003_b14 article-title: A generalized neural network for distributed nonsmooth optimization with inequality constraint publication-title: Neural Networks doi: 10.1016/j.neunet.2019.07.019 – volume: 17 start-page: 1500 issue: 6 year: 2006 ident: 10.1016/j.neunet.2023.06.003_b23 article-title: A simplified dual neural network for quadratic programming with its KWTA application publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.881046 – year: 2006 ident: 10.1016/j.neunet.2023.06.003_b2 |
SSID | ssj0006843 |
Score | 2.4644475 |
Snippet | In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 527 |
SubjectTerms | Distributed optimization Minimax optimization Neurodynamic optimization Recurrent neural networks |
Title | Two-timescale recurrent neural networks for distributed minimax optimization |
URI | https://dx.doi.org/10.1016/j.neunet.2023.06.003 https://www.ncbi.nlm.nih.gov/pubmed/37348433 https://www.proquest.com/docview/2829425573 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhvfTSfUmXoEKvapxIlu1jCA3plktTyE3IkgwpjR2y0J767Z3xklJKCfRmC8mWR9LMyHrzhpBrz0ktQ-dYIqOYibCdMK3hKrbOyMgIJzsYjfw0lIMXcT_2xzXSq2JhEFZZ6v5Cp-fauixpldJszSaT1rMHplZiqCjPz_dw3y5EgLP85vMb5iHDAjkHlRnWrsLncoxX6lapQ0Rlh-csnlXqrN_m6S_3MzdD_T2yU_qPtFt0cZ_UXHpAdqvcDLRcqofkcfSesTxxPAyCo3P8rY5ETBQJLOEBaQH_XlBwWqlF9lxMfOUsRa6Rqf6gGeiSaRmkeURG_dtRb8DKzAnMgEFaslBbT2hhkV0tiQwPOmEcJ9q6MAIXDXxAEJfViUwsFho_ADfFc-1Y-FYKq_kxqadZ6k4JNR7seMCG-843AtN0hNyAiwa7oEgYKb0G4ZW8lClZxTG5xZuq4GOvqpCyQimrHEXHG4StW80KVo0N9YNqKNSP2aFA8W9oeVWNnIKFg6chOnXZaqHwCBkUFnx7g5wUQ7ruC0fOH8H52b_fe0628a6ACl6Q-nK-cpfgvizjZj4_m2Sre_cwGH4Bbv_whw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kPuiL3x_zM4KvYd2SZu2jiDJ17sUJvoU0SWHiujE39M_3rk0HIiL4VtKkTS_J3S_N3e8ALiOvjEq857lKMy6Tds6NwavMeatSK73qUDTy40D1nuX9S_yyAtd1LAy5VQbdX-n0UluHklaQZms6GrWeIjS1ikJFRXm-h_v2VWKnihuwenX30BssFbJKKuc5rM-pQR1BV7p5FX5ReHKq7IiSyLPOnvXTQv2GQEtLdLsFGwFCsquql9uw4osd2KzTM7CwWnehP_yY8DJ3PI6DZzP6s05cTIw4LPEBReUB_s4QtzJHBLqU-8o7RnQjY_PJJqhOxiFOcw-GtzfD6x4PyRO4RZs054lxkTTSEcFanlrR7SRZlhvnkxRRGsJAlJgzucodFdq4i0gl8u1Mxk5JZ8Q-NIpJ4Q-B2Qg3PWjGYx9bSZk6EmERpeFGKJVWqagJopaXtoFYnPJbvOnag-xVV1LWJGVdOtKJJvBlq2lFrPFH_W49FPrbBNGo-_9oeVGPnMa1QwcipvCTxbumU2TUWfjtTTiohnTZF0G0P1KIo3-_9xzWesPHvu7fDR6OYZ3uVJ6DJ9CYzxb-FNHMPDsLs_ULrpjzOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-timescale+recurrent+neural+networks+for+distributed+minimax+optimization&rft.jtitle=Neural+networks&rft.au=Xia%2C+Zicong&rft.au=Liu%2C+Yang&rft.au=Wang%2C+Jiasen&rft.au=Wang%2C+Jun&rft.date=2023-08-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=165&rft.spage=527&rft_id=info:doi/10.1016%2Fj.neunet.2023.06.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |