Correlation-based channel selection and regularized feature optimization for MI-based BCI
Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI s...
Saved in:
Published in | Neural networks Vol. 118; pp. 262 - 270 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2019.07.008 |
Cover
Loading…
Abstract | Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels.
•A new correlation-based channel selection (CCS) method is proposed in this paper.•A novel regularized CSP (RCSP) is proposed to optimize the motor imagery features.•The CCS-RCSP method can significantly improve the classification accuracy. |
---|---|
AbstractList | Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels. Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels.Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels. Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels. •A new correlation-based channel selection (CCS) method is proposed in this paper.•A novel regularized CSP (RCSP) is proposed to optimize the motor imagery features.•The CCS-RCSP method can significantly improve the classification accuracy. |
Author | Cichocki, Andrzej Hu, Dewen Daly, Ian Jin, Jing Miao, Yangyang Zuo, Cili |
Author_xml | – sequence: 1 givenname: Jing surname: Jin fullname: Jin, Jing email: jinjingat@gmail.com organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China – sequence: 2 givenname: Yangyang surname: Miao fullname: Miao, Yangyang organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China – sequence: 3 givenname: Ian surname: Daly fullname: Daly, Ian organization: Brain–Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK – sequence: 4 givenname: Cili surname: Zuo fullname: Zuo, Cili organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China – sequence: 5 givenname: Dewen surname: Hu fullname: Hu, Dewen organization: College of Mechatronic Engineering and Automation, National University of Defense Technology Changsha, Hunan 410073, PR China – sequence: 6 givenname: Andrzej surname: Cichocki fullname: Cichocki, Andrzej organization: Skolkowo Institute of Science and Technology (SKOLTECH), 143026 Moscow, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31326660$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE9r2zAYh8VIadI_32AMH3ex90qyJXmHwhq6LdDSy3boScjy61XBkVLJHqyfvk6T9dBDexK8PM8P8ZyQmQ8eCflIoaBAxZd14XH0OBQMaF2ALADUB7KgStY5k4rNyAJUzXMBCubkJKU1AAhV8mMy55QzIQQsyN0yxIi9GVzweWMStpm9N95jnyXs0e7umfFtFvHP2JvoHieiQzOMEbOwHdzGPT7LWRdidrM6bFwuV2fkqDN9wvPDe0p-f7_6tfyZX9_-WC2_XeeWCzbkomY1p8wyyThXwBlnnawsQMNAylLW0z87I7C1UFagVK1QGpRV01aNNVXLT8nn_e42hocR06A3Llnse-MxjEkzJmgtBSurCf10QMdmg63eRrcx8Z_-n2MCyj1gY0gpYveCUNC76nqt99X1rroGqafqk_b1lWbd8FxliMb178kXexmnSH8dRp2sQ2-xdXHqr9vg3h54AqWQny0 |
CitedBy_id | crossref_primary_10_3389_fninf_2022_952474 crossref_primary_10_1016_j_eswa_2024_124145 crossref_primary_10_1109_JBHI_2024_3450753 crossref_primary_10_1109_JBHI_2022_3146274 crossref_primary_10_1109_TNNLS_2023_3243339 crossref_primary_10_1109_ACCESS_2020_2993318 crossref_primary_10_1007_s11760_021_01924_3 crossref_primary_10_1016_j_bspc_2022_104153 crossref_primary_10_1109_TNSRE_2023_3275547 crossref_primary_10_1088_1741_2552_ac1d36 crossref_primary_10_1080_2326263X_2023_2254463 crossref_primary_10_1109_ACCESS_2023_3328618 crossref_primary_10_1109_TCDS_2022_3193731 crossref_primary_10_1016_j_imu_2022_101141 crossref_primary_10_1109_TII_2022_3227736 crossref_primary_10_1109_TCDS_2020_3040438 crossref_primary_10_1109_ACCESS_2020_3032380 crossref_primary_10_1109_TCDS_2022_3214081 crossref_primary_10_1109_JBHI_2024_3452701 crossref_primary_10_1109_TNSRE_2020_2987529 crossref_primary_10_1109_TCE_2023_3330423 crossref_primary_10_1016_j_engappai_2024_107845 crossref_primary_10_1007_s42600_023_00321_8 crossref_primary_10_1016_j_bspc_2021_103327 crossref_primary_10_1016_j_bspc_2023_105745 crossref_primary_10_1109_JTEHM_2022_3167552 crossref_primary_10_1109_JSEN_2022_3184713 crossref_primary_10_35378_gujs_1413191 crossref_primary_10_1007_s12046_022_02015_w crossref_primary_10_1109_ACCESS_2020_3003056 crossref_primary_10_1109_TITS_2024_3442249 crossref_primary_10_1109_TCYB_2020_2968625 crossref_primary_10_1109_TCDS_2024_3401717 crossref_primary_10_3390_electronics11223674 crossref_primary_10_7717_peerj_cs_374 crossref_primary_10_1016_j_bspc_2021_102702 crossref_primary_10_1016_j_irbm_2021_01_002 crossref_primary_10_1109_TCDS_2024_3370635 crossref_primary_10_1016_j_measen_2022_100616 crossref_primary_10_1088_1741_2552_ac0583 crossref_primary_10_1142_S0129065721500040 crossref_primary_10_1109_TIM_2021_3094619 crossref_primary_10_1109_TIM_2024_3375980 crossref_primary_10_1142_S0129065721500039 crossref_primary_10_1007_s00521_023_09090_y crossref_primary_10_1088_1741_2552_abe20f crossref_primary_10_1109_TIM_2024_3384559 crossref_primary_10_1038_s41598_024_71118_7 crossref_primary_10_1155_2021_9959195 crossref_primary_10_1016_j_bspc_2022_103526 crossref_primary_10_1016_j_bspc_2025_107706 crossref_primary_10_3389_fnins_2021_749232 crossref_primary_10_1016_j_engappai_2023_106122 crossref_primary_10_1080_10255842_2024_2401918 crossref_primary_10_1109_TNSRE_2020_3004462 crossref_primary_10_1016_j_cmpb_2020_105808 crossref_primary_10_1016_j_eswa_2023_122356 crossref_primary_10_1007_s11432_022_3548_2 crossref_primary_10_1109_TNNLS_2023_3287181 crossref_primary_10_1109_ACCESS_2022_3165197 crossref_primary_10_1016_j_bspc_2024_106131 crossref_primary_10_1109_TNNLS_2020_3015505 crossref_primary_10_1155_2021_6645322 crossref_primary_10_1007_s11571_023_09940_4 crossref_primary_10_1038_s41598_022_14026_y crossref_primary_10_1109_ACCESS_2024_3399114 crossref_primary_10_1142_S0129065721500349 crossref_primary_10_1016_j_neunet_2020_11_002 crossref_primary_10_1088_1741_2552_ad1f7a crossref_primary_10_1016_j_bspc_2020_101994 crossref_primary_10_1007_s11571_020_09608_3 crossref_primary_10_1109_TNSRE_2022_3186442 crossref_primary_10_1109_TCYB_2021_3071860 crossref_primary_10_1016_j_bspc_2023_105317 crossref_primary_10_1016_j_neucom_2020_07_123 crossref_primary_10_1080_21681163_2020_1727775 crossref_primary_10_1007_s12264_022_00920_y crossref_primary_10_1109_TNSRE_2021_3125386 crossref_primary_10_3389_fnins_2023_1124089 crossref_primary_10_1002_asjc_3089 crossref_primary_10_1088_1741_2552_ad0a01 crossref_primary_10_1515_bmt_2023_0407 crossref_primary_10_1007_s11517_024_03103_1 crossref_primary_10_1007_s11571_025_10239_9 crossref_primary_10_1080_10255842_2025_2457122 crossref_primary_10_1109_ACCESS_2019_2939623 crossref_primary_10_1016_j_bspc_2020_101884 crossref_primary_10_3390_s24103168 crossref_primary_10_1109_TNSRE_2021_3059166 crossref_primary_10_1109_JBHI_2024_3411646 crossref_primary_10_1109_TNSRE_2022_3217573 crossref_primary_10_3389_fnins_2020_546656 crossref_primary_10_1109_TNSRE_2020_3040984 crossref_primary_10_1109_ACCESS_2020_3017888 crossref_primary_10_1109_TNSRE_2020_3018959 crossref_primary_10_1109_TNSRE_2021_3120024 crossref_primary_10_1155_2021_1970769 crossref_primary_10_1109_TNNLS_2021_3118468 crossref_primary_10_1109_TNSRE_2022_3209155 crossref_primary_10_3389_fnbot_2020_00025 crossref_primary_10_1109_TNSRE_2021_3071140 crossref_primary_10_1590_1678_4324_2024230545 crossref_primary_10_1016_j_eswa_2022_116783 crossref_primary_10_1016_j_compbiomed_2022_105521 crossref_primary_10_1145_3397850 crossref_primary_10_1016_j_eswa_2022_117757 crossref_primary_10_1088_2057_1976_ad3647 crossref_primary_10_1080_21681163_2023_2192831 crossref_primary_10_3390_electronics12040855 crossref_primary_10_1016_j_neunet_2022_09_016 crossref_primary_10_1109_JBHI_2024_3472097 crossref_primary_10_1371_journal_pone_0248511 crossref_primary_10_1109_TNNLS_2023_3292179 crossref_primary_10_1186_s40708_022_00154_8 crossref_primary_10_3390_bioengineering10050609 crossref_primary_10_3390_s25010120 crossref_primary_10_1002_ima_22700 crossref_primary_10_1002_ima_22821 crossref_primary_10_1016_j_neunet_2023_06_005 crossref_primary_10_1002_ima_22823 crossref_primary_10_1007_s11704_021_0587_2 crossref_primary_10_1016_j_bbr_2024_115345 crossref_primary_10_1109_TNSRE_2021_3139095 crossref_primary_10_1016_j_jneumeth_2021_109378 crossref_primary_10_1016_j_eswa_2025_126433 crossref_primary_10_1109_TCDS_2022_3174660 crossref_primary_10_1109_TNSRE_2022_3183023 crossref_primary_10_1155_2020_8863223 crossref_primary_10_3390_s21196570 crossref_primary_10_1109_TCDS_2022_3159285 crossref_primary_10_1142_S0129065721500301 crossref_primary_10_3390_brainsci13091340 crossref_primary_10_1109_TCYB_2021_3073210 crossref_primary_10_1016_j_bspc_2022_104554 crossref_primary_10_1088_1741_2552_ac7b4a crossref_primary_10_1109_TCDS_2021_3096812 crossref_primary_10_3389_fnins_2023_1251968 crossref_primary_10_1088_1741_2552_acae07 crossref_primary_10_1186_s40708_020_00108_y crossref_primary_10_3389_fnins_2023_1303242 crossref_primary_10_1007_s11517_025_03298_x crossref_primary_10_1088_1741_2552_ac9338 crossref_primary_10_3389_frai_2022_1072801 crossref_primary_10_1109_ACCESS_2021_3091399 crossref_primary_10_1016_j_jneumeth_2023_109969 crossref_primary_10_3390_app12168274 crossref_primary_10_1109_ACCESS_2022_3142311 crossref_primary_10_1109_TAI_2021_3097307 crossref_primary_10_1007_s11517_023_02780_8 crossref_primary_10_1109_JSEN_2024_3445971 crossref_primary_10_1016_j_bspc_2021_103295 crossref_primary_10_3389_fncom_2022_1004301 crossref_primary_10_1155_2020_8890477 crossref_primary_10_1016_j_jneumeth_2020_108690 crossref_primary_10_1109_MCI_2021_3061875 crossref_primary_10_1016_j_jneumeth_2021_109274 crossref_primary_10_3390_s24051678 crossref_primary_10_3934_mbe_2021213 crossref_primary_10_1109_ACCESS_2020_3048683 crossref_primary_10_1007_s10586_024_04492_6 crossref_primary_10_1016_j_jneumeth_2023_109953 crossref_primary_10_1016_j_eswa_2023_119921 crossref_primary_10_3390_brainsci14050462 crossref_primary_10_1007_s11517_020_02310_w crossref_primary_10_3390_brainsci11020197 crossref_primary_10_1007_s11571_020_09577_7 crossref_primary_10_1109_JSEN_2022_3171808 crossref_primary_10_3390_bioengineering10060664 crossref_primary_10_1109_ACCESS_2022_3188103 crossref_primary_10_1109_ACCESS_2021_3049191 crossref_primary_10_1109_TCYB_2022_3166604 crossref_primary_10_1016_j_artmed_2019_101787 crossref_primary_10_1109_JSEN_2021_3130626 crossref_primary_10_3390_brainsci12091233 crossref_primary_10_3389_fninf_2020_00001 crossref_primary_10_1016_j_bspc_2022_104454 crossref_primary_10_26599_BSA_2023_9050011 crossref_primary_10_1002_ima_22913 crossref_primary_10_1155_2020_1838140 crossref_primary_10_3390_s21175746 crossref_primary_10_1016_j_jneumeth_2024_110098 crossref_primary_10_1016_j_neures_2021_09_002 crossref_primary_10_1109_TAI_2021_3060350 crossref_primary_10_1007_s40031_022_00783_x crossref_primary_10_1080_09540091_2024_2426812 crossref_primary_10_3390_bioengineering9120726 crossref_primary_10_1109_TNSRE_2022_3172974 crossref_primary_10_1038_s41598_022_15813_3 crossref_primary_10_3389_fbioe_2020_00285 crossref_primary_10_1016_j_jneumeth_2022_109593 crossref_primary_10_1109_ACCESS_2021_3063382 crossref_primary_10_1109_JBHI_2020_3045718 crossref_primary_10_3389_fnhum_2022_975410 crossref_primary_10_3233_JIFS_223819 crossref_primary_10_3390_s21062173 crossref_primary_10_1016_j_eswa_2020_113967 crossref_primary_10_1007_s11571_021_09669_y crossref_primary_10_1016_j_heliyon_2024_e38681 crossref_primary_10_53941_ijndi0101007 crossref_primary_10_1016_j_cmpb_2024_108048 crossref_primary_10_1016_j_ijhcs_2021_102603 crossref_primary_10_1007_s11571_024_10085_1 crossref_primary_10_1080_10255842_2021_1977800 crossref_primary_10_1109_TNSRE_2022_3227511 crossref_primary_10_3390_math11173801 crossref_primary_10_3390_app122312253 crossref_primary_10_1016_j_bspc_2021_102608 crossref_primary_10_1109_ACCESS_2024_3459866 crossref_primary_10_1088_1741_2552_ac7d73 crossref_primary_10_3389_fnins_2022_1045851 crossref_primary_10_1109_TNSRE_2020_3022364 crossref_primary_10_1155_2019_9374802 crossref_primary_10_1007_s11227_023_05739_6 crossref_primary_10_3390_e23091170 crossref_primary_10_1016_j_compbiomed_2025_109944 crossref_primary_10_1016_j_eng_2021_11_013 crossref_primary_10_1109_ACCESS_2021_3110882 crossref_primary_10_3389_fnins_2020_587520 crossref_primary_10_1109_JBHI_2023_3294586 crossref_primary_10_1109_TCDS_2022_3151860 crossref_primary_10_1109_ACCESS_2020_3012918 crossref_primary_10_3390_s22239051 crossref_primary_10_1109_ACCESS_2019_2944938 crossref_primary_10_1109_TFUZZ_2021_3092824 crossref_primary_10_1109_ACCESS_2021_3056088 crossref_primary_10_1155_2021_6694310 crossref_primary_10_1142_S0129065721500404 crossref_primary_10_1109_TNSRE_2020_3020975 crossref_primary_10_1088_1741_2552_ad2496 crossref_primary_10_1109_ACCESS_2020_3004504 crossref_primary_10_1016_j_jneumeth_2021_109300 crossref_primary_10_1038_s41598_024_73536_z crossref_primary_10_1109_TII_2020_3044310 crossref_primary_10_3390_signals4010013 crossref_primary_10_1016_j_jneumeth_2021_109425 crossref_primary_10_1016_j_neucom_2025_129410 crossref_primary_10_1080_09544828_2024_2326396 crossref_primary_10_1109_TCYB_2020_2977267 crossref_primary_10_1155_2020_6056383 crossref_primary_10_1016_j_bbe_2022_05_002 crossref_primary_10_1016_j_ipm_2022_103001 crossref_primary_10_1016_j_jneumeth_2020_108833 crossref_primary_10_1016_j_bbe_2021_10_001 crossref_primary_10_1177_15500594211019917 crossref_primary_10_1007_s11042_022_12327_y crossref_primary_10_3389_fnhum_2023_1292428 crossref_primary_10_1016_j_neucom_2020_02_079 crossref_primary_10_1109_TNSRE_2020_3010250 crossref_primary_10_3390_app112210906 crossref_primary_10_1007_s00521_024_10789_9 |
Cites_doi | 10.1016/j.neunet.2018.02.011 10.1109/TBME.2005.851521 10.1016/j.jneumeth.2013.07.018 10.1109/TNSRE.2013.2253801 10.1109/ICASSP.2013.6637856 10.1088/1741-2560/9/3/036012 10.1109/TBME.2010.2082540 10.3389/fncom.2013.00088 10.1016/j.neuroimage.2012.12.069 10.1088/1741-2560/9/2/026018 10.1109/TNSRE.2006.875642 10.1371/journal.pone.0112392 10.1007/s11042-006-0094-3 10.1109/TBME.2018.2799661 10.3389/fnhum.2013.00848 10.1142/S0129065715500112 10.1016/j.artmed.2012.02.001 10.1088/1741-2560/10/2/026012 10.1142/S0129065716500325 10.1080/01621459.1989.10478752 10.1016/j.neucom.2013.05.005 10.1109/TBME.2009.2025866 10.1016/j.neucom.2012.11.004 10.1109/TNSRE.2018.2848222 10.1145/1961189.1961199 10.1016/j.neuroimage.2016.03.073 10.1016/j.bspc.2010.08.003 10.1016/S1388-2457(02)00057-3 10.1088/1741-2552/aa6213 10.3389/fnins.2012.00055 10.1016/j.neucom.2012.11.038 10.1109/TBME.2008.2009768 10.3389/fnins.2012.00039 10.1109/TNSRE.2016.2646763 10.1109/TBME.2004.827827 10.1038/s41598-018-32283-8 10.1016/S1053-8119(03)00049-1 10.1016/j.neucom.2016.05.035 10.1016/j.apmr.2014.03.036 10.1109/TPAMI.2014.2330598 10.1016/j.patcog.2011.04.018 10.1109/LSP.2009.2022557 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neunet.2019.07.008 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 270 |
ExternalDocumentID | 31326660 10_1016_j_neunet_2019_07_008 S0893608019301960 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c362t-6929312c27233803232f75c00b2077479666fa6edc04508898e7ae75bd5bca5d3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Fri Sep 05 14:36:13 EDT 2025 Wed Feb 19 02:33:32 EST 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 01:24:34 EDT 2025 Fri Feb 23 02:28:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Motor imagery (MI) Support vector machine (SVM) Channel selection Electroencephalogram (EEG) Common spatial pattern (CSP) Brain–computer interface (BCI) |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-6929312c27233803232f75c00b2077479666fa6edc04508898e7ae75bd5bca5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31326660 |
PQID | 2261976245 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2261976245 pubmed_primary_31326660 crossref_primary_10_1016_j_neunet_2019_07_008 crossref_citationtrail_10_1016_j_neunet_2019_07_008 elsevier_sciencedirect_doi_10_1016_j_neunet_2019_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yin, Zhou, Jiang, Chen, Liu, Hu (b38) 2013; 10 Velasco-Alvarez, Ron-Angevin, da Silva-Sauer, Sancha-Ros (b30) 2013; 121 Zhang, Yin, Li, Zhang, Tanaka, Zhao (b43) 2018; 26 Lemm, Blankertz, Curio, Muller (b20) 2005; 52 (pp. 225–230). Kang, Nam, Choi (b15) 2009; 16 Ahn, Ahn, Hong, Cho, Kim, Kim (b1) 2013; 7 Yang, Singh, Hines, Schlaghecken, Iliescu, Leeson (b37) 2012; 55 Yu, Li, Long, Gu (b39) 2012; 9 Feng, Yin, Jin, Saab, Daly, Wang (b9) 2018; 102 Lu, Eng, Guan, Plataniotis, Venetsanopoulos (b22) 2010; 57 Arvaneh, M., Guan, C., Ang, K. K., & Quek, H. C. (2010). EEG channel selection using decision tree in brain-computer interface. In Cox, Savoy (b8) 2003; 19 Tangermann, Muller, Aertsen, Birbaumer, Braun, Brunner (b28) 2012; 6 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b31) 2002; 113 Grosse-Wentrup, Liefhold, Gramann, Buss (b11) 2009; 56 Pan, Li, Zhang, Gu, Li (b25) 2013; 21 Ang, Chin, Wang, Guan, Zhang (b2) 2012; 6 Xu, Jia, Qi, Hu, He, Zhao (b34) 2016; 134 Meng, Huang, Zhang, Zhu (b23) 2013; 104 Tam, W., Ke, Z., & Tong, K. (2011) Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: A multi-session dataset study. In (pp. 6344–6347). Kübler, Holz, Riccio, Zickler, Kaufmann, Kleih (b17) 2014; 9 Li, Namburi, Yu, Guan, Feng, Gu (b21) 2009; 56 Qiu, Jin, Lam, Zhang, Wang, Cichocki (b26) 2016; 207 Jin, Sellers, Zhou, Zhang, Wang, Cichocki (b13) 2015; 25 Wu, Chen, Gao, Li, Brown, Gao (b32) 2015; 37 Xu, Xiao, Wang, Qi, Jung, Ming (b35) 2018; 65 Xing, Wang, Pei, Guo, Liu, Wang (b33) 2018; 8 He, Hu, Li, Li (b12) 2013; 121 (pp. 1277–1280). Chang, Lin (b7) 2011; 2 Krepki, Blankertz, Curio, Muller (b16) 2007; 33 Thibeault, Srinivasa (b29) 2013; 7 Yang, Y., Kyrgyzov, O., Wiart, J., & Bloch, I. (2013) Subject-specific channel selection for classification of motor imagery electroencephalographic data. In Zhang, Wang, Jin, Wang (b41) 2017; 27 Jin, Zhang, Daly, Wang, Cichocki (b14) 2017; 14 Mousavi, Maller, Fitzgerald, Lithgow (b24) 2011; 6 Ang, Chin, Zhang, Guan (b3) 2012; 45 Friedman (b10) 1989; 84 Kübler, Holz, Sellers, Vaughan (b18) 2015; 96 Zhang, Zhao, Jin, Wang, Cichocki (b44) 2012; 9 Lal, Schroder, Hinterberger, Weston, Bogdan, Birbaumer (b19) 2004; 51 Zhang, Xu, Cheng, Yao (b42) 2014; 221 Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl (b6) 2006; 14 Ang, Guan (b4) 2017; 25 Zhang, Song, Xu, Zhou, Ling, Hong (b40) 2013; 71 Meng (10.1016/j.neunet.2019.07.008_b23) 2013; 104 Velasco-Alvarez (10.1016/j.neunet.2019.07.008_b30) 2013; 121 Grosse-Wentrup (10.1016/j.neunet.2019.07.008_b11) 2009; 56 Yu (10.1016/j.neunet.2019.07.008_b39) 2012; 9 10.1016/j.neunet.2019.07.008_b36 Chang (10.1016/j.neunet.2019.07.008_b7) 2011; 2 Feng (10.1016/j.neunet.2019.07.008_b9) 2018; 102 Zhang (10.1016/j.neunet.2019.07.008_b42) 2014; 221 Ahn (10.1016/j.neunet.2019.07.008_b1) 2013; 7 Zhang (10.1016/j.neunet.2019.07.008_b40) 2013; 71 Yang (10.1016/j.neunet.2019.07.008_b37) 2012; 55 Thibeault (10.1016/j.neunet.2019.07.008_b29) 2013; 7 Ang (10.1016/j.neunet.2019.07.008_b4) 2017; 25 Kübler (10.1016/j.neunet.2019.07.008_b18) 2015; 96 Blankertz (10.1016/j.neunet.2019.07.008_b6) 2006; 14 Lu (10.1016/j.neunet.2019.07.008_b22) 2010; 57 Cox (10.1016/j.neunet.2019.07.008_b8) 2003; 19 Mousavi (10.1016/j.neunet.2019.07.008_b24) 2011; 6 Lemm (10.1016/j.neunet.2019.07.008_b20) 2005; 52 Jin (10.1016/j.neunet.2019.07.008_b13) 2015; 25 Xu (10.1016/j.neunet.2019.07.008_b34) 2016; 134 Kübler (10.1016/j.neunet.2019.07.008_b17) 2014; 9 Li (10.1016/j.neunet.2019.07.008_b21) 2009; 56 Kang (10.1016/j.neunet.2019.07.008_b15) 2009; 16 Krepki (10.1016/j.neunet.2019.07.008_b16) 2007; 33 Lal (10.1016/j.neunet.2019.07.008_b19) 2004; 51 10.1016/j.neunet.2019.07.008_b5 Wolpaw (10.1016/j.neunet.2019.07.008_b31) 2002; 113 Zhang (10.1016/j.neunet.2019.07.008_b41) 2017; 27 10.1016/j.neunet.2019.07.008_b27 Friedman (10.1016/j.neunet.2019.07.008_b10) 1989; 84 Ang (10.1016/j.neunet.2019.07.008_b2) 2012; 6 Pan (10.1016/j.neunet.2019.07.008_b25) 2013; 21 Xu (10.1016/j.neunet.2019.07.008_b35) 2018; 65 Xing (10.1016/j.neunet.2019.07.008_b33) 2018; 8 Yin (10.1016/j.neunet.2019.07.008_b38) 2013; 10 Ang (10.1016/j.neunet.2019.07.008_b3) 2012; 45 Qiu (10.1016/j.neunet.2019.07.008_b26) 2016; 207 Zhang (10.1016/j.neunet.2019.07.008_b43) 2018; 26 Jin (10.1016/j.neunet.2019.07.008_b14) 2017; 14 He (10.1016/j.neunet.2019.07.008_b12) 2013; 121 Tangermann (10.1016/j.neunet.2019.07.008_b28) 2012; 6 Zhang (10.1016/j.neunet.2019.07.008_b44) 2012; 9 Wu (10.1016/j.neunet.2019.07.008_b32) 2015; 37 |
References_xml | – volume: 121 start-page: 423 year: 2013 end-page: 433 ident: b12 article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG publication-title: Neurocomputing – volume: 21 start-page: 435 year: 2013 end-page: 443 ident: b25 article-title: Discrimination between control and idle states in asynchronous SSVEP-based brain switches: A pseudo-key-based approach publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: b8 article-title: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: NeuroImage – volume: 27 year: 2017 ident: b41 article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification publication-title: International Journal of Neural Systems – volume: 84 start-page: 165 year: 1989 end-page: 175 ident: b10 article-title: Regularized discriminant analysis publication-title: Journal of the American Statistical Association – volume: 6 year: 2012 ident: b2 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Frontiers in Neuroscience – volume: 10 year: 2013 ident: b38 article-title: A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm publication-title: Journal of Neural Engineering – volume: 14 year: 2017 ident: b14 article-title: An improved P300 pattern in BCI to catch user’s attention publication-title: Journal of Neural Engineering – reference: (pp. 1277–1280). – volume: 9 year: 2012 ident: b39 article-title: Surfing the internet with a BCI mouse publication-title: Journal of Neural Engineering – volume: 96 start-page: S27 year: 2015 end-page: S32 ident: b18 article-title: Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users publication-title: Archives of Physical Medicine and Rehabilitation – volume: 7 year: 2013 ident: b29 article-title: Using a hybrid neuron in physiologically inspired models of the basal ganglia publication-title: Frontiers in Computational Neuroscience – volume: 33 start-page: 73 year: 2007 end-page: 90 ident: b16 article-title: The berlin brain-computer interface (BBCI) - towards a new communication channel for online control in gaming applications publication-title: Multimedia Tools and Applications – reference: Tam, W., Ke, Z., & Tong, K. (2011) Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: A multi-session dataset study. In – volume: 9 year: 2012 ident: b44 article-title: A novel BCI based on ERP components sensitive to configural processing of human faces publication-title: Journal of Neural Engineering – volume: 104 start-page: 115 year: 2013 end-page: 126 ident: b23 article-title: Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface publication-title: Neurocomputing – volume: 9 year: 2014 ident: b17 article-title: The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications publication-title: PLoS One – reference: Arvaneh, M., Guan, C., Ang, K. K., & Quek, H. C. (2010). EEG channel selection using decision tree in brain-computer interface. In – volume: 57 start-page: 2936 year: 2010 end-page: 2946 ident: b22 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Transactions on Biomedical Engineering – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: b31 article-title: Brain-computer interfaces for communication and control publication-title: Clinical Neurophysiology – volume: 2 year: 2011 ident: b7 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology – reference: (pp. 6344–6347). – volume: 71 start-page: 30 year: 2013 end-page: 41 ident: b40 article-title: Toward a minimally invasive brain-computer interface using a single subdural channel: A visual speller study publication-title: NeuroImage – volume: 56 start-page: 2439 year: 2009 end-page: 2451 ident: b21 article-title: Voxel selection in fMRI data analysis based on sparse representation publication-title: IEEE Transactions on Biomedical Engineering – volume: 7 year: 2013 ident: b1 article-title: Gamma band activity associated with BCI performance: simultaneous MEG/EEG study publication-title: Frontiers in Human Neuroscience – volume: 102 start-page: 87 year: 2018 end-page: 95 ident: b9 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Networks – volume: 121 start-page: 89 year: 2013 end-page: 98 ident: b30 article-title: Audio-cued motor imagery-based brain-computer interface: Navigation through virtual and real environments publication-title: Neurocomputing – volume: 134 start-page: 204 year: 2016 end-page: 212 ident: b34 article-title: Use of a steady-state baseline to address evoked vs. oscillation models of visual evoked potential origin publication-title: NeuroImage – reference: Yang, Y., Kyrgyzov, O., Wiart, J., & Bloch, I. (2013) Subject-specific channel selection for classification of motor imagery electroencephalographic data. In – volume: 14 start-page: 153 year: 2006 end-page: 159 ident: b6 article-title: The BCI competition III: Validating alternative approaches to actual BCI problems publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 26 start-page: 1314 year: 2018 end-page: 1323 ident: b43 article-title: Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 6 start-page: 121 year: 2011 end-page: 128 ident: b24 article-title: Wavelet common spatial pattern in asynchronous offline brain computer interfaces publication-title: Biomedical Signal Processing and Control – volume: 56 start-page: 1209 year: 2009 end-page: 1219 ident: b11 article-title: Beamforming in noninvasive brain-computer interfaces publication-title: IEEE Transactions on Biomedical Engineering – volume: 37 start-page: 639 year: 2015 end-page: 653 ident: b32 article-title: Probabilistic common spatial patterns for multichannel EEG analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 55 start-page: 117 year: 2012 end-page: 126 ident: b37 article-title: Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach publication-title: Artificial Intelligence in Medicine – volume: 16 start-page: 683 year: 2009 end-page: 686 ident: b15 article-title: Composite common spatial pattern for subject-to-subject transfer publication-title: IEEE Signal Processing Letters – volume: 52 start-page: 1541 year: 2005 end-page: 1548 ident: b20 article-title: Spatio-spectral filters for improving the classification of single trial EEG publication-title: IEEE Transactions on Biomedical Engineering – volume: 65 start-page: 1166 year: 2018 end-page: 1175 ident: b35 article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli publication-title: IEEE Transactions on Biomedical Engineering – volume: 221 start-page: 32 year: 2014 end-page: 40 ident: b42 article-title: Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface publication-title: Journal of Neuroscience Methods – reference: (pp. 225–230). – volume: 25 start-page: 392 year: 2017 end-page: 401 ident: b4 article-title: EEG-based strategies to detect motor imagery for control and rehabilitation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 6 year: 2012 ident: b28 article-title: Review of the BCI competition IV publication-title: Frontiers in Neuroscience – volume: 25 year: 2015 ident: b13 article-title: A P300 brain-computer interface based on a modification of the mismatch negativity paradigm publication-title: International Journal of Neural Systems – volume: 8 year: 2018 ident: b33 article-title: A high-speed ssvep-based BCI using dry EEG electrodes publication-title: Scientific Reports – volume: 207 start-page: 519 year: 2016 end-page: 527 ident: b26 article-title: Improved SFFS method for channel selection in motor imagery based BCI publication-title: Neurocomputing – volume: 45 start-page: 2137 year: 2012 end-page: 2144 ident: b3 article-title: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs publication-title: Pattern Recognition – volume: 51 start-page: 1003 year: 2004 end-page: 1010 ident: b19 article-title: Support vector channel selection in BCI publication-title: IEEE Transactions on Biomedical Engineering – volume: 102 start-page: 87 year: 2018 ident: 10.1016/j.neunet.2019.07.008_b9 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Networks doi: 10.1016/j.neunet.2018.02.011 – volume: 52 start-page: 1541 issue: 9 year: 2005 ident: 10.1016/j.neunet.2019.07.008_b20 article-title: Spatio-spectral filters for improving the classification of single trial EEG publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2005.851521 – volume: 221 start-page: 32 year: 2014 ident: 10.1016/j.neunet.2019.07.008_b42 article-title: Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2013.07.018 – volume: 21 start-page: 435 issue: 3 year: 2013 ident: 10.1016/j.neunet.2019.07.008_b25 article-title: Discrimination between control and idle states in asynchronous SSVEP-based brain switches: A pseudo-key-based approach publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2013.2253801 – ident: 10.1016/j.neunet.2019.07.008_b36 doi: 10.1109/ICASSP.2013.6637856 – ident: 10.1016/j.neunet.2019.07.008_b27 – volume: 9 issue: 3 year: 2012 ident: 10.1016/j.neunet.2019.07.008_b39 article-title: Surfing the internet with a BCI mouse publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/9/3/036012 – volume: 57 start-page: 2936 issue: 12 year: 2010 ident: 10.1016/j.neunet.2019.07.008_b22 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2082540 – volume: 7 year: 2013 ident: 10.1016/j.neunet.2019.07.008_b29 article-title: Using a hybrid neuron in physiologically inspired models of the basal ganglia publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2013.00088 – volume: 71 start-page: 30 year: 2013 ident: 10.1016/j.neunet.2019.07.008_b40 article-title: Toward a minimally invasive brain-computer interface using a single subdural channel: A visual speller study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.069 – volume: 9 issue: 2 year: 2012 ident: 10.1016/j.neunet.2019.07.008_b44 article-title: A novel BCI based on ERP components sensitive to configural processing of human faces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/9/2/026018 – volume: 14 start-page: 153 issue: 2 year: 2006 ident: 10.1016/j.neunet.2019.07.008_b6 article-title: The BCI competition III: Validating alternative approaches to actual BCI problems publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2006.875642 – volume: 9 issue: 12 year: 2014 ident: 10.1016/j.neunet.2019.07.008_b17 article-title: The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications publication-title: PLoS One doi: 10.1371/journal.pone.0112392 – volume: 33 start-page: 73 issue: 1 year: 2007 ident: 10.1016/j.neunet.2019.07.008_b16 article-title: The berlin brain-computer interface (BBCI) - towards a new communication channel for online control in gaming applications publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-006-0094-3 – volume: 65 start-page: 1166 issue: 5 year: 2018 ident: 10.1016/j.neunet.2019.07.008_b35 article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2018.2799661 – volume: 7 year: 2013 ident: 10.1016/j.neunet.2019.07.008_b1 article-title: Gamma band activity associated with BCI performance: simultaneous MEG/EEG study publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2013.00848 – volume: 25 issue: 3 year: 2015 ident: 10.1016/j.neunet.2019.07.008_b13 article-title: A P300 brain-computer interface based on a modification of the mismatch negativity paradigm publication-title: International Journal of Neural Systems doi: 10.1142/S0129065715500112 – volume: 55 start-page: 117 issue: 2 year: 2012 ident: 10.1016/j.neunet.2019.07.008_b37 article-title: Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2012.02.001 – volume: 10 issue: 2 year: 2013 ident: 10.1016/j.neunet.2019.07.008_b38 article-title: A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/10/2/026012 – volume: 27 issue: 2 year: 2017 ident: 10.1016/j.neunet.2019.07.008_b41 article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification publication-title: International Journal of Neural Systems doi: 10.1142/S0129065716500325 – volume: 84 start-page: 165 issue: 405 year: 1989 ident: 10.1016/j.neunet.2019.07.008_b10 article-title: Regularized discriminant analysis publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1989.10478752 – volume: 121 start-page: 423 year: 2013 ident: 10.1016/j.neunet.2019.07.008_b12 article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.005 – volume: 56 start-page: 2439 issue: 10 year: 2009 ident: 10.1016/j.neunet.2019.07.008_b21 article-title: Voxel selection in fMRI data analysis based on sparse representation publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2009.2025866 – volume: 104 start-page: 115 year: 2013 ident: 10.1016/j.neunet.2019.07.008_b23 article-title: Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.004 – volume: 26 start-page: 1314 issue: 7 year: 2018 ident: 10.1016/j.neunet.2019.07.008_b43 article-title: Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2018.2848222 – volume: 2 issue: 3 year: 2011 ident: 10.1016/j.neunet.2019.07.008_b7 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – volume: 134 start-page: 204 year: 2016 ident: 10.1016/j.neunet.2019.07.008_b34 article-title: Use of a steady-state baseline to address evoked vs. oscillation models of visual evoked potential origin publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.03.073 – volume: 6 start-page: 121 issue: 2 year: 2011 ident: 10.1016/j.neunet.2019.07.008_b24 article-title: Wavelet common spatial pattern in asynchronous offline brain computer interfaces publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2010.08.003 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.neunet.2019.07.008_b31 article-title: Brain-computer interfaces for communication and control publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(02)00057-3 – volume: 14 issue: 3 year: 2017 ident: 10.1016/j.neunet.2019.07.008_b14 article-title: An improved P300 pattern in BCI to catch user’s attention publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aa6213 – volume: 6 year: 2012 ident: 10.1016/j.neunet.2019.07.008_b28 article-title: Review of the BCI competition IV publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2012.00055 – volume: 121 start-page: 89 year: 2013 ident: 10.1016/j.neunet.2019.07.008_b30 article-title: Audio-cued motor imagery-based brain-computer interface: Navigation through virtual and real environments publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.038 – ident: 10.1016/j.neunet.2019.07.008_b5 – volume: 56 start-page: 1209 issue: 4 year: 2009 ident: 10.1016/j.neunet.2019.07.008_b11 article-title: Beamforming in noninvasive brain-computer interfaces publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2008.2009768 – volume: 6 year: 2012 ident: 10.1016/j.neunet.2019.07.008_b2 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2012.00039 – volume: 25 start-page: 392 issue: 4 year: 2017 ident: 10.1016/j.neunet.2019.07.008_b4 article-title: EEG-based strategies to detect motor imagery for control and rehabilitation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2016.2646763 – volume: 51 start-page: 1003 issue: 6 year: 2004 ident: 10.1016/j.neunet.2019.07.008_b19 article-title: Support vector channel selection in BCI publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2004.827827 – volume: 8 year: 2018 ident: 10.1016/j.neunet.2019.07.008_b33 article-title: A high-speed ssvep-based BCI using dry EEG electrodes publication-title: Scientific Reports doi: 10.1038/s41598-018-32283-8 – volume: 19 start-page: 261 issue: 2 year: 2003 ident: 10.1016/j.neunet.2019.07.008_b8 article-title: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00049-1 – volume: 207 start-page: 519 year: 2016 ident: 10.1016/j.neunet.2019.07.008_b26 article-title: Improved SFFS method for channel selection in motor imagery based BCI publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.035 – volume: 96 start-page: S27 issue: 3 year: 2015 ident: 10.1016/j.neunet.2019.07.008_b18 article-title: Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users publication-title: Archives of Physical Medicine and Rehabilitation doi: 10.1016/j.apmr.2014.03.036 – volume: 37 start-page: 639 issue: 3 year: 2015 ident: 10.1016/j.neunet.2019.07.008_b32 article-title: Probabilistic common spatial patterns for multichannel EEG analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2014.2330598 – volume: 45 start-page: 2137 issue: 6 year: 2012 ident: 10.1016/j.neunet.2019.07.008_b3 article-title: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.04.018 – volume: 16 start-page: 683 issue: 8 year: 2009 ident: 10.1016/j.neunet.2019.07.008_b15 article-title: Composite common spatial pattern for subject-to-subject transfer publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2009.2022557 |
SSID | ssj0006843 |
Score | 2.6577528 |
Snippet | Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 262 |
SubjectTerms | Brain–computer interface (BCI) Channel selection Common spatial pattern (CSP) Electroencephalogram (EEG) Motor imagery (MI) Support vector machine (SVM) |
Title | Correlation-based channel selection and regularized feature optimization for MI-based BCI |
URI | https://dx.doi.org/10.1016/j.neunet.2019.07.008 https://www.ncbi.nlm.nih.gov/pubmed/31326660 https://www.proquest.com/docview/2261976245 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwfpRHZSTWUOdhJx1LRNWC2gUqlclKHEcqKmnVx8LAb-fOcYqQQJUY49iJdefzfSd_viPkNvfdLFBt5ag09Z0gSnKwOabB4nmkAB-o3FRvGAxFbxQ8jvm4RuLqLgzSKu3eX-7pZre2LS0rzdZ8Mmk9M3C1AgAPQBBM8oJxexCEmD__7vOb5iGikjkHnR3sXV2fMxyvQq8LjYxKt21SeGKRyd_d01_w07ih7gHZs_iRdsopHpKaLo7IflWbgVpTPSavMZbdKIluDrqqjOId30JP6dKUvoF2mhQZXZhi9IvJB_TItUnzSWewj7zbC5oUUC0d9O037uP-CRl1H17inmPLKDgKvNPKEYCAfNdTXuhBPMp8wFB5yBVjqccA_IUQ8Ig8ETpTAO-Q9RTpMNEhTzOeqoRn_impF7NCnxMaaQ_eBBHPcg2hEo_8XDA_0SIQLig8ahC_kp5UNsc4lrqYyopM9iZLmUuUuWR4-A2jnM2oeZljY0v_sFKM_LFWJLiBLSNvKj1KMCM8G0kKPVsvpYeRJDiGgDfIWangzVwwuyXIiF38-7-XZBefShLgFamvFmt9DWBmlTbNam2SnU7_qTf8Alpu8xY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDC-1GeRmI1dePYSUeoQC20XQAJJitxHKkIUtTHwsBv585xQEigSqx-JNbZvvtO_u6OkLNctLLQtA0zaSpYGCc53Dlu4cbL2AA-MLmr3jAYqu5DePMoH2ukU8XCIK3S6_5Spztt7VuaXprNt9GoecfB1CoAPABBMMkL-O1LoRQRHu3zj2-eh4pL6hyMZji8ip9zJK_CzguLlMpW2-XwxCqTv9unv_Cns0PX62TVA0h6Ua5xg9RssUnWquIM1N_VLfLUwbobJdONoa3KKAb5FvaFTl3tG2inSZHRiatGPxm9w4jcujyfdAyK5NVHaFKAtXTQ89-47PS2ycP11X2ny3wdBWbAPM2YAggkWoEJogAcUi4AROWRNJynAQf0F4HHo_JE2cwAvkPaU2yjxEYyzWRqEpmJHVIvxoXdIzS2AfSEscxyC76SjEWuuEisClULdjxuEFFJTxufZBxrXbzoik32rEuZa5S55vj6DbPY16y3MsnGgvFRtTH6x2HRYAcWzDyt9lHDPcLHkaSw4_lUB-hKgmUIZYPslhv8tRZMbwky4vv__u8JWe7eD_q63xveHpAV7CkZgYekPpvM7REgm1l67E7uJwBt9Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation-based+channel+selection+and+regularized+feature+optimization+for+MI-based+BCI&rft.jtitle=Neural+networks&rft.au=Jin%2C+Jing&rft.au=Miao%2C+Yangyang&rft.au=Daly%2C+Ian&rft.au=Zuo%2C+Cili&rft.date=2019-10-01&rft.issn=0893-6080&rft.volume=118&rft.spage=262&rft.epage=270&rft_id=info:doi/10.1016%2Fj.neunet.2019.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2019_07_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |