Two-timescale recurrent neural networks for distributed minimax optimization

In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex–concave minimax problems subject to linear equality and nonlinear ineq...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 165; pp. 527 - 539
Main Authors Xia, Zicong, Liu, Yang, Wang, Jiasen, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2023.06.003

Cover

Loading…
Abstract In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex–concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization.
AbstractList In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex-concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization.In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex-concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization.
In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex-concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization.
Author Xia, Zicong
Liu, Yang
Wang, Jiasen
Wang, Jun
Author_xml – sequence: 1
  givenname: Zicong
  surname: Xia
  fullname: Xia, Zicong
  organization: School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0003-3761-0104
  surname: Liu
  fullname: Liu, Yang
  email: liuyang@zjnu.edu.cn
  organization: School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
– sequence: 3
  givenname: Jiasen
  surname: Wang
  fullname: Wang, Jiasen
  organization: Future Network Research Center, Purple Mountain Laboratories, Nanjing 211111, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science and School of Data Science, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37348433$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFO3DAQhi0EgoX2DSqUYy8JE9tJHA6VKtQC0kpc9m459kTyNrEX2ymFp6-3Cz30UE4zGv3fr9F3To6dd0jIpxqqGur2als5XBymigJlFbQVADsiq1p0fUk7QY_JCkTPyhYEnJHzGLcA0ArOTskZ6xjPG1uR9ebJl8nOGLWasAiolxDQpSKXBzXlkZ58-BGL0YfC2JiCHZaEppits7P6Vfhdpu2LSta7D-RkVFPEj6_zgmy-f9vc3JXrh9v7m6_rUrOWplIoA1xx09COjb1mHRXDMCqDooeG1w0AB6PGdjT7o2461veA9cAb03Kj2AX5fKjdBf-4YExytlHjNCmHfomSCtpz2mQuRy9fo8swo5G7kJ8Oz_JNQA7wQ0AHH2PA8W-kBrn3LLfy4FnuPUtoZfacset_MG3THwcpKDu9B385wJgd_bQYZNQWnUZjs_8kjbf_L_gN-iKdLA
CitedBy_id crossref_primary_10_1016_j_neunet_2024_106525
crossref_primary_10_1016_j_neunet_2024_106348
crossref_primary_10_1016_j_neunet_2024_106291
crossref_primary_10_1109_TNSE_2024_3401748
crossref_primary_10_1016_j_neunet_2023_10_011
crossref_primary_10_1016_j_neunet_2023_10_022
crossref_primary_10_1109_TCSI_2024_3351942
crossref_primary_10_1016_j_cnsns_2024_107999
crossref_primary_10_1016_j_ins_2024_121775
crossref_primary_10_1016_j_neunet_2023_12_011
crossref_primary_10_1109_TETCI_2024_3405370
crossref_primary_10_1016_j_aej_2024_12_074
Cites_doi 10.1109/MCS.2008.919306
10.1016/j.neunet.2021.05.020
10.1090/S0002-9939-09-10170-3
10.1109/TSMC.2022.3221937
10.1016/j.automatica.2013.02.062
10.1007/BF00932858
10.1109/TNNLS.2016.2538288
10.1016/j.neunet.2019.10.008
10.1109/TNNLS.2017.2652478
10.1109/MSP.2020.3003851
10.1109/TNN.2007.910736
10.1109/TNNLS.2015.2425301
10.1109/TNNLS.2016.2549566
10.1109/TAC.2018.2872200
10.1109/TAC.2015.2449811
10.1109/TAC.2013.2278132
10.1109/TCYB.2021.3088884
10.1016/j.arcontrol.2019.05.006
10.1016/j.automatica.2021.109899
10.1109/TAC.2018.2862471
10.1109/TNNLS.2018.2884788
10.1109/81.995659
10.1016/j.neunet.2021.11.013
10.1109/TCYB.2020.3031687
10.1016/j.neunet.2014.09.009
10.1109/TCYB.2019.2948424
10.1016/j.neunet.2019.02.002
10.1109/TNN.2004.824405
10.1109/TNNLS.2020.2973760
10.1109/TNNLS.2021.3098668
10.1162/089976604322860730
10.1109/TNNLS.2020.3027471
10.1109/TAC.2023.3244122
10.1109/TAC.2015.2504962
10.1017/S0962492900002518
10.1007/s10957-009-9522-7
10.1023/A:1010909632198
10.1109/TITS.2022.3209159
10.1109/TNNLS.2013.2244908
10.1109/TAC.2016.2616646
10.1109/TNNLS.2019.2957105
10.1137/060677586
10.1109/TAC.2020.2979274
10.1016/j.neunet.2019.07.019
10.1109/TNN.2006.881046
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2023.06.003
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 539
ExternalDocumentID 37348433
10_1016_j_neunet_2023_06_003
S0893608023003040
Genre Journal Article
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China
  grantid: 11202019
  funderid: http://dx.doi.org/10.13039/501100002920
– fundername: Natural Science Foundation of Zhejiang Province of China
  grantid: LR20F030001; LD19A010001
  funderid: http://dx.doi.org/10.13039/501100004731
– fundername: Jinhua Science and Technology Project
  grantid: 2022-1-042
– fundername: National Natural Science Foundation of China
  grantid: 62173308
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c362t-8ad04a4d5273f9c3728bbfade89054150040daf6fdfadec573990e1b45d64da3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Tue Aug 05 09:55:29 EDT 2025
Thu Apr 03 07:10:10 EDT 2025
Tue Jul 01 03:32:15 EDT 2025
Thu Apr 24 22:56:07 EDT 2025
Fri Feb 23 02:35:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Minimax optimization
Distributed optimization
Recurrent neural networks
Neurodynamic optimization
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-8ad04a4d5273f9c3728bbfade89054150040daf6fdfadec573990e1b45d64da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3761-0104
0000-0002-1305-5735
PMID 37348433
PQID 2829425573
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2829425573
pubmed_primary_37348433
crossref_primary_10_1016_j_neunet_2023_06_003
crossref_citationtrail_10_1016_j_neunet_2023_06_003
elsevier_sciencedirect_doi_10_1016_j_neunet_2023_06_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
2023-Aug
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Notarnicola, Franceschelli, Notarstefano (b34) 2019; 64
Mateos-Núñez, Cortés (b30) 2017; 62
Yu, Liu, Zheng, Zhu (b53) 2021; 134
Khalil (b16) 2002
Gao, Liao (b9) 2023
Liu, Xia, Gui (b27) 2023
Wan, P., & Lemmon, M. D. (2009). Event-triggered distributed optimization in sensor networks. In
Xia, Liu, Qiu, Ruan, Cao (b47) 2023; 34
Xia, Liu, Kou, Wang (b45) 2022
Gao, Liao, Xue (b10) 2004; 15
Bazaraa, Sherali, Shetty (b2) 2006
Xia, Liu, Wang (b48) 2023; 53
Kim, Boyd (b17) 2008; 19
Gharesifard, Cortés (b11) 2013; 49
Jia, Qin, Xue (b14) 2019; 119
Liu, Wang (b23) 2006; 17
Razaviyayn, Huang, Lu, Nouiehed, Sanjabi, Hong (b35) 2020; 37
Liu, Wang (b25) 2013; 24
Yang, Wang, Liu (b51) 2019; 64
Che, Wang (b7) 2021; 32
Che, Wang (b6) 2019; 30
Leung, Wang, Li (b20) 2022; 52
Yang, Yi, Wu, Yuan, Wu, Meng, Hong, Wang, Lin, Johansson (b52) 2019; 47
Han (b13) 1977; 22
Jiang, Qin, Xue, Liu (b15) 2022; 146
Li, Yan, Wang (b21) 2015; 61
Le, Wang (b18) 2017; 28
Wang, Wang (b40) 2022; 33
Cortes (b8) 2008; 28
Gharesifard, Cortés (b12) 2014; 59
Varagnolo, Zanella, Cenedese, Pillonetto, Schenato (b38) 2016; 61
Boggs, Tolle (b4) 1995; 4
Teo, Yang (b37) 2001; 101
Lou, Hong, Xie, Shi, Johansson (b29) 2016; 61
Mokhtari, Ozdaglar, Pattathil (b31) 2022
Xia, Liu, Lu, Cao, Rutkowski (b46) 2021; 51
(pp. 1069–1083).
Che, Wang (b5) 2019; 114
Liu, Wang (b26) 2015; 26
Xia, Leung, Wang (b44) 2002; 49
Bertsekas (b3) 2009
Leung, Wang (b19) 2021; 32
Wang, Wang, Li (b41) 2020; 65
Wen, Luan, Qin (b42) 2021; 143
Barron, E. N., Goebel, R., & Jensen, R. R. (2010). Best response dynamics for continuous games. In
Rockafellar (b36) 1970
Nocedal, Wright (b33) 2006
(pp. 49–60).
Liu, Yang, Wang (b28) 2017; 28
Liu, Wang (b24) 2008; 19
Liu, Le, Li (b22) 2021; 51
Nedic, Ozdaglar (b32) 2009; 142
Xia (b43) 2004; 16
Yang, Liu, Wang (b49) 2018; 29
Yang, Shen (b50) 2022; 23
Zhao, Liu (b54) 2019; 122
Varagnolo (10.1016/j.neunet.2023.06.003_b38) 2016; 61
Liu (10.1016/j.neunet.2023.06.003_b26) 2015; 26
Yu (10.1016/j.neunet.2023.06.003_b53) 2021; 134
Xia (10.1016/j.neunet.2023.06.003_b44) 2002; 49
Boggs (10.1016/j.neunet.2023.06.003_b4) 1995; 4
Lou (10.1016/j.neunet.2023.06.003_b29) 2016; 61
Zhao (10.1016/j.neunet.2023.06.003_b54) 2019; 122
Mateos-Núñez (10.1016/j.neunet.2023.06.003_b30) 2017; 62
Nedic (10.1016/j.neunet.2023.06.003_b32) 2009; 142
Wang (10.1016/j.neunet.2023.06.003_b41) 2020; 65
Yang (10.1016/j.neunet.2023.06.003_b52) 2019; 47
Leung (10.1016/j.neunet.2023.06.003_b19) 2021; 32
Xia (10.1016/j.neunet.2023.06.003_b45) 2022
Che (10.1016/j.neunet.2023.06.003_b5) 2019; 114
Cortes (10.1016/j.neunet.2023.06.003_b8) 2008; 28
Che (10.1016/j.neunet.2023.06.003_b7) 2021; 32
Nocedal (10.1016/j.neunet.2023.06.003_b33) 2006
Notarnicola (10.1016/j.neunet.2023.06.003_b34) 2019; 64
Che (10.1016/j.neunet.2023.06.003_b6) 2019; 30
Xia (10.1016/j.neunet.2023.06.003_b43) 2004; 16
Leung (10.1016/j.neunet.2023.06.003_b20) 2022; 52
Liu (10.1016/j.neunet.2023.06.003_b24) 2008; 19
Gao (10.1016/j.neunet.2023.06.003_b9) 2023
Liu (10.1016/j.neunet.2023.06.003_b27) 2023
Liu (10.1016/j.neunet.2023.06.003_b28) 2017; 28
Gao (10.1016/j.neunet.2023.06.003_b10) 2004; 15
Gharesifard (10.1016/j.neunet.2023.06.003_b11) 2013; 49
Jia (10.1016/j.neunet.2023.06.003_b14) 2019; 119
Mokhtari (10.1016/j.neunet.2023.06.003_b31) 2022
10.1016/j.neunet.2023.06.003_b39
Liu (10.1016/j.neunet.2023.06.003_b22) 2021; 51
Bazaraa (10.1016/j.neunet.2023.06.003_b2) 2006
Yang (10.1016/j.neunet.2023.06.003_b50) 2022; 23
10.1016/j.neunet.2023.06.003_b1
Rockafellar (10.1016/j.neunet.2023.06.003_b36) 1970
Xia (10.1016/j.neunet.2023.06.003_b48) 2023; 53
Jiang (10.1016/j.neunet.2023.06.003_b15) 2022; 146
Kim (10.1016/j.neunet.2023.06.003_b17) 2008; 19
Bertsekas (10.1016/j.neunet.2023.06.003_b3) 2009
Yang (10.1016/j.neunet.2023.06.003_b49) 2018; 29
Xia (10.1016/j.neunet.2023.06.003_b47) 2023; 34
Gharesifard (10.1016/j.neunet.2023.06.003_b12) 2014; 59
Liu (10.1016/j.neunet.2023.06.003_b25) 2013; 24
Xia (10.1016/j.neunet.2023.06.003_b46) 2021; 51
Wen (10.1016/j.neunet.2023.06.003_b42) 2021; 143
Han (10.1016/j.neunet.2023.06.003_b13) 1977; 22
Li (10.1016/j.neunet.2023.06.003_b21) 2015; 61
Liu (10.1016/j.neunet.2023.06.003_b23) 2006; 17
Khalil (10.1016/j.neunet.2023.06.003_b16) 2002
Razaviyayn (10.1016/j.neunet.2023.06.003_b35) 2020; 37
Le (10.1016/j.neunet.2023.06.003_b18) 2017; 28
Yang (10.1016/j.neunet.2023.06.003_b51) 2019; 64
Teo (10.1016/j.neunet.2023.06.003_b37) 2001; 101
Wang (10.1016/j.neunet.2023.06.003_b40) 2022; 33
References_xml – volume: 37
  start-page: 55
  year: 2020
  end-page: 66
  ident: b35
  article-title: Nonconvex min-max optimization: Applications, challenges, and recent theoretical advances
  publication-title: IEEE Signal Processing Magazine
– volume: 28
  start-page: 1747
  year: 2017
  end-page: 1758
  ident: b28
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 101
  start-page: 333
  year: 2001
  end-page: 349
  ident: b37
  article-title: Portfolio selection problem with minimax type risk function
  publication-title: Annals of Operations Research
– year: 2009
  ident: b3
  article-title: Convex optimization theory
– volume: 15
  start-page: 622
  year: 2004
  end-page: 628
  ident: b10
  article-title: A neural network for a class of convex quadratic minimax problems with constraints
  publication-title: IEEE Transactions on Neural Networks
– year: 2002
  ident: b16
  article-title: Nonlinear systems
– volume: 49
  start-page: 1683
  year: 2013
  end-page: 1692
  ident: b11
  article-title: Distributed convergence to Nash equilibria in two-network zero-sum games
  publication-title: Automatica
– volume: 52
  start-page: 12785
  year: 2022
  end-page: 12794
  ident: b20
  article-title: Decentralized robust portfolio optimization based on cooperative-competitive multiagent systems
  publication-title: IEEE Transactions on Cybernetics
– volume: 24
  start-page: 812
  year: 2013
  end-page: 824
  ident: b25
  article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 59
  start-page: 781
  year: 2014
  end-page: 786
  ident: b12
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Transactions on Automatic Control
– year: 1970
  ident: b36
  article-title: Convex analysis
– volume: 28
  start-page: 620
  year: 2017
  end-page: 629
  ident: b18
  article-title: A two-time-scale neurodynamic approach to constrained minimax optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 32
  start-page: 2825
  year: 2021
  end-page: 2836
  ident: b19
  article-title: Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 19
  start-page: 558
  year: 2008
  end-page: 570
  ident: b24
  article-title: A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming
  publication-title: IEEE Transactions on Neural Networks
– volume: 26
  start-page: 2891
  year: 2015
  end-page: 2900
  ident: b26
  article-title: A projection neural network for constrained quadratic minimax optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 47
  start-page: 278
  year: 2019
  end-page: 305
  ident: b52
  article-title: A survey of distributed optimization
  publication-title: Annual Reviews in Control
– volume: 61
  start-page: 10
  year: 2015
  end-page: 21
  ident: b21
  article-title: A one-layer recurrent neural network for constrained nonconvex optimization
  publication-title: Neural Networks
– volume: 16
  start-page: 863
  year: 2004
  end-page: 883
  ident: b43
  article-title: An extended projection neural network for constrained optimization constraints
  publication-title: Neural Computation
– volume: 146
  start-page: 161
  year: 2022
  end-page: 173
  ident: b15
  article-title: A second-order accelerated neurodynamic approach for distributed convex optimization
  publication-title: Neural Networks
– volume: 29
  start-page: 981
  year: 2018
  end-page: 992
  ident: b49
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 51
  start-page: 5631
  year: 2021
  end-page: 5636
  ident: b46
  article-title: Penalty method for constrained distributed quaternion-variable optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 143
  start-page: 52
  year: 2021
  end-page: 65
  ident: b42
  article-title: A continuous-time neurodynamic approach and its discretization for distributed convex optimization over multi-agent systems
  publication-title: Neural Networks
– year: 2023
  ident: b9
  article-title: Novel continuous-and discrete-time neural networks for solving quadratic minimax problems with linear equality constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 49
  start-page: 447
  year: 2002
  end-page: 458
  ident: b44
  article-title: A projection neural network and its application to constrained optimization problems
  publication-title: IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications
– year: 2022
  ident: b45
  article-title: Clifford-valued distributed optimization based on recurrent neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems,
– volume: 51
  start-page: 2466
  year: 2021
  end-page: 2475
  ident: b22
  article-title: A distributed optimization algorithm based on multiagent network for economic Dispatch With Region partitioning
  publication-title: IEEE Transactions on Cybernetics
– volume: 61
  start-page: 994
  year: 2016
  end-page: 1009
  ident: b38
  article-title: Newton–Raphson consensus for distributed convex optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 134
  year: 2021
  ident: b53
  article-title: Distributed discrete-time convex optimization with nonidentical local constraints over time-varying unbalanced directed graphs
  publication-title: Automatica
– year: 2006
  ident: b33
  article-title: Numerical optimization
– volume: 34
  start-page: 534
  year: 2023
  end-page: 542
  ident: b47
  article-title: An RNN-based algorithm for decentralized-partial-consensus constrained optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 22
  start-page: 297
  year: 1977
  end-page: 309
  ident: b13
  article-title: A globally convergent method for nonlinear programming
  publication-title: Journal of Optimization Theory and Applications
– reference: (pp. 49–60).
– volume: 142
  start-page: 205
  year: 2009
  end-page: 228
  ident: b32
  article-title: Subgradient methods for saddle-point problems
  publication-title: Journal of Optimization Theory and Applications
– volume: 114
  start-page: 15
  year: 2019
  end-page: 27
  ident: b5
  article-title: A collaborative neurodynamic approach to global and combinatorial optimization
  publication-title: Neural Networks
– volume: 30
  start-page: 2503
  year: 2019
  end-page: 2514
  ident: b6
  article-title: A two-timescale duplex neurodynamic approach to biconvex optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 23
  start-page: 24401
  year: 2022
  end-page: 24413
  ident: b50
  article-title: A minimax framework for two-agent scheduling with inertial constraints
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 122
  start-page: 144
  year: 2019
  end-page: 151
  ident: b54
  article-title: A consensus algorithm based on collective neurodynamic system for distributed optimization with linear and bound constraints
  publication-title: Neural Networks
– year: 2006
  ident: b2
  article-title: Nonlinear programming: Theory and algorithms
– volume: 119
  start-page: 46
  year: 2019
  end-page: 56
  ident: b14
  article-title: A generalized neural network for distributed nonsmooth optimization with inequality constraint
  publication-title: Neural Networks
– volume: 19
  start-page: 1344
  year: 2008
  end-page: 1367
  ident: b17
  article-title: A minimax theorem with applications to machine learning, signal processing, and finance
  publication-title: SIAM Journal on Optimization
– reference: Wan, P., & Lemmon, M. D. (2009). Event-triggered distributed optimization in sensor networks. In
– year: 2022
  ident: b31
  article-title: A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach
– year: 2023
  ident: b27
  article-title: Multi-objective distributed optimization via a predefined-time multi-agent approach
  publication-title: IEEE Transactions on Automatic Control
– volume: 28
  start-page: 36
  year: 2008
  end-page: 73
  ident: b8
  article-title: Discontinuous dynamical systems
  publication-title: IEEE Control Systems Magazine
– volume: 32
  start-page: 36
  year: 2021
  end-page: 48
  ident: b7
  article-title: A two-timescale duplex neurodynamic approach to mixed-integer optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 33
  start-page: 37
  year: 2022
  end-page: 47
  ident: b40
  article-title: Two-timescale multilayer recurrent neural networks for nonlinear programming
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 64
  start-page: 2559
  year: 2019
  end-page: 2566
  ident: b34
  article-title: A duality-based approach for distributed min–max optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 17
  start-page: 1500
  year: 2006
  end-page: 1510
  ident: b23
  article-title: A simplified dual neural network for quadratic programming with its KWTA application
  publication-title: IEEE Transactions on Neural Networks
– volume: 4
  start-page: 1
  year: 1995
  end-page: 51
  ident: b4
  article-title: Sequential quadratic programming
  publication-title: Acta Numerica
– volume: 62
  start-page: 2720
  year: 2017
  end-page: 2735
  ident: b30
  article-title: Distributed saddle-point subgradient algorithms with Laplacian averaging
  publication-title: IEEE Transactions on Automatic Control
– volume: 61
  start-page: 2920
  year: 2016
  end-page: 2935
  ident: b29
  article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications
  publication-title: IEEE Transactions on Automatic Control
– volume: 53
  start-page: 3141
  year: 2023
  end-page: 3151
  ident: b48
  article-title: A collaborative neurodynamic approach to distributed global optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– reference: Barron, E. N., Goebel, R., & Jensen, R. R. (2010). Best response dynamics for continuous games. In
– reference: (pp. 1069–1083).
– volume: 65
  start-page: 5296
  year: 2020
  end-page: 5311
  ident: b41
  article-title: Distributed finite-time optimization for integrator chain multiagent systems with disturbances
  publication-title: IEEE Transactions on Automatic Control
– volume: 64
  start-page: 1358
  year: 2019
  end-page: 1372
  ident: b51
  article-title: Cooperative-competitive multi-agent systems for distributed minimax optimization subject to bounded constraints
  publication-title: IEEE Transactions on Automatic Control
– volume: 28
  start-page: 36
  issue: 3
  year: 2008
  ident: 10.1016/j.neunet.2023.06.003_b8
  article-title: Discontinuous dynamical systems
  publication-title: IEEE Control Systems Magazine
  doi: 10.1109/MCS.2008.919306
– year: 2002
  ident: 10.1016/j.neunet.2023.06.003_b16
– volume: 143
  start-page: 52
  year: 2021
  ident: 10.1016/j.neunet.2023.06.003_b42
  article-title: A continuous-time neurodynamic approach and its discretization for distributed convex optimization over multi-agent systems
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.05.020
– ident: 10.1016/j.neunet.2023.06.003_b1
  doi: 10.1090/S0002-9939-09-10170-3
– volume: 53
  start-page: 3141
  issue: 5
  year: 2023
  ident: 10.1016/j.neunet.2023.06.003_b48
  article-title: A collaborative neurodynamic approach to distributed global optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.2022.3221937
– volume: 49
  start-page: 1683
  issue: 6
  year: 2013
  ident: 10.1016/j.neunet.2023.06.003_b11
  article-title: Distributed convergence to Nash equilibria in two-network zero-sum games
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.02.062
– volume: 22
  start-page: 297
  year: 1977
  ident: 10.1016/j.neunet.2023.06.003_b13
  article-title: A globally convergent method for nonlinear programming
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/BF00932858
– volume: 28
  start-page: 620
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2023.06.003_b18
  article-title: A two-time-scale neurodynamic approach to constrained minimax optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2538288
– volume: 122
  start-page: 144
  year: 2019
  ident: 10.1016/j.neunet.2023.06.003_b54
  article-title: A consensus algorithm based on collective neurodynamic system for distributed optimization with linear and bound constraints
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.10.008
– volume: 29
  start-page: 981
  issue: 4
  year: 2018
  ident: 10.1016/j.neunet.2023.06.003_b49
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2652478
– volume: 37
  start-page: 55
  issue: 5
  year: 2020
  ident: 10.1016/j.neunet.2023.06.003_b35
  article-title: Nonconvex min-max optimization: Applications, challenges, and recent theoretical advances
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2020.3003851
– volume: 19
  start-page: 558
  issue: 4
  year: 2008
  ident: 10.1016/j.neunet.2023.06.003_b24
  article-title: A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2007.910736
– volume: 26
  start-page: 2891
  issue: 11
  year: 2015
  ident: 10.1016/j.neunet.2023.06.003_b26
  article-title: A projection neural network for constrained quadratic minimax optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2425301
– volume: 28
  start-page: 1747
  issue: 8
  year: 2017
  ident: 10.1016/j.neunet.2023.06.003_b28
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2549566
– volume: 64
  start-page: 2559
  issue: 6
  year: 2019
  ident: 10.1016/j.neunet.2023.06.003_b34
  article-title: A duality-based approach for distributed min–max optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2018.2872200
– volume: 61
  start-page: 994
  issue: 4
  year: 2016
  ident: 10.1016/j.neunet.2023.06.003_b38
  article-title: Newton–Raphson consensus for distributed convex optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2015.2449811
– volume: 59
  start-page: 781
  issue: 3
  year: 2014
  ident: 10.1016/j.neunet.2023.06.003_b12
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2013.2278132
– volume: 52
  start-page: 12785
  issue: 12
  year: 2022
  ident: 10.1016/j.neunet.2023.06.003_b20
  article-title: Decentralized robust portfolio optimization based on cooperative-competitive multiagent systems
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3088884
– volume: 47
  start-page: 278
  year: 2019
  ident: 10.1016/j.neunet.2023.06.003_b52
  article-title: A survey of distributed optimization
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2019.05.006
– volume: 134
  year: 2021
  ident: 10.1016/j.neunet.2023.06.003_b53
  article-title: Distributed discrete-time convex optimization with nonidentical local constraints over time-varying unbalanced directed graphs
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109899
– volume: 64
  start-page: 1358
  issue: 5
  year: 2019
  ident: 10.1016/j.neunet.2023.06.003_b51
  article-title: Cooperative-competitive multi-agent systems for distributed minimax optimization subject to bounded constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2018.2862471
– volume: 30
  start-page: 2503
  issue: 8
  year: 2019
  ident: 10.1016/j.neunet.2023.06.003_b6
  article-title: A two-timescale duplex neurodynamic approach to biconvex optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2884788
– volume: 49
  start-page: 447
  issue: 4
  year: 2002
  ident: 10.1016/j.neunet.2023.06.003_b44
  article-title: A projection neural network and its application to constrained optimization problems
  publication-title: IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications
  doi: 10.1109/81.995659
– volume: 146
  start-page: 161
  year: 2022
  ident: 10.1016/j.neunet.2023.06.003_b15
  article-title: A second-order accelerated neurodynamic approach for distributed convex optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.11.013
– volume: 51
  start-page: 5631
  issue: 11
  year: 2021
  ident: 10.1016/j.neunet.2023.06.003_b46
  article-title: Penalty method for constrained distributed quaternion-variable optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3031687
– volume: 61
  start-page: 10
  year: 2015
  ident: 10.1016/j.neunet.2023.06.003_b21
  article-title: A one-layer recurrent neural network for constrained nonconvex optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.009
– year: 2006
  ident: 10.1016/j.neunet.2023.06.003_b33
– volume: 51
  start-page: 2466
  issue: 5
  year: 2021
  ident: 10.1016/j.neunet.2023.06.003_b22
  article-title: A distributed optimization algorithm based on multiagent network for economic Dispatch With Region partitioning
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2948424
– ident: 10.1016/j.neunet.2023.06.003_b39
– volume: 114
  start-page: 15
  year: 2019
  ident: 10.1016/j.neunet.2023.06.003_b5
  article-title: A collaborative neurodynamic approach to global and combinatorial optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.02.002
– volume: 15
  start-page: 622
  issue: 3
  year: 2004
  ident: 10.1016/j.neunet.2023.06.003_b10
  article-title: A neural network for a class of convex quadratic minimax problems with constraints
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2004.824405
– volume: 32
  start-page: 36
  issue: 1
  year: 2021
  ident: 10.1016/j.neunet.2023.06.003_b7
  article-title: A two-timescale duplex neurodynamic approach to mixed-integer optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2973760
– volume: 34
  start-page: 534
  issue: 1
  year: 2023
  ident: 10.1016/j.neunet.2023.06.003_b47
  article-title: An RNN-based algorithm for decentralized-partial-consensus constrained optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3098668
– volume: 16
  start-page: 863
  issue: 4
  year: 2004
  ident: 10.1016/j.neunet.2023.06.003_b43
  article-title: An extended projection neural network for constrained optimization constraints
  publication-title: Neural Computation
  doi: 10.1162/089976604322860730
– volume: 33
  start-page: 37
  issue: 1
  year: 2022
  ident: 10.1016/j.neunet.2023.06.003_b40
  article-title: Two-timescale multilayer recurrent neural networks for nonlinear programming
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3027471
– year: 2023
  ident: 10.1016/j.neunet.2023.06.003_b27
  article-title: Multi-objective distributed optimization via a predefined-time multi-agent approach
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2023.3244122
– volume: 61
  start-page: 2920
  issue: 10
  year: 2016
  ident: 10.1016/j.neunet.2023.06.003_b29
  article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2015.2504962
– volume: 4
  start-page: 1
  year: 1995
  ident: 10.1016/j.neunet.2023.06.003_b4
  article-title: Sequential quadratic programming
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002518
– volume: 142
  start-page: 205
  year: 2009
  ident: 10.1016/j.neunet.2023.06.003_b32
  article-title: Subgradient methods for saddle-point problems
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-009-9522-7
– year: 2009
  ident: 10.1016/j.neunet.2023.06.003_b3
– year: 1970
  ident: 10.1016/j.neunet.2023.06.003_b36
– year: 2022
  ident: 10.1016/j.neunet.2023.06.003_b45
  article-title: Clifford-valued distributed optimization based on recurrent neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems,
– year: 2022
  ident: 10.1016/j.neunet.2023.06.003_b31
– year: 2023
  ident: 10.1016/j.neunet.2023.06.003_b9
  article-title: Novel continuous-and discrete-time neural networks for solving quadratic minimax problems with linear equality constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 101
  start-page: 333
  issue: 1–4
  year: 2001
  ident: 10.1016/j.neunet.2023.06.003_b37
  article-title: Portfolio selection problem with minimax type risk function
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1010909632198
– volume: 23
  start-page: 24401
  issue: 12
  year: 2022
  ident: 10.1016/j.neunet.2023.06.003_b50
  article-title: A minimax framework for two-agent scheduling with inertial constraints
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2022.3209159
– volume: 24
  start-page: 812
  issue: 5
  year: 2013
  ident: 10.1016/j.neunet.2023.06.003_b25
  article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2244908
– volume: 62
  start-page: 2720
  issue: 6
  year: 2017
  ident: 10.1016/j.neunet.2023.06.003_b30
  article-title: Distributed saddle-point subgradient algorithms with Laplacian averaging
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2616646
– volume: 32
  start-page: 2825
  issue: 7
  year: 2021
  ident: 10.1016/j.neunet.2023.06.003_b19
  article-title: Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2957105
– volume: 19
  start-page: 1344
  issue: 3
  year: 2008
  ident: 10.1016/j.neunet.2023.06.003_b17
  article-title: A minimax theorem with applications to machine learning, signal processing, and finance
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/060677586
– volume: 65
  start-page: 5296
  issue: 12
  year: 2020
  ident: 10.1016/j.neunet.2023.06.003_b41
  article-title: Distributed finite-time optimization for integrator chain multiagent systems with disturbances
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2020.2979274
– volume: 119
  start-page: 46
  year: 2019
  ident: 10.1016/j.neunet.2023.06.003_b14
  article-title: A generalized neural network for distributed nonsmooth optimization with inequality constraint
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.07.019
– volume: 17
  start-page: 1500
  issue: 6
  year: 2006
  ident: 10.1016/j.neunet.2023.06.003_b23
  article-title: A simplified dual neural network for quadratic programming with its KWTA application
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.881046
– year: 2006
  ident: 10.1016/j.neunet.2023.06.003_b2
SSID ssj0006843
Score 2.4644475
Snippet In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 527
SubjectTerms Distributed optimization
Minimax optimization
Neurodynamic optimization
Recurrent neural networks
Title Two-timescale recurrent neural networks for distributed minimax optimization
URI https://dx.doi.org/10.1016/j.neunet.2023.06.003
https://www.ncbi.nlm.nih.gov/pubmed/37348433
https://www.proquest.com/docview/2829425573
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhvfTSfUmXoEKvapxIlu1jCA3plktTyE3IkgwpjR2y0J767Z3xklJKCfRmC8mWR9LMyHrzhpBrz0ktQ-dYIqOYibCdMK3hKrbOyMgIJzsYjfw0lIMXcT_2xzXSq2JhEFZZ6v5Cp-fauixpldJszSaT1rMHplZiqCjPz_dw3y5EgLP85vMb5iHDAjkHlRnWrsLncoxX6lapQ0Rlh-csnlXqrN_m6S_3MzdD_T2yU_qPtFt0cZ_UXHpAdqvcDLRcqofkcfSesTxxPAyCo3P8rY5ETBQJLOEBaQH_XlBwWqlF9lxMfOUsRa6Rqf6gGeiSaRmkeURG_dtRb8DKzAnMgEFaslBbT2hhkV0tiQwPOmEcJ9q6MAIXDXxAEJfViUwsFho_ADfFc-1Y-FYKq_kxqadZ6k4JNR7seMCG-843AtN0hNyAiwa7oEgYKb0G4ZW8lClZxTG5xZuq4GOvqpCyQimrHEXHG4StW80KVo0N9YNqKNSP2aFA8W9oeVWNnIKFg6chOnXZaqHwCBkUFnx7g5wUQ7ruC0fOH8H52b_fe0628a6ACl6Q-nK-cpfgvizjZj4_m2Sre_cwGH4Bbv_whw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kPuiL3x_zM4KvYd2SZu2jiDJ17sUJvoU0SWHiujE39M_3rk0HIiL4VtKkTS_J3S_N3e8ALiOvjEq857lKMy6Tds6NwavMeatSK73qUDTy40D1nuX9S_yyAtd1LAy5VQbdX-n0UluHklaQZms6GrWeIjS1ikJFRXm-h_v2VWKnihuwenX30BssFbJKKuc5rM-pQR1BV7p5FX5ReHKq7IiSyLPOnvXTQv2GQEtLdLsFGwFCsquql9uw4osd2KzTM7CwWnehP_yY8DJ3PI6DZzP6s05cTIw4LPEBReUB_s4QtzJHBLqU-8o7RnQjY_PJJqhOxiFOcw-GtzfD6x4PyRO4RZs054lxkTTSEcFanlrR7SRZlhvnkxRRGsJAlJgzucodFdq4i0gl8u1Mxk5JZ8Q-NIpJ4Q-B2Qg3PWjGYx9bSZk6EmERpeFGKJVWqagJopaXtoFYnPJbvOnag-xVV1LWJGVdOtKJJvBlq2lFrPFH_W49FPrbBNGo-_9oeVGPnMa1QwcipvCTxbumU2TUWfjtTTiohnTZF0G0P1KIo3-_9xzWesPHvu7fDR6OYZ3uVJ6DJ9CYzxb-FNHMPDsLs_ULrpjzOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-timescale+recurrent+neural+networks+for+distributed+minimax+optimization&rft.jtitle=Neural+networks&rft.au=Xia%2C+Zicong&rft.au=Liu%2C+Yang&rft.au=Wang%2C+Jiasen&rft.au=Wang%2C+Jun&rft.date=2023-08-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=165&rft.spage=527&rft_id=info:doi/10.1016%2Fj.neunet.2023.06.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon