Correlation-based channel selection and regularized feature optimization for MI-based BCI

Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI s...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 118; pp. 262 - 270
Main Authors Jin, Jing, Miao, Yangyang, Daly, Ian, Zuo, Cili, Hu, Dewen, Cichocki, Andrzej
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2019.07.008

Cover

Loading…
Abstract Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels. •A new correlation-based channel selection (CCS) method is proposed in this paper.•A novel regularized CSP (RCSP) is proposed to optimize the motor imagery features.•The CCS-RCSP method can significantly improve the classification accuracy.
AbstractList Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels.
Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels.Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels.
Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for dataset1, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels. •A new correlation-based channel selection (CCS) method is proposed in this paper.•A novel regularized CSP (RCSP) is proposed to optimize the motor imagery features.•The CCS-RCSP method can significantly improve the classification accuracy.
Author Cichocki, Andrzej
Hu, Dewen
Daly, Ian
Jin, Jing
Miao, Yangyang
Zuo, Cili
Author_xml – sequence: 1
  givenname: Jing
  surname: Jin
  fullname: Jin, Jing
  email: jinjingat@gmail.com
  organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China
– sequence: 2
  givenname: Yangyang
  surname: Miao
  fullname: Miao, Yangyang
  organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China
– sequence: 3
  givenname: Ian
  surname: Daly
  fullname: Daly, Ian
  organization: Brain–Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
– sequence: 4
  givenname: Cili
  surname: Zuo
  fullname: Zuo, Cili
  organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China
– sequence: 5
  givenname: Dewen
  surname: Hu
  fullname: Hu, Dewen
  organization: College of Mechatronic Engineering and Automation, National University of Defense Technology Changsha, Hunan 410073, PR China
– sequence: 6
  givenname: Andrzej
  surname: Cichocki
  fullname: Cichocki, Andrzej
  organization: Skolkowo Institute of Science and Technology (SKOLTECH), 143026 Moscow, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31326660$$D View this record in MEDLINE/PubMed
BookMark eNqFkE9r2zAYh8VIadI_32AMH3ex90qyJXmHwhq6LdDSy3boScjy61XBkVLJHqyfvk6T9dBDexK8PM8P8ZyQmQ8eCflIoaBAxZd14XH0OBQMaF2ALADUB7KgStY5k4rNyAJUzXMBCubkJKU1AAhV8mMy55QzIQQsyN0yxIi9GVzweWMStpm9N95jnyXs0e7umfFtFvHP2JvoHieiQzOMEbOwHdzGPT7LWRdidrM6bFwuV2fkqDN9wvPDe0p-f7_6tfyZX9_-WC2_XeeWCzbkomY1p8wyyThXwBlnnawsQMNAylLW0z87I7C1UFagVK1QGpRV01aNNVXLT8nn_e42hocR06A3Llnse-MxjEkzJmgtBSurCf10QMdmg63eRrcx8Z_-n2MCyj1gY0gpYveCUNC76nqt99X1rroGqafqk_b1lWbd8FxliMb178kXexmnSH8dRp2sQ2-xdXHqr9vg3h54AqWQny0
CitedBy_id crossref_primary_10_3389_fninf_2022_952474
crossref_primary_10_1016_j_eswa_2024_124145
crossref_primary_10_1109_JBHI_2024_3450753
crossref_primary_10_1109_JBHI_2022_3146274
crossref_primary_10_1109_TNNLS_2023_3243339
crossref_primary_10_1109_ACCESS_2020_2993318
crossref_primary_10_1007_s11760_021_01924_3
crossref_primary_10_1016_j_bspc_2022_104153
crossref_primary_10_1109_TNSRE_2023_3275547
crossref_primary_10_1088_1741_2552_ac1d36
crossref_primary_10_1080_2326263X_2023_2254463
crossref_primary_10_1109_ACCESS_2023_3328618
crossref_primary_10_1109_TCDS_2022_3193731
crossref_primary_10_1016_j_imu_2022_101141
crossref_primary_10_1109_TII_2022_3227736
crossref_primary_10_1109_TCDS_2020_3040438
crossref_primary_10_1109_ACCESS_2020_3032380
crossref_primary_10_1109_TCDS_2022_3214081
crossref_primary_10_1109_JBHI_2024_3452701
crossref_primary_10_1109_TNSRE_2020_2987529
crossref_primary_10_1109_TCE_2023_3330423
crossref_primary_10_1016_j_engappai_2024_107845
crossref_primary_10_1007_s42600_023_00321_8
crossref_primary_10_1016_j_bspc_2021_103327
crossref_primary_10_1016_j_bspc_2023_105745
crossref_primary_10_1109_JTEHM_2022_3167552
crossref_primary_10_1109_JSEN_2022_3184713
crossref_primary_10_35378_gujs_1413191
crossref_primary_10_1007_s12046_022_02015_w
crossref_primary_10_1109_ACCESS_2020_3003056
crossref_primary_10_1109_TITS_2024_3442249
crossref_primary_10_1109_TCYB_2020_2968625
crossref_primary_10_1109_TCDS_2024_3401717
crossref_primary_10_3390_electronics11223674
crossref_primary_10_7717_peerj_cs_374
crossref_primary_10_1016_j_bspc_2021_102702
crossref_primary_10_1016_j_irbm_2021_01_002
crossref_primary_10_1109_TCDS_2024_3370635
crossref_primary_10_1016_j_measen_2022_100616
crossref_primary_10_1088_1741_2552_ac0583
crossref_primary_10_1142_S0129065721500040
crossref_primary_10_1109_TIM_2021_3094619
crossref_primary_10_1109_TIM_2024_3375980
crossref_primary_10_1142_S0129065721500039
crossref_primary_10_1007_s00521_023_09090_y
crossref_primary_10_1088_1741_2552_abe20f
crossref_primary_10_1109_TIM_2024_3384559
crossref_primary_10_1038_s41598_024_71118_7
crossref_primary_10_1155_2021_9959195
crossref_primary_10_1016_j_bspc_2022_103526
crossref_primary_10_1016_j_bspc_2025_107706
crossref_primary_10_3389_fnins_2021_749232
crossref_primary_10_1016_j_engappai_2023_106122
crossref_primary_10_1080_10255842_2024_2401918
crossref_primary_10_1109_TNSRE_2020_3004462
crossref_primary_10_1016_j_cmpb_2020_105808
crossref_primary_10_1016_j_eswa_2023_122356
crossref_primary_10_1007_s11432_022_3548_2
crossref_primary_10_1109_TNNLS_2023_3287181
crossref_primary_10_1109_ACCESS_2022_3165197
crossref_primary_10_1016_j_bspc_2024_106131
crossref_primary_10_1109_TNNLS_2020_3015505
crossref_primary_10_1155_2021_6645322
crossref_primary_10_1007_s11571_023_09940_4
crossref_primary_10_1038_s41598_022_14026_y
crossref_primary_10_1109_ACCESS_2024_3399114
crossref_primary_10_1142_S0129065721500349
crossref_primary_10_1016_j_neunet_2020_11_002
crossref_primary_10_1088_1741_2552_ad1f7a
crossref_primary_10_1016_j_bspc_2020_101994
crossref_primary_10_1007_s11571_020_09608_3
crossref_primary_10_1109_TNSRE_2022_3186442
crossref_primary_10_1109_TCYB_2021_3071860
crossref_primary_10_1016_j_bspc_2023_105317
crossref_primary_10_1016_j_neucom_2020_07_123
crossref_primary_10_1080_21681163_2020_1727775
crossref_primary_10_1007_s12264_022_00920_y
crossref_primary_10_1109_TNSRE_2021_3125386
crossref_primary_10_3389_fnins_2023_1124089
crossref_primary_10_1002_asjc_3089
crossref_primary_10_1088_1741_2552_ad0a01
crossref_primary_10_1515_bmt_2023_0407
crossref_primary_10_1007_s11517_024_03103_1
crossref_primary_10_1007_s11571_025_10239_9
crossref_primary_10_1080_10255842_2025_2457122
crossref_primary_10_1109_ACCESS_2019_2939623
crossref_primary_10_1016_j_bspc_2020_101884
crossref_primary_10_3390_s24103168
crossref_primary_10_1109_TNSRE_2021_3059166
crossref_primary_10_1109_JBHI_2024_3411646
crossref_primary_10_1109_TNSRE_2022_3217573
crossref_primary_10_3389_fnins_2020_546656
crossref_primary_10_1109_TNSRE_2020_3040984
crossref_primary_10_1109_ACCESS_2020_3017888
crossref_primary_10_1109_TNSRE_2020_3018959
crossref_primary_10_1109_TNSRE_2021_3120024
crossref_primary_10_1155_2021_1970769
crossref_primary_10_1109_TNNLS_2021_3118468
crossref_primary_10_1109_TNSRE_2022_3209155
crossref_primary_10_3389_fnbot_2020_00025
crossref_primary_10_1109_TNSRE_2021_3071140
crossref_primary_10_1590_1678_4324_2024230545
crossref_primary_10_1016_j_eswa_2022_116783
crossref_primary_10_1016_j_compbiomed_2022_105521
crossref_primary_10_1145_3397850
crossref_primary_10_1016_j_eswa_2022_117757
crossref_primary_10_1088_2057_1976_ad3647
crossref_primary_10_1080_21681163_2023_2192831
crossref_primary_10_3390_electronics12040855
crossref_primary_10_1016_j_neunet_2022_09_016
crossref_primary_10_1109_JBHI_2024_3472097
crossref_primary_10_1371_journal_pone_0248511
crossref_primary_10_1109_TNNLS_2023_3292179
crossref_primary_10_1186_s40708_022_00154_8
crossref_primary_10_3390_bioengineering10050609
crossref_primary_10_3390_s25010120
crossref_primary_10_1002_ima_22700
crossref_primary_10_1002_ima_22821
crossref_primary_10_1016_j_neunet_2023_06_005
crossref_primary_10_1002_ima_22823
crossref_primary_10_1007_s11704_021_0587_2
crossref_primary_10_1016_j_bbr_2024_115345
crossref_primary_10_1109_TNSRE_2021_3139095
crossref_primary_10_1016_j_jneumeth_2021_109378
crossref_primary_10_1016_j_eswa_2025_126433
crossref_primary_10_1109_TCDS_2022_3174660
crossref_primary_10_1109_TNSRE_2022_3183023
crossref_primary_10_1155_2020_8863223
crossref_primary_10_3390_s21196570
crossref_primary_10_1109_TCDS_2022_3159285
crossref_primary_10_1142_S0129065721500301
crossref_primary_10_3390_brainsci13091340
crossref_primary_10_1109_TCYB_2021_3073210
crossref_primary_10_1016_j_bspc_2022_104554
crossref_primary_10_1088_1741_2552_ac7b4a
crossref_primary_10_1109_TCDS_2021_3096812
crossref_primary_10_3389_fnins_2023_1251968
crossref_primary_10_1088_1741_2552_acae07
crossref_primary_10_1186_s40708_020_00108_y
crossref_primary_10_3389_fnins_2023_1303242
crossref_primary_10_1007_s11517_025_03298_x
crossref_primary_10_1088_1741_2552_ac9338
crossref_primary_10_3389_frai_2022_1072801
crossref_primary_10_1109_ACCESS_2021_3091399
crossref_primary_10_1016_j_jneumeth_2023_109969
crossref_primary_10_3390_app12168274
crossref_primary_10_1109_ACCESS_2022_3142311
crossref_primary_10_1109_TAI_2021_3097307
crossref_primary_10_1007_s11517_023_02780_8
crossref_primary_10_1109_JSEN_2024_3445971
crossref_primary_10_1016_j_bspc_2021_103295
crossref_primary_10_3389_fncom_2022_1004301
crossref_primary_10_1155_2020_8890477
crossref_primary_10_1016_j_jneumeth_2020_108690
crossref_primary_10_1109_MCI_2021_3061875
crossref_primary_10_1016_j_jneumeth_2021_109274
crossref_primary_10_3390_s24051678
crossref_primary_10_3934_mbe_2021213
crossref_primary_10_1109_ACCESS_2020_3048683
crossref_primary_10_1007_s10586_024_04492_6
crossref_primary_10_1016_j_jneumeth_2023_109953
crossref_primary_10_1016_j_eswa_2023_119921
crossref_primary_10_3390_brainsci14050462
crossref_primary_10_1007_s11517_020_02310_w
crossref_primary_10_3390_brainsci11020197
crossref_primary_10_1007_s11571_020_09577_7
crossref_primary_10_1109_JSEN_2022_3171808
crossref_primary_10_3390_bioengineering10060664
crossref_primary_10_1109_ACCESS_2022_3188103
crossref_primary_10_1109_ACCESS_2021_3049191
crossref_primary_10_1109_TCYB_2022_3166604
crossref_primary_10_1016_j_artmed_2019_101787
crossref_primary_10_1109_JSEN_2021_3130626
crossref_primary_10_3390_brainsci12091233
crossref_primary_10_3389_fninf_2020_00001
crossref_primary_10_1016_j_bspc_2022_104454
crossref_primary_10_26599_BSA_2023_9050011
crossref_primary_10_1002_ima_22913
crossref_primary_10_1155_2020_1838140
crossref_primary_10_3390_s21175746
crossref_primary_10_1016_j_jneumeth_2024_110098
crossref_primary_10_1016_j_neures_2021_09_002
crossref_primary_10_1109_TAI_2021_3060350
crossref_primary_10_1007_s40031_022_00783_x
crossref_primary_10_1080_09540091_2024_2426812
crossref_primary_10_3390_bioengineering9120726
crossref_primary_10_1109_TNSRE_2022_3172974
crossref_primary_10_1038_s41598_022_15813_3
crossref_primary_10_3389_fbioe_2020_00285
crossref_primary_10_1016_j_jneumeth_2022_109593
crossref_primary_10_1109_ACCESS_2021_3063382
crossref_primary_10_1109_JBHI_2020_3045718
crossref_primary_10_3389_fnhum_2022_975410
crossref_primary_10_3233_JIFS_223819
crossref_primary_10_3390_s21062173
crossref_primary_10_1016_j_eswa_2020_113967
crossref_primary_10_1007_s11571_021_09669_y
crossref_primary_10_1016_j_heliyon_2024_e38681
crossref_primary_10_53941_ijndi0101007
crossref_primary_10_1016_j_cmpb_2024_108048
crossref_primary_10_1016_j_ijhcs_2021_102603
crossref_primary_10_1007_s11571_024_10085_1
crossref_primary_10_1080_10255842_2021_1977800
crossref_primary_10_1109_TNSRE_2022_3227511
crossref_primary_10_3390_math11173801
crossref_primary_10_3390_app122312253
crossref_primary_10_1016_j_bspc_2021_102608
crossref_primary_10_1109_ACCESS_2024_3459866
crossref_primary_10_1088_1741_2552_ac7d73
crossref_primary_10_3389_fnins_2022_1045851
crossref_primary_10_1109_TNSRE_2020_3022364
crossref_primary_10_1155_2019_9374802
crossref_primary_10_1007_s11227_023_05739_6
crossref_primary_10_3390_e23091170
crossref_primary_10_1016_j_compbiomed_2025_109944
crossref_primary_10_1016_j_eng_2021_11_013
crossref_primary_10_1109_ACCESS_2021_3110882
crossref_primary_10_3389_fnins_2020_587520
crossref_primary_10_1109_JBHI_2023_3294586
crossref_primary_10_1109_TCDS_2022_3151860
crossref_primary_10_1109_ACCESS_2020_3012918
crossref_primary_10_3390_s22239051
crossref_primary_10_1109_ACCESS_2019_2944938
crossref_primary_10_1109_TFUZZ_2021_3092824
crossref_primary_10_1109_ACCESS_2021_3056088
crossref_primary_10_1155_2021_6694310
crossref_primary_10_1142_S0129065721500404
crossref_primary_10_1109_TNSRE_2020_3020975
crossref_primary_10_1088_1741_2552_ad2496
crossref_primary_10_1109_ACCESS_2020_3004504
crossref_primary_10_1016_j_jneumeth_2021_109300
crossref_primary_10_1038_s41598_024_73536_z
crossref_primary_10_1109_TII_2020_3044310
crossref_primary_10_3390_signals4010013
crossref_primary_10_1016_j_jneumeth_2021_109425
crossref_primary_10_1016_j_neucom_2025_129410
crossref_primary_10_1080_09544828_2024_2326396
crossref_primary_10_1109_TCYB_2020_2977267
crossref_primary_10_1155_2020_6056383
crossref_primary_10_1016_j_bbe_2022_05_002
crossref_primary_10_1016_j_ipm_2022_103001
crossref_primary_10_1016_j_jneumeth_2020_108833
crossref_primary_10_1016_j_bbe_2021_10_001
crossref_primary_10_1177_15500594211019917
crossref_primary_10_1007_s11042_022_12327_y
crossref_primary_10_3389_fnhum_2023_1292428
crossref_primary_10_1016_j_neucom_2020_02_079
crossref_primary_10_1109_TNSRE_2020_3010250
crossref_primary_10_3390_app112210906
crossref_primary_10_1007_s00521_024_10789_9
Cites_doi 10.1016/j.neunet.2018.02.011
10.1109/TBME.2005.851521
10.1016/j.jneumeth.2013.07.018
10.1109/TNSRE.2013.2253801
10.1109/ICASSP.2013.6637856
10.1088/1741-2560/9/3/036012
10.1109/TBME.2010.2082540
10.3389/fncom.2013.00088
10.1016/j.neuroimage.2012.12.069
10.1088/1741-2560/9/2/026018
10.1109/TNSRE.2006.875642
10.1371/journal.pone.0112392
10.1007/s11042-006-0094-3
10.1109/TBME.2018.2799661
10.3389/fnhum.2013.00848
10.1142/S0129065715500112
10.1016/j.artmed.2012.02.001
10.1088/1741-2560/10/2/026012
10.1142/S0129065716500325
10.1080/01621459.1989.10478752
10.1016/j.neucom.2013.05.005
10.1109/TBME.2009.2025866
10.1016/j.neucom.2012.11.004
10.1109/TNSRE.2018.2848222
10.1145/1961189.1961199
10.1016/j.neuroimage.2016.03.073
10.1016/j.bspc.2010.08.003
10.1016/S1388-2457(02)00057-3
10.1088/1741-2552/aa6213
10.3389/fnins.2012.00055
10.1016/j.neucom.2012.11.038
10.1109/TBME.2008.2009768
10.3389/fnins.2012.00039
10.1109/TNSRE.2016.2646763
10.1109/TBME.2004.827827
10.1038/s41598-018-32283-8
10.1016/S1053-8119(03)00049-1
10.1016/j.neucom.2016.05.035
10.1016/j.apmr.2014.03.036
10.1109/TPAMI.2014.2330598
10.1016/j.patcog.2011.04.018
10.1109/LSP.2009.2022557
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2019.07.008
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 270
ExternalDocumentID 31326660
10_1016_j_neunet_2019_07_008
S0893608019301960
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c362t-6929312c27233803232f75c00b2077479666fa6edc04508898e7ae75bd5bca5d3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Fri Sep 05 14:36:13 EDT 2025
Wed Feb 19 02:33:32 EST 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 01:24:34 EDT 2025
Fri Feb 23 02:28:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motor imagery (MI)
Support vector machine (SVM)
Channel selection
Electroencephalogram (EEG)
Common spatial pattern (CSP)
Brain–computer interface (BCI)
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-6929312c27233803232f75c00b2077479666fa6edc04508898e7ae75bd5bca5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31326660
PQID 2261976245
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2261976245
pubmed_primary_31326660
crossref_primary_10_1016_j_neunet_2019_07_008
crossref_citationtrail_10_1016_j_neunet_2019_07_008
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_07_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yin, Zhou, Jiang, Chen, Liu, Hu (b38) 2013; 10
Velasco-Alvarez, Ron-Angevin, da Silva-Sauer, Sancha-Ros (b30) 2013; 121
Zhang, Yin, Li, Zhang, Tanaka, Zhao (b43) 2018; 26
Lemm, Blankertz, Curio, Muller (b20) 2005; 52
(pp. 225–230).
Kang, Nam, Choi (b15) 2009; 16
Ahn, Ahn, Hong, Cho, Kim, Kim (b1) 2013; 7
Yang, Singh, Hines, Schlaghecken, Iliescu, Leeson (b37) 2012; 55
Yu, Li, Long, Gu (b39) 2012; 9
Feng, Yin, Jin, Saab, Daly, Wang (b9) 2018; 102
Lu, Eng, Guan, Plataniotis, Venetsanopoulos (b22) 2010; 57
Arvaneh, M., Guan, C., Ang, K. K., & Quek, H. C. (2010). EEG channel selection using decision tree in brain-computer interface. In
Cox, Savoy (b8) 2003; 19
Tangermann, Muller, Aertsen, Birbaumer, Braun, Brunner (b28) 2012; 6
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b31) 2002; 113
Grosse-Wentrup, Liefhold, Gramann, Buss (b11) 2009; 56
Pan, Li, Zhang, Gu, Li (b25) 2013; 21
Ang, Chin, Wang, Guan, Zhang (b2) 2012; 6
Xu, Jia, Qi, Hu, He, Zhao (b34) 2016; 134
Meng, Huang, Zhang, Zhu (b23) 2013; 104
Tam, W., Ke, Z., & Tong, K. (2011) Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: A multi-session dataset study. In
(pp. 6344–6347).
Kübler, Holz, Riccio, Zickler, Kaufmann, Kleih (b17) 2014; 9
Li, Namburi, Yu, Guan, Feng, Gu (b21) 2009; 56
Qiu, Jin, Lam, Zhang, Wang, Cichocki (b26) 2016; 207
Jin, Sellers, Zhou, Zhang, Wang, Cichocki (b13) 2015; 25
Wu, Chen, Gao, Li, Brown, Gao (b32) 2015; 37
Xu, Xiao, Wang, Qi, Jung, Ming (b35) 2018; 65
Xing, Wang, Pei, Guo, Liu, Wang (b33) 2018; 8
He, Hu, Li, Li (b12) 2013; 121
(pp. 1277–1280).
Chang, Lin (b7) 2011; 2
Krepki, Blankertz, Curio, Muller (b16) 2007; 33
Thibeault, Srinivasa (b29) 2013; 7
Yang, Y., Kyrgyzov, O., Wiart, J., & Bloch, I. (2013) Subject-specific channel selection for classification of motor imagery electroencephalographic data. In
Zhang, Wang, Jin, Wang (b41) 2017; 27
Jin, Zhang, Daly, Wang, Cichocki (b14) 2017; 14
Mousavi, Maller, Fitzgerald, Lithgow (b24) 2011; 6
Ang, Chin, Zhang, Guan (b3) 2012; 45
Friedman (b10) 1989; 84
Kübler, Holz, Sellers, Vaughan (b18) 2015; 96
Zhang, Zhao, Jin, Wang, Cichocki (b44) 2012; 9
Lal, Schroder, Hinterberger, Weston, Bogdan, Birbaumer (b19) 2004; 51
Zhang, Xu, Cheng, Yao (b42) 2014; 221
Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl (b6) 2006; 14
Ang, Guan (b4) 2017; 25
Zhang, Song, Xu, Zhou, Ling, Hong (b40) 2013; 71
Meng (10.1016/j.neunet.2019.07.008_b23) 2013; 104
Velasco-Alvarez (10.1016/j.neunet.2019.07.008_b30) 2013; 121
Grosse-Wentrup (10.1016/j.neunet.2019.07.008_b11) 2009; 56
Yu (10.1016/j.neunet.2019.07.008_b39) 2012; 9
10.1016/j.neunet.2019.07.008_b36
Chang (10.1016/j.neunet.2019.07.008_b7) 2011; 2
Feng (10.1016/j.neunet.2019.07.008_b9) 2018; 102
Zhang (10.1016/j.neunet.2019.07.008_b42) 2014; 221
Ahn (10.1016/j.neunet.2019.07.008_b1) 2013; 7
Zhang (10.1016/j.neunet.2019.07.008_b40) 2013; 71
Yang (10.1016/j.neunet.2019.07.008_b37) 2012; 55
Thibeault (10.1016/j.neunet.2019.07.008_b29) 2013; 7
Ang (10.1016/j.neunet.2019.07.008_b4) 2017; 25
Kübler (10.1016/j.neunet.2019.07.008_b18) 2015; 96
Blankertz (10.1016/j.neunet.2019.07.008_b6) 2006; 14
Lu (10.1016/j.neunet.2019.07.008_b22) 2010; 57
Cox (10.1016/j.neunet.2019.07.008_b8) 2003; 19
Mousavi (10.1016/j.neunet.2019.07.008_b24) 2011; 6
Lemm (10.1016/j.neunet.2019.07.008_b20) 2005; 52
Jin (10.1016/j.neunet.2019.07.008_b13) 2015; 25
Xu (10.1016/j.neunet.2019.07.008_b34) 2016; 134
Kübler (10.1016/j.neunet.2019.07.008_b17) 2014; 9
Li (10.1016/j.neunet.2019.07.008_b21) 2009; 56
Kang (10.1016/j.neunet.2019.07.008_b15) 2009; 16
Krepki (10.1016/j.neunet.2019.07.008_b16) 2007; 33
Lal (10.1016/j.neunet.2019.07.008_b19) 2004; 51
10.1016/j.neunet.2019.07.008_b5
Wolpaw (10.1016/j.neunet.2019.07.008_b31) 2002; 113
Zhang (10.1016/j.neunet.2019.07.008_b41) 2017; 27
10.1016/j.neunet.2019.07.008_b27
Friedman (10.1016/j.neunet.2019.07.008_b10) 1989; 84
Ang (10.1016/j.neunet.2019.07.008_b2) 2012; 6
Pan (10.1016/j.neunet.2019.07.008_b25) 2013; 21
Xu (10.1016/j.neunet.2019.07.008_b35) 2018; 65
Xing (10.1016/j.neunet.2019.07.008_b33) 2018; 8
Yin (10.1016/j.neunet.2019.07.008_b38) 2013; 10
Ang (10.1016/j.neunet.2019.07.008_b3) 2012; 45
Qiu (10.1016/j.neunet.2019.07.008_b26) 2016; 207
Zhang (10.1016/j.neunet.2019.07.008_b43) 2018; 26
Jin (10.1016/j.neunet.2019.07.008_b14) 2017; 14
He (10.1016/j.neunet.2019.07.008_b12) 2013; 121
Tangermann (10.1016/j.neunet.2019.07.008_b28) 2012; 6
Zhang (10.1016/j.neunet.2019.07.008_b44) 2012; 9
Wu (10.1016/j.neunet.2019.07.008_b32) 2015; 37
References_xml – volume: 121
  start-page: 423
  year: 2013
  end-page: 433
  ident: b12
  article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
  publication-title: Neurocomputing
– volume: 21
  start-page: 435
  year: 2013
  end-page: 443
  ident: b25
  article-title: Discrimination between control and idle states in asynchronous SSVEP-based brain switches: A pseudo-key-based approach
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: b8
  article-title: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
– volume: 27
  year: 2017
  ident: b41
  article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: International Journal of Neural Systems
– volume: 84
  start-page: 165
  year: 1989
  end-page: 175
  ident: b10
  article-title: Regularized discriminant analysis
  publication-title: Journal of the American Statistical Association
– volume: 6
  year: 2012
  ident: b2
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Frontiers in Neuroscience
– volume: 10
  year: 2013
  ident: b38
  article-title: A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm
  publication-title: Journal of Neural Engineering
– volume: 14
  year: 2017
  ident: b14
  article-title: An improved P300 pattern in BCI to catch user’s attention
  publication-title: Journal of Neural Engineering
– reference: (pp. 1277–1280).
– volume: 9
  year: 2012
  ident: b39
  article-title: Surfing the internet with a BCI mouse
  publication-title: Journal of Neural Engineering
– volume: 96
  start-page: S27
  year: 2015
  end-page: S32
  ident: b18
  article-title: Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users
  publication-title: Archives of Physical Medicine and Rehabilitation
– volume: 7
  year: 2013
  ident: b29
  article-title: Using a hybrid neuron in physiologically inspired models of the basal ganglia
  publication-title: Frontiers in Computational Neuroscience
– volume: 33
  start-page: 73
  year: 2007
  end-page: 90
  ident: b16
  article-title: The berlin brain-computer interface (BBCI) - towards a new communication channel for online control in gaming applications
  publication-title: Multimedia Tools and Applications
– reference: Tam, W., Ke, Z., & Tong, K. (2011) Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: A multi-session dataset study. In
– volume: 9
  year: 2012
  ident: b44
  article-title: A novel BCI based on ERP components sensitive to configural processing of human faces
  publication-title: Journal of Neural Engineering
– volume: 104
  start-page: 115
  year: 2013
  end-page: 126
  ident: b23
  article-title: Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface
  publication-title: Neurocomputing
– volume: 9
  year: 2014
  ident: b17
  article-title: The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications
  publication-title: PLoS One
– reference: Arvaneh, M., Guan, C., Ang, K. K., & Quek, H. C. (2010). EEG channel selection using decision tree in brain-computer interface. In
– volume: 57
  start-page: 2936
  year: 2010
  end-page: 2946
  ident: b22
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: b31
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
– volume: 2
  year: 2011
  ident: b7
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– reference: (pp. 6344–6347).
– volume: 71
  start-page: 30
  year: 2013
  end-page: 41
  ident: b40
  article-title: Toward a minimally invasive brain-computer interface using a single subdural channel: A visual speller study
  publication-title: NeuroImage
– volume: 56
  start-page: 2439
  year: 2009
  end-page: 2451
  ident: b21
  article-title: Voxel selection in fMRI data analysis based on sparse representation
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 7
  year: 2013
  ident: b1
  article-title: Gamma band activity associated with BCI performance: simultaneous MEG/EEG study
  publication-title: Frontiers in Human Neuroscience
– volume: 102
  start-page: 87
  year: 2018
  end-page: 95
  ident: b9
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Networks
– volume: 121
  start-page: 89
  year: 2013
  end-page: 98
  ident: b30
  article-title: Audio-cued motor imagery-based brain-computer interface: Navigation through virtual and real environments
  publication-title: Neurocomputing
– volume: 134
  start-page: 204
  year: 2016
  end-page: 212
  ident: b34
  article-title: Use of a steady-state baseline to address evoked vs. oscillation models of visual evoked potential origin
  publication-title: NeuroImage
– reference: Yang, Y., Kyrgyzov, O., Wiart, J., & Bloch, I. (2013) Subject-specific channel selection for classification of motor imagery electroencephalographic data. In
– volume: 14
  start-page: 153
  year: 2006
  end-page: 159
  ident: b6
  article-title: The BCI competition III: Validating alternative approaches to actual BCI problems
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 26
  start-page: 1314
  year: 2018
  end-page: 1323
  ident: b43
  article-title: Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 6
  start-page: 121
  year: 2011
  end-page: 128
  ident: b24
  article-title: Wavelet common spatial pattern in asynchronous offline brain computer interfaces
  publication-title: Biomedical Signal Processing and Control
– volume: 56
  start-page: 1209
  year: 2009
  end-page: 1219
  ident: b11
  article-title: Beamforming in noninvasive brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 37
  start-page: 639
  year: 2015
  end-page: 653
  ident: b32
  article-title: Probabilistic common spatial patterns for multichannel EEG analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 55
  start-page: 117
  year: 2012
  end-page: 126
  ident: b37
  article-title: Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach
  publication-title: Artificial Intelligence in Medicine
– volume: 16
  start-page: 683
  year: 2009
  end-page: 686
  ident: b15
  article-title: Composite common spatial pattern for subject-to-subject transfer
  publication-title: IEEE Signal Processing Letters
– volume: 52
  start-page: 1541
  year: 2005
  end-page: 1548
  ident: b20
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 65
  start-page: 1166
  year: 2018
  end-page: 1175
  ident: b35
  article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 221
  start-page: 32
  year: 2014
  end-page: 40
  ident: b42
  article-title: Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface
  publication-title: Journal of Neuroscience Methods
– reference: (pp. 225–230).
– volume: 25
  start-page: 392
  year: 2017
  end-page: 401
  ident: b4
  article-title: EEG-based strategies to detect motor imagery for control and rehabilitation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 6
  year: 2012
  ident: b28
  article-title: Review of the BCI competition IV
  publication-title: Frontiers in Neuroscience
– volume: 25
  year: 2015
  ident: b13
  article-title: A P300 brain-computer interface based on a modification of the mismatch negativity paradigm
  publication-title: International Journal of Neural Systems
– volume: 8
  year: 2018
  ident: b33
  article-title: A high-speed ssvep-based BCI using dry EEG electrodes
  publication-title: Scientific Reports
– volume: 207
  start-page: 519
  year: 2016
  end-page: 527
  ident: b26
  article-title: Improved SFFS method for channel selection in motor imagery based BCI
  publication-title: Neurocomputing
– volume: 45
  start-page: 2137
  year: 2012
  end-page: 2144
  ident: b3
  article-title: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs
  publication-title: Pattern Recognition
– volume: 51
  start-page: 1003
  year: 2004
  end-page: 1010
  ident: b19
  article-title: Support vector channel selection in BCI
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 102
  start-page: 87
  year: 2018
  ident: 10.1016/j.neunet.2019.07.008_b9
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.02.011
– volume: 52
  start-page: 1541
  issue: 9
  year: 2005
  ident: 10.1016/j.neunet.2019.07.008_b20
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2005.851521
– volume: 221
  start-page: 32
  year: 2014
  ident: 10.1016/j.neunet.2019.07.008_b42
  article-title: Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2013.07.018
– volume: 21
  start-page: 435
  issue: 3
  year: 2013
  ident: 10.1016/j.neunet.2019.07.008_b25
  article-title: Discrimination between control and idle states in asynchronous SSVEP-based brain switches: A pseudo-key-based approach
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2013.2253801
– ident: 10.1016/j.neunet.2019.07.008_b36
  doi: 10.1109/ICASSP.2013.6637856
– ident: 10.1016/j.neunet.2019.07.008_b27
– volume: 9
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2019.07.008_b39
  article-title: Surfing the internet with a BCI mouse
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/9/3/036012
– volume: 57
  start-page: 2936
  issue: 12
  year: 2010
  ident: 10.1016/j.neunet.2019.07.008_b22
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2082540
– volume: 7
  year: 2013
  ident: 10.1016/j.neunet.2019.07.008_b29
  article-title: Using a hybrid neuron in physiologically inspired models of the basal ganglia
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2013.00088
– volume: 71
  start-page: 30
  year: 2013
  ident: 10.1016/j.neunet.2019.07.008_b40
  article-title: Toward a minimally invasive brain-computer interface using a single subdural channel: A visual speller study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.069
– volume: 9
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2019.07.008_b44
  article-title: A novel BCI based on ERP components sensitive to configural processing of human faces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/9/2/026018
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.neunet.2019.07.008_b6
  article-title: The BCI competition III: Validating alternative approaches to actual BCI problems
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2006.875642
– volume: 9
  issue: 12
  year: 2014
  ident: 10.1016/j.neunet.2019.07.008_b17
  article-title: The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112392
– volume: 33
  start-page: 73
  issue: 1
  year: 2007
  ident: 10.1016/j.neunet.2019.07.008_b16
  article-title: The berlin brain-computer interface (BBCI) - towards a new communication channel for online control in gaming applications
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-006-0094-3
– volume: 65
  start-page: 1166
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2019.07.008_b35
  article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2018.2799661
– volume: 7
  year: 2013
  ident: 10.1016/j.neunet.2019.07.008_b1
  article-title: Gamma band activity associated with BCI performance: simultaneous MEG/EEG study
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2013.00848
– volume: 25
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2019.07.008_b13
  article-title: A P300 brain-computer interface based on a modification of the mismatch negativity paradigm
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065715500112
– volume: 55
  start-page: 117
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2019.07.008_b37
  article-title: Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2012.02.001
– volume: 10
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2019.07.008_b38
  article-title: A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/10/2/026012
– volume: 27
  issue: 2
  year: 2017
  ident: 10.1016/j.neunet.2019.07.008_b41
  article-title: Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065716500325
– volume: 84
  start-page: 165
  issue: 405
  year: 1989
  ident: 10.1016/j.neunet.2019.07.008_b10
  article-title: Regularized discriminant analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1989.10478752
– volume: 121
  start-page: 423
  year: 2013
  ident: 10.1016/j.neunet.2019.07.008_b12
  article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.005
– volume: 56
  start-page: 2439
  issue: 10
  year: 2009
  ident: 10.1016/j.neunet.2019.07.008_b21
  article-title: Voxel selection in fMRI data analysis based on sparse representation
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2009.2025866
– volume: 104
  start-page: 115
  year: 2013
  ident: 10.1016/j.neunet.2019.07.008_b23
  article-title: Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.004
– volume: 26
  start-page: 1314
  issue: 7
  year: 2018
  ident: 10.1016/j.neunet.2019.07.008_b43
  article-title: Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2018.2848222
– volume: 2
  issue: 3
  year: 2011
  ident: 10.1016/j.neunet.2019.07.008_b7
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/1961189.1961199
– volume: 134
  start-page: 204
  year: 2016
  ident: 10.1016/j.neunet.2019.07.008_b34
  article-title: Use of a steady-state baseline to address evoked vs. oscillation models of visual evoked potential origin
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.03.073
– volume: 6
  start-page: 121
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2019.07.008_b24
  article-title: Wavelet common spatial pattern in asynchronous offline brain computer interfaces
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2010.08.003
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.neunet.2019.07.008_b31
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 14
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2019.07.008_b14
  article-title: An improved P300 pattern in BCI to catch user’s attention
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aa6213
– volume: 6
  year: 2012
  ident: 10.1016/j.neunet.2019.07.008_b28
  article-title: Review of the BCI competition IV
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00055
– volume: 121
  start-page: 89
  year: 2013
  ident: 10.1016/j.neunet.2019.07.008_b30
  article-title: Audio-cued motor imagery-based brain-computer interface: Navigation through virtual and real environments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.038
– ident: 10.1016/j.neunet.2019.07.008_b5
– volume: 56
  start-page: 1209
  issue: 4
  year: 2009
  ident: 10.1016/j.neunet.2019.07.008_b11
  article-title: Beamforming in noninvasive brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.2009768
– volume: 6
  year: 2012
  ident: 10.1016/j.neunet.2019.07.008_b2
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00039
– volume: 25
  start-page: 392
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2019.07.008_b4
  article-title: EEG-based strategies to detect motor imagery for control and rehabilitation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2646763
– volume: 51
  start-page: 1003
  issue: 6
  year: 2004
  ident: 10.1016/j.neunet.2019.07.008_b19
  article-title: Support vector channel selection in BCI
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2004.827827
– volume: 8
  year: 2018
  ident: 10.1016/j.neunet.2019.07.008_b33
  article-title: A high-speed ssvep-based BCI using dry EEG electrodes
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-32283-8
– volume: 19
  start-page: 261
  issue: 2
  year: 2003
  ident: 10.1016/j.neunet.2019.07.008_b8
  article-title: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 207
  start-page: 519
  year: 2016
  ident: 10.1016/j.neunet.2019.07.008_b26
  article-title: Improved SFFS method for channel selection in motor imagery based BCI
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.035
– volume: 96
  start-page: S27
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2019.07.008_b18
  article-title: Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users
  publication-title: Archives of Physical Medicine and Rehabilitation
  doi: 10.1016/j.apmr.2014.03.036
– volume: 37
  start-page: 639
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2019.07.008_b32
  article-title: Probabilistic common spatial patterns for multichannel EEG analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2330598
– volume: 45
  start-page: 2137
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2019.07.008_b3
  article-title: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.04.018
– volume: 16
  start-page: 683
  issue: 8
  year: 2009
  ident: 10.1016/j.neunet.2019.07.008_b15
  article-title: Composite common spatial pattern for subject-to-subject transfer
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2009.2022557
SSID ssj0006843
Score 2.6577528
Snippet Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms Brain–computer interface (BCI)
Channel selection
Common spatial pattern (CSP)
Electroencephalogram (EEG)
Motor imagery (MI)
Support vector machine (SVM)
Title Correlation-based channel selection and regularized feature optimization for MI-based BCI
URI https://dx.doi.org/10.1016/j.neunet.2019.07.008
https://www.ncbi.nlm.nih.gov/pubmed/31326660
https://www.proquest.com/docview/2261976245
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwfpRHZSTWUOdhJx1LRNWC2gUqlclKHEcqKmnVx8LAb-fOcYqQQJUY49iJdefzfSd_viPkNvfdLFBt5ag09Z0gSnKwOabB4nmkAB-o3FRvGAxFbxQ8jvm4RuLqLgzSKu3eX-7pZre2LS0rzdZ8Mmk9M3C1AgAPQBBM8oJxexCEmD__7vOb5iGikjkHnR3sXV2fMxyvQq8LjYxKt21SeGKRyd_d01_w07ih7gHZs_iRdsopHpKaLo7IflWbgVpTPSavMZbdKIluDrqqjOId30JP6dKUvoF2mhQZXZhi9IvJB_TItUnzSWewj7zbC5oUUC0d9O037uP-CRl1H17inmPLKDgKvNPKEYCAfNdTXuhBPMp8wFB5yBVjqccA_IUQ8Ig8ETpTAO-Q9RTpMNEhTzOeqoRn_impF7NCnxMaaQ_eBBHPcg2hEo_8XDA_0SIQLig8ahC_kp5UNsc4lrqYyopM9iZLmUuUuWR4-A2jnM2oeZljY0v_sFKM_LFWJLiBLSNvKj1KMCM8G0kKPVsvpYeRJDiGgDfIWangzVwwuyXIiF38-7-XZBefShLgFamvFmt9DWBmlTbNam2SnU7_qTf8Alpu8xY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDC-1GeRmI1dePYSUeoQC20XQAJJitxHKkIUtTHwsBv585xQEigSqx-JNbZvvtO_u6OkLNctLLQtA0zaSpYGCc53Dlu4cbL2AA-MLmr3jAYqu5DePMoH2ukU8XCIK3S6_5Spztt7VuaXprNt9GoecfB1CoAPABBMMkL-O1LoRQRHu3zj2-eh4pL6hyMZji8ip9zJK_CzguLlMpW2-XwxCqTv9unv_Cns0PX62TVA0h6Ua5xg9RssUnWquIM1N_VLfLUwbobJdONoa3KKAb5FvaFTl3tG2inSZHRiatGPxm9w4jcujyfdAyK5NVHaFKAtXTQ89-47PS2ycP11X2ny3wdBWbAPM2YAggkWoEJogAcUi4AROWRNJynAQf0F4HHo_JE2cwAvkPaU2yjxEYyzWRqEpmJHVIvxoXdIzS2AfSEscxyC76SjEWuuEisClULdjxuEFFJTxufZBxrXbzoik32rEuZa5S55vj6DbPY16y3MsnGgvFRtTH6x2HRYAcWzDyt9lHDPcLHkaSw4_lUB-hKgmUIZYPslhv8tRZMbwky4vv__u8JWe7eD_q63xveHpAV7CkZgYekPpvM7REgm1l67E7uJwBt9Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation-based+channel+selection+and+regularized+feature+optimization+for+MI-based+BCI&rft.jtitle=Neural+networks&rft.au=Jin%2C+Jing&rft.au=Miao%2C+Yangyang&rft.au=Daly%2C+Ian&rft.au=Zuo%2C+Cili&rft.date=2019-10-01&rft.issn=0893-6080&rft.volume=118&rft.spage=262&rft.epage=270&rft_id=info:doi/10.1016%2Fj.neunet.2019.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2019_07_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon