Insights Into Ferroptosis: Targeting Glycolysis to Treat Graves’ Orbitopathy

Oxidative stress plays an indispensable role in pathogenesis of Graves' orbitopathy (GO). Ferroptosis is a newly discovered form of cell death resulting from lipid peroxidation. Little is known about the role of ferroptosis in GO. We aimed to identify the divergent role of ferroptosis in the GO...

Full description

Saved in:
Bibliographic Details
Published inThe journal of clinical endocrinology and metabolism Vol. 107; no. 7; pp. 1994 - 2003
Main Authors Ma, Ruiqi, Gan, Lu, Guo, Jie, Peng, Zhiyu, Wu, Jihong, Harrison, Andrew R, Qian, Jiang
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 16.06.2022
Subjects
Online AccessGet full text
ISSN0021-972X
1945-7197
1945-7197
DOI10.1210/clinem/dgac163

Cover

Loading…
Abstract Oxidative stress plays an indispensable role in pathogenesis of Graves' orbitopathy (GO). Ferroptosis is a newly discovered form of cell death resulting from lipid peroxidation. Little is known about the role of ferroptosis in GO. We aimed to identify the divergent role of ferroptosis in the GO and control orbital fibroblasts (OFs). Orbital fat/connective tissues and serum immunoglobulins (Igs) were collected from GO and control subjects. Cell viability and lipid peroxidation were measured to evaluate ferroptosis sensitivity. Pyruvate dehydrogenase kinase 2 (PDK2) level and oxygen consumption rate were quantified to assess glycolysis status. Primary OFs were cultured from orbital tissues. Ferroptosis was induced by cystine deprivation and/or erastin treatment. The GO OFs possessed stronger resistance to ferroptosis than the control OFs. Selenium, a potential ferroptosis inhibitor, protected the control OFs from ferroptosis. Both transcriptomic and proteomic analyses indicated glycolytic shift in the GO OFs. Metabolic profiling, PDK2 quantification, and oxygen consumption assay confirmed enhanced glycolysis in the GO OFs. Inhibition of glycolysis by PDK2 knockdown and dichloroacetic acid (DCA) promoted ferroptosis sensitivity in the GO OFs. The ferroptosis-sensitizing effects of DCA were also observed when the GO OFs were treated with GO-Igs. IGF1R overexpression in the GO OFs contributed to glycolysis shift. IGF1R inhibitory antibodies facilitated ferroptosis induction in the GO OFs, but the effects were less remarkable under GO-Igs treatment. These study findings establish that glycolysis facilitates ferroptosis resistance in the GO OFs, providing insights into the therapeutic role of glycolysis for GO treatment.
AbstractList Context: Oxidative stress plays an indispensable role in pathogenesis of Graves' orbitopathy (GO). Ferroptosis is a newly discovered form of cell death resulting from lipid peroxidation. Little is known about the role of ferroptosis in GO. Objective: We aimed to identify the divergent role of ferroptosis in the GO and control orbital fibroblasts (OFs). Methods: Orbital fat/connective tissues and serum immunoglobulins (Igs) were collected from GO and control subjects. Cell viability and lipid peroxidation were measured to evaluate ferroptosis sensitivity. Pyruvate dehydrogenase kinase 2 (PDK2) level and oxygen consumption rate were quantified to assess glycolysis status. Results: Primary OFs were cultured from orbital tissues. Ferroptosis was induced by cystine deprivation and/or erastin treatment. The GO OFs possessed stronger resistance to ferroptosis than the control OFs. Selenium, a potential ferroptosis inhibitor, protected the control OFs from ferroptosis. Both transcriptomic and proteomic analyses indicated glycolytic shift in the GO OFs. Metabolic profiling, PDK2 quantification, and oxygen consumption assay confirmed enhanced glycolysis in the GO OFs. Inhibition of glycolysis by PDK2 knockdown and dichloroacetic acid (DCA) promoted ferroptosis sensitivity in the GO OFs. The ferroptosis-sensitizing effects of DCA were also observed when the GO OFs were treated with GO-Igs. IGF1R overexpression in the GO OFs contributed to glycolysis shift. IGF1R inhibitory antibodies facilitated ferroptosis induction in the GO OFs, but the effects were less remarkable under GO-Igs treatment. Conclusion: These study findings establish that glycolysis facilitates ferroptosis resistance in the GO OFs, providing insights into the therapeutic role of glycolysis for GO treatment. Key Words: glycolysis, ferroptosis, cystine deprivation, orbital fibroblast, Graves' orbitopathy Abbreviations: 1H7, IGF1R inhibitory antibody 1H7; CCK-8, Cell Counting Kit-8; DCA, dichloroacetic acid; DMEM, Dulbecco's Modified Eagle Medium; FBS, fetal bovine serum; GD, Graves' disease; GO, Graves' ophthalmopathy; GPX4, glutathione peroxidase 4; IGF1, insulin-like growth factor 1; IGF1R, insulin-like growth factor 1 receptor; KEGG, Kyoto Encyclopedia of Genes and Genomes; OF, orbital fibroblast; OXPHOS, oxidative phosphorylation; PDK2, pyruvate dehydrogenase kinase 2; ROS, reactive oxygen species; SLC7A11, cystine-glutamate transporter; TCA, tricarboxylic acid (cycle); TMB, teprotumumab; TSHR, thyroid-stimulating hormone receptor; WES, Capillary Western Immunoassay Kit.
Oxidative stress plays an indispensable role in pathogenesis of Graves' orbitopathy (GO). Ferroptosis is a newly discovered form of cell death resulting from lipid peroxidation. Little is known about the role of ferroptosis in GO.CONTEXTOxidative stress plays an indispensable role in pathogenesis of Graves' orbitopathy (GO). Ferroptosis is a newly discovered form of cell death resulting from lipid peroxidation. Little is known about the role of ferroptosis in GO.We aimed to identify the divergent role of ferroptosis in the GO and control orbital fibroblasts (OFs).OBJECTIVEWe aimed to identify the divergent role of ferroptosis in the GO and control orbital fibroblasts (OFs).Orbital fat/connective tissues and serum immunoglobulins (Igs) were collected from GO and control subjects. Cell viability and lipid peroxidation were measured to evaluate ferroptosis sensitivity. Pyruvate dehydrogenase kinase 2 (PDK2) level and oxygen consumption rate were quantified to assess glycolysis status.METHODSOrbital fat/connective tissues and serum immunoglobulins (Igs) were collected from GO and control subjects. Cell viability and lipid peroxidation were measured to evaluate ferroptosis sensitivity. Pyruvate dehydrogenase kinase 2 (PDK2) level and oxygen consumption rate were quantified to assess glycolysis status.Primary OFs were cultured from orbital tissues. Ferroptosis was induced by cystine deprivation and/or erastin treatment. The GO OFs possessed stronger resistance to ferroptosis than the control OFs. Selenium, a potential ferroptosis inhibitor, protected the control OFs from ferroptosis. Both transcriptomic and proteomic analyses indicated glycolytic shift in the GO OFs. Metabolic profiling, PDK2 quantification, and oxygen consumption assay confirmed enhanced glycolysis in the GO OFs. Inhibition of glycolysis by PDK2 knockdown and dichloroacetic acid (DCA) promoted ferroptosis sensitivity in the GO OFs. The ferroptosis-sensitizing effects of DCA were also observed when the GO OFs were treated with GO-Igs. IGF1R overexpression in the GO OFs contributed to glycolysis shift. IGF1R inhibitory antibodies facilitated ferroptosis induction in the GO OFs, but the effects were less remarkable under GO-Igs treatment.RESULTSPrimary OFs were cultured from orbital tissues. Ferroptosis was induced by cystine deprivation and/or erastin treatment. The GO OFs possessed stronger resistance to ferroptosis than the control OFs. Selenium, a potential ferroptosis inhibitor, protected the control OFs from ferroptosis. Both transcriptomic and proteomic analyses indicated glycolytic shift in the GO OFs. Metabolic profiling, PDK2 quantification, and oxygen consumption assay confirmed enhanced glycolysis in the GO OFs. Inhibition of glycolysis by PDK2 knockdown and dichloroacetic acid (DCA) promoted ferroptosis sensitivity in the GO OFs. The ferroptosis-sensitizing effects of DCA were also observed when the GO OFs were treated with GO-Igs. IGF1R overexpression in the GO OFs contributed to glycolysis shift. IGF1R inhibitory antibodies facilitated ferroptosis induction in the GO OFs, but the effects were less remarkable under GO-Igs treatment.These study findings establish that glycolysis facilitates ferroptosis resistance in the GO OFs, providing insights into the therapeutic role of glycolysis for GO treatment.CONCLUSIONThese study findings establish that glycolysis facilitates ferroptosis resistance in the GO OFs, providing insights into the therapeutic role of glycolysis for GO treatment.
Oxidative stress plays an indispensable role in pathogenesis of Graves' orbitopathy (GO). Ferroptosis is a newly discovered form of cell death resulting from lipid peroxidation. Little is known about the role of ferroptosis in GO. We aimed to identify the divergent role of ferroptosis in the GO and control orbital fibroblasts (OFs). Orbital fat/connective tissues and serum immunoglobulins (Igs) were collected from GO and control subjects. Cell viability and lipid peroxidation were measured to evaluate ferroptosis sensitivity. Pyruvate dehydrogenase kinase 2 (PDK2) level and oxygen consumption rate were quantified to assess glycolysis status. Primary OFs were cultured from orbital tissues. Ferroptosis was induced by cystine deprivation and/or erastin treatment. The GO OFs possessed stronger resistance to ferroptosis than the control OFs. Selenium, a potential ferroptosis inhibitor, protected the control OFs from ferroptosis. Both transcriptomic and proteomic analyses indicated glycolytic shift in the GO OFs. Metabolic profiling, PDK2 quantification, and oxygen consumption assay confirmed enhanced glycolysis in the GO OFs. Inhibition of glycolysis by PDK2 knockdown and dichloroacetic acid (DCA) promoted ferroptosis sensitivity in the GO OFs. The ferroptosis-sensitizing effects of DCA were also observed when the GO OFs were treated with GO-Igs. IGF1R overexpression in the GO OFs contributed to glycolysis shift. IGF1R inhibitory antibodies facilitated ferroptosis induction in the GO OFs, but the effects were less remarkable under GO-Igs treatment. These study findings establish that glycolysis facilitates ferroptosis resistance in the GO OFs, providing insights into the therapeutic role of glycolysis for GO treatment.
Audience Academic
Author Peng, Zhiyu
Gan, Lu
Guo, Jie
Wu, Jihong
Ma, Ruiqi
Harrison, Andrew R
Qian, Jiang
Author_xml – sequence: 1
  givenname: Ruiqi
  surname: Ma
  fullname: Ma, Ruiqi
– sequence: 2
  givenname: Lu
  surname: Gan
  fullname: Gan, Lu
– sequence: 3
  givenname: Jie
  surname: Guo
  fullname: Guo, Jie
– sequence: 4
  givenname: Zhiyu
  surname: Peng
  fullname: Peng, Zhiyu
– sequence: 5
  givenname: Jihong
  surname: Wu
  fullname: Wu, Jihong
– sequence: 6
  givenname: Andrew R
  orcidid: 0000-0003-4005-2772
  surname: Harrison
  fullname: Harrison, Andrew R
– sequence: 7
  givenname: Jiang
  orcidid: 0000-0002-4287-3497
  surname: Qian
  fullname: Qian, Jiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35303084$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9rGzEQxUVJaZy01x7DQi65bKJ_u_LmFkLjGEJzcaE3MdbOblR2JUeSA771a-Tr9ZNUxk5DSsscBobfewzvHZED5x0S8pnRc8YZvTCDdThetD0YVot3ZMIaWZWKNeqATCjlrGwU_35IjmL8QSmTshIfyKGoBBV0Kifk69xF2z-kWMxd8sUNhuBXyUcbL4sFhB6TdX0xGzbGD5t8LTK0CAipmAV4wvjr53NxH5Y2-RWkh81H8r6DIeKn_T4m326-LK5vy7v72fz66q40ouaprFUFbSU4NExCVwuJSI1quylWBpdsyVEpaDhgCx0abIQCWSFXSFteM8bEMTnb-a6Cf1xjTHq00eAwgEO_jprXkjY5CVVn9HSH9jCgtq7zKYDZ4vpKKVVNFZNb6vwfVJ4WR2ty5p3N9zeCk_0H6-WIrV4FO0LY6JdoXx1N8DEG7P4gjOptd3rXnd53lwXyL4GxCZL1Lr9ih__JfgOwjKFJ
CitedBy_id crossref_primary_10_1016_j_biopha_2024_116230
crossref_primary_10_3389_fimmu_2024_1440309
crossref_primary_10_3389_fimmu_2024_1475923
crossref_primary_10_1007_s12020_024_03761_z
crossref_primary_10_3390_ijms252111434
crossref_primary_10_1016_j_mito_2023_02_007
crossref_primary_10_1016_j_nbd_2022_105917
crossref_primary_10_1089_ars_2024_0585
crossref_primary_10_1515_biol_2022_0874
crossref_primary_10_1167_iovs_66_1_56
Cites_doi 10.1210/endocr/bqab188
10.1007/s42000-019-00133-5
10.1016/j.cbi.2019.108894
10.1530/EJE-21-0479
10.1530/JME-20-0143
10.1097/IOP.0000000000001514
10.1210/jc.2016-1315
10.3389/fendo.2021.653627
10.3389/fendo.2020.608733
10.1016/S2213-8587(21)00056-5
10.1016/j.cmet.2020.10.011
10.1007/s40618-019-01116-4
10.1159/000494837
10.1007/s40618-021-01663-9
10.1210/en.2019-00055
10.1097/IOP.0000000000001931
10.1016/j.molcel.2018.10.042
10.1016/j.freeradbiomed.2018.09.043
10.2147/OTT.S254995
10.1210/jc.2018-01626
10.1056/NEJMoa1012985
10.1038/s41422-020-00441-1
10.1159/000511538
10.1210/clinem/dgab154
10.1038/s41577-020-00478-8
10.1155/2020/9210572
10.1002/cbf.3632
10.3389/fendo.2020.608428
10.1146/annurev-biochem-061516-045037
10.1210/clinem/dgab256
10.1038/s41580-020-00324-8
10.1210/jc.2017-01736
10.1007/s00417-021-05339-1
10.1038/s41574-019-0305-4
10.1016/j.cmet.2017.10.005
10.1055/a-0658-7889
10.1167/iovs.19-27376
10.1084/jem.20210518
10.1146/annurev-cellbio-092910-154237
10.3390/cells10020383
10.1038/s41422-019-0164-5
10.1507/endocrj.EJ19-0521
10.1016/j.cell.2013.12.010
10.1056/NEJMoa1910434
10.1111/ceo.13899
10.1089/thy.2018.0089
10.1210/clinem/dgab035
10.1167/iovs.18-26268
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
COPYRIGHT 2022 Oxford University Press
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: COPYRIGHT 2022 Oxford University Press
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1210/clinem/dgac163
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1945-7197
EndPage 2003
ExternalDocumentID A777587146
35303084
10_1210_clinem_dgac163
Genre Journal Article
GeographicLocations United States
China
GeographicLocations_xml – name: China
– name: United States
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82171099
– fundername: Natural Science Foundation of Shanghai
  grantid: 20ZR1409500
GroupedDBID ---
-~X
.55
.XZ
08P
0R~
18M
29K
2WC
34G
354
39C
4.4
48X
53G
5GY
5RS
5YH
7X7
8F7
AABZA
AACZT
AAIMJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
AAYXX
ABBLC
ABDFA
ABEJV
ABGNP
ABJNI
ABLJU
ABMNT
ABNHQ
ABOCM
ABPMR
ABPPZ
ABPQP
ABPTD
ABQNK
ABVGC
ABWST
ABXVV
ABXZS
ACGFO
ACGFS
ACPRK
ACUTJ
ACYHN
ADBBV
ADGKP
ADGZP
ADHKW
ADNBA
ADQBN
ADRTK
ADVEK
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEOTA
AETBJ
AEWNT
AFCHL
AFFZL
AFGWE
AFOFC
AFRAH
AFXAL
AFYAG
AGINJ
AGORE
AGQXC
AGUTN
AHGBF
AHMBA
AHMMS
AJBYB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
APIBT
ARIXL
ASPBG
ATGXG
AVWKF
AZFZN
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BPHCQ
BSWAC
BTRTY
BVXVI
C45
CDBKE
CITATION
CS3
D-I
DAKXR
DIK
E3Z
EBS
EMOBN
ENERS
F5P
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
GAUVT
GJXCC
GX1
H13
HZ~
H~9
IAO
IHR
INH
ITC
KBUDW
KOP
KSI
KSN
L7B
M5~
MHKGH
MJL
N9A
NLBLG
NOMLY
NOYVH
NU-
O9-
OAUYM
OBH
OCB
ODMLO
OFXIZ
OGEVE
OHH
OJZSN
OK1
OPAEJ
OVD
OVIDX
P2P
P6G
PQQKQ
PROAC
REU
ROX
ROZ
TEORI
TJX
TLC
TR2
TWZ
VVN
W8F
WOQ
X7M
YBU
YFH
YHG
YOC
YSK
ZY1
~02
~H1
AGKRT
KQ8
NPM
7X8
ID FETCH-LOGICAL-c362t-675ad532a914af634ee0c7df8e5ceb1b2e77a92aedafece937a45e27e0d261113
ISSN 0021-972X
1945-7197
IngestDate Fri Jul 11 14:31:00 EDT 2025
Tue Jun 17 22:23:57 EDT 2025
Tue Jun 10 21:20:20 EDT 2025
Wed Feb 19 02:25:52 EST 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 01:11:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords cystine deprivation
ferroptosis
Graves’ orbitopathy
glycolysis
orbital fibroblast
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-675ad532a914af634ee0c7df8e5ceb1b2e77a92aedafece937a45e27e0d261113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4005-2772
0000-0002-4287-3497
PMID 35303084
PQID 2640994576
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2640994576
gale_infotracmisc_A777587146
gale_infotracacademiconefile_A777587146
pubmed_primary_35303084
crossref_primary_10_1210_clinem_dgac163
crossref_citationtrail_10_1210_clinem_dgac163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-16
PublicationDateYYYYMMDD 2022-06-16
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of clinical endocrinology and metabolism
PublicationTitleAlternate J Clin Endocrinol Metab
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Fang (2022061616024386000_CIT0044) 2019; 104
Negro (2022061616024386000_CIT0018) 2019; 8
Ma (2022061616024386000_CIT0025) 2019; 60
Yuksel (2022061616024386000_CIT0010) 2020; 36
Kahaly (2022061616024386000_CIT0048) 2017; 102
Tang (2022061616024386000_CIT0034) 2021; 31
Kahaly (2022061616024386000_CIT0024) 2021; 9
Wang (2022061616024386000_CIT0039) 2021; 106
Rotondo Dottore (2022061616024386000_CIT0006) 2021; 106
Lunt (2022061616024386000_CIT0036) 2011; 27
Chen (2022061616024386000_CIT0029) 2021; 218
Neumann (2022061616024386000_CIT0045) 2020; 9
Hirschhorn (2022061616024386000_CIT0027) 2019; 133
Yang (2022061616024386000_CIT0033) 2014; 156
Taylor (2022061616024386000_CIT0001) 2020; 16
Zheng (2022061616024386000_CIT0031) 2020; 32
Ma (2022061616024386000_CIT0016) 2020; 65
Temiz Karadag (2022061616024386000_CIT0038) 2021; 39
Sies (2022061616024386000_CIT0008) 2017; 86
Weber (2022061616024386000_CIT0037) 2021; 259
Ko (2022061616024386000_CIT0009) 2020; 67
Douglas (2022061616024386000_CIT0021) 2020; 382
Lanzolla (2022061616024386000_CIT0004) 2020; 11
Marcocci (2022061616024386000_CIT0020) 2011; 364
Ekronarongchai (2022061616024386000_CIT0007) 2021; 31
Janssen (2022061616024386000_CIT0023) 2021; 10
Muri (2022061616024386000_CIT0013) 2021; 21
Gao (2022061616024386000_CIT0014) 2019; 73
Jiang (2022061616024386000_CIT0028) 2021; 22
Tang (2022061616024386000_CIT0030) 2019; 29
Bartalena (2022061616024386000_CIT0002) 2021; 185
Jain (2022061616024386000_CIT0022) 2021; 49
Choudhry (2022061616024386000_CIT0035) 2018; 27
Kim (2022061616024386000_CIT0050) 2021; 37
Neag (2022061616024386000_CIT0003) 2022; 45
Stockwell (2022061616024386000_CIT0032) 2017; 171
Marcus-Samuels (2022061616024386000_CIT0046) 2018; 28
Lee (2022061616024386000_CIT0011) 2019; 60
Hai (2022061616024386000_CIT0005) 2020; 43
Shi (2022061616024386000_CIT0041) 2021; 106
Tian (2022061616024386000_CIT0017) 2020; 2020
Zhang (2022061616024386000_CIT0040) 2021; 162
Li (2022061616024386000_CIT0012) 2020; 315
Krieger (2022061616024386000_CIT0043) 2019; 160
Marinò (2022061616024386000_CIT0049) 2018; 50
Zhao (2022061616024386000_CIT0015) 2020; 13
Smith (2022061616024386000_CIT0042) 2021; 12
Lanzolla (2022061616024386000_CIT0047) 2021; 11
Krieger (2022061616024386000_CIT0026) 2016; 101
Bednarczuk (2022061616024386000_CIT0019) 2020; 19
References_xml – volume: 162
  start-page: bqab188
  issue: 12
  year: 2021
  ident: 2022061616024386000_CIT0040
  article-title: The role of mitochondria-linked fatty-acid uptake-driven adipogenesis in Graves orbitopathy
  publication-title: Endocrinology.
  doi: 10.1210/endocr/bqab188
– volume: 19
  start-page: 31
  issue: 1
  year: 2020
  ident: 2022061616024386000_CIT0019
  article-title: Challenges and perspectives of selenium supplementation in Graves’ disease and orbitopathy
  publication-title: Hormones (Athens).
  doi: 10.1007/s42000-019-00133-5
– volume: 315
  start-page: 108894
  year: 2020
  ident: 2022061616024386000_CIT0012
  article-title: Polydatin attenuates orbital oxidative stress in Graves’ orbitopathy through the NRF2 pathway
  publication-title: Chem Biol Interact.
  doi: 10.1016/j.cbi.2019.108894
– volume: 185
  start-page: G43
  issue: 4
  year: 2021
  ident: 2022061616024386000_CIT0002
  article-title: The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy
  publication-title: Eur J Endocrinol.
  doi: 10.1530/EJE-21-0479
– volume: 65
  start-page: 163
  issue: 4
  year: 2020
  ident: 2022061616024386000_CIT0016
  article-title: PDK2-enhanced glycolysis promotes fibroblast proliferation in thyroid-associated ophthalmopathy
  publication-title: J Mol Endocrinol.
  doi: 10.1530/JME-20-0143
– volume: 36
  start-page: 172
  issue: 2
  year: 2020
  ident: 2022061616024386000_CIT0010
  article-title: The effect of smoking on mitochondrial biogenesis in patients with Graves ophthalmopathy
  publication-title: Ophthalmic Plast Reconstr Surg.
  doi: 10.1097/IOP.0000000000001514
– volume: 101
  start-page: 2340
  issue: 6
  year: 2016
  ident: 2022061616024386000_CIT0026
  article-title: TSH/IGF-1 receptor cross talk in Graves’ ophthalmopathy pathogenesis
  publication-title: J Clin Endocrinol Metab.
  doi: 10.1210/jc.2016-1315
– volume: 12
  start-page: 653627
  year: 2021
  ident: 2022061616024386000_CIT0042
  article-title: Insulin-like growth factor pathway and the thyroid
  publication-title: Front Endocrinol (Lausanne).
  doi: 10.3389/fendo.2021.653627
– volume: 11
  start-page: 608733
  year: 2020
  ident: 2022061616024386000_CIT0004
  article-title: Antioxidant therapy in Graves’ orbitopathy
  publication-title: Front Endocrinol (Lausanne).
  doi: 10.3389/fendo.2020.608733
– volume: 9
  start-page: 360
  issue: 6
  year: 2021
  ident: 2022061616024386000_CIT0024
  article-title: Teprotumumab for patients with active thyroid eye disease: a pooled data analysis, subgroup analyses, and off-treatment follow-up results from two randomised, double-masked, placebo-controlled, multicentre trials
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(21)00056-5
– volume: 32
  start-page: 920
  issue: 6
  year: 2020
  ident: 2022061616024386000_CIT0031
  article-title: The metabolic underpinnings of ferroptosis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.10.011
– volume: 43
  start-page: 123
  issue: 2
  year: 2020
  ident: 2022061616024386000_CIT0005
  article-title: Immunohistochemical analysis of human orbital tissue in Graves’ orbitopathy
  publication-title: J Endocrinol Invest.
  doi: 10.1007/s40618-019-01116-4
– volume: 8
  start-page: 7
  issue: 1
  year: 2019
  ident: 2022061616024386000_CIT0018
  article-title: A 2018 European Thyroid Association survey on the use of selenium supplementation in Graves’ hyperthyroidism and Graves’ orbitopathy
  publication-title: Eur Thyroid J.
  doi: 10.1159/000494837
– volume: 45
  start-page: 235
  issue: 2
  year: 2022
  ident: 2022061616024386000_CIT0003
  article-title: 2021 update on thyroid-associated ophthalmopathy
  publication-title: J Endocrinol Invest.
  doi: 10.1007/s40618-021-01663-9
– volume: 160
  start-page: 1468
  issue: 6
  year: 2019
  ident: 2022061616024386000_CIT0043
  article-title: Arrestin-β-1 Physically scaffolds TSH and IGF1 receptors to enable crosstalk
  publication-title: Endocrinology.
  doi: 10.1210/en.2019-00055
– volume: 37
  start-page: 476
  issue: 5
  year: 2021
  ident: 2022061616024386000_CIT0050
  article-title: Anti-inflammatory and antioxidant effects of selenium on orbital fibroblasts of patients with Graves ophthalmopathy
  publication-title: Ophthalmic Plast Reconstr Surg.
  doi: 10.1097/IOP.0000000000001931
– volume: 31
  start-page: 1566
  issue: 10
  year: 2021
  ident: 2022061616024386000_CIT0007
  article-title: Histone deacetylase 4 controls extracellular matrix production in orbital fibroblasts from Graves’ ophthalmopathy patients
  publication-title: Thyroid.
– volume: 73
  start-page: 354
  issue: 2
  year: 2019
  ident: 2022061616024386000_CIT0014
  article-title: Role of mitochondria in ferroptosis
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2018.10.042
– volume: 171
  start-page: 273
  issue: 2
  year: 2017
  ident: 2022061616024386000_CIT0032
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism
  publication-title: Redox Biol Dis Cell.
– volume: 133
  start-page: 130
  year: 2019
  ident: 2022061616024386000_CIT0027
  article-title: The development of the concept of ferroptosis
  publication-title: Free Radic Biol Med.
  doi: 10.1016/j.freeradbiomed.2018.09.043
– volume: 13
  start-page: 5429
  year: 2020
  ident: 2022061616024386000_CIT0015
  article-title: The role of erastin in ferroptosis and its prospects in cancer therapy
  publication-title: Onco Targets Ther.
  doi: 10.2147/OTT.S254995
– volume: 104
  start-page: 1697
  issue: 5
  year: 2019
  ident: 2022061616024386000_CIT0044
  article-title: Insights into local orbital immunity: evidence for the involvement of the Th17 cell pathway in thyroid-associated ophthalmopathy
  publication-title: J Clin Endocrinol Metab.
  doi: 10.1210/jc.2018-01626
– volume: 364
  start-page: 1920
  issue: 20
  year: 2011
  ident: 2022061616024386000_CIT0020
  article-title: Selenium and the course of mild Graves’ orbitopathy
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1012985
– volume: 31
  start-page: 107
  issue: 2
  year: 2021
  ident: 2022061616024386000_CIT0034
  article-title: Ferroptosis: molecular mechanisms and health implications
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00441-1
– volume: 9
  start-page: 59
  year: 2020
  ident: 2022061616024386000_CIT0045
  article-title: Targeting TSH and IGF-1 receptors to treat thyroid eye disease
  publication-title: Eur Thyroid J.
  doi: 10.1159/000511538
– volume: 106
  start-page: e3125
  issue: 8
  year: 2021
  ident: 2022061616024386000_CIT0041
  article-title: IL-38 exerts anti-inflammatory and antifibrotic effects in thyroid-associated ophthalmopathy
  publication-title: J Clin Endocrinol Metab.
  doi: 10.1210/clinem/dgab154
– volume: 21
  start-page: 363
  issue: 6
  year: 2021
  ident: 2022061616024386000_CIT0013
  article-title: Redox regulation of immunometabolism
  publication-title: Nat Rev Immunol.
  doi: 10.1038/s41577-020-00478-8
– volume: 2020
  start-page: 9210572
  year: 2020
  ident: 2022061616024386000_CIT0017
  article-title: Selenium supplementation may decrease thyroid peroxidase antibody titer via reducing oxidative stress in euthyroid patients with autoimmune thyroiditis
  publication-title: Int J Endocrinol.
  doi: 10.1155/2020/9210572
– volume: 39
  start-page: 658
  issue: 5
  year: 2021
  ident: 2022061616024386000_CIT0038
  article-title: Proteomic analysis of thyroid tissue reveals enhanced catabolic activity in Graves’ disease compared to toxic multinodular goitre
  publication-title: Cell Biochem Funct
  doi: 10.1002/cbf.3632
– volume: 11
  start-page: 608428
  year: 2021
  ident: 2022061616024386000_CIT0047
  article-title: Selenium in the treatment of Graves’ hyperthyroidism and eye disease
  publication-title: Front Endocrinol (Lausanne).
  doi: 10.3389/fendo.2020.608428
– volume: 86
  start-page: 715
  year: 2017
  ident: 2022061616024386000_CIT0008
  article-title: Oxidative stress
  publication-title: Annu Rev Biochem.
  doi: 10.1146/annurev-biochem-061516-045037
– volume: 106
  start-page: e2866
  issue: 8
  year: 2021
  ident: 2022061616024386000_CIT0039
  article-title: LncRNA LPAL2/miR-1287-5p/EGFR axis modulates TED-derived orbital fibroblast activation through cell adhesion factors
  publication-title: J Clin Endocrinol Metab.
  doi: 10.1210/clinem/dgab256
– volume: 22
  start-page: 266
  issue: 4
  year: 2021
  ident: 2022061616024386000_CIT0028
  article-title: Ferroptosis: mechanisms, biology and role in disease
  publication-title: Nat Rev Mol Cell Biol.
  doi: 10.1038/s41580-020-00324-8
– volume: 102
  start-page: 4333
  issue: 11
  year: 2017
  ident: 2022061616024386000_CIT0048
  article-title: Double-blind, placebo-controlled, randomized trial of selenium in Graves hyperthyroidism
  publication-title: J Clin Endocrinol Metab.
  doi: 10.1210/jc.2017-01736
– volume: 259
  start-page: 3107
  issue: 10
  year: 2021
  ident: 2022061616024386000_CIT0037
  article-title: 18 F-FDG-PET/MRI in patients with Graves’ orbitopathy
  publication-title: Graefes Arch Clin Exp Ophthalmol.
  doi: 10.1007/s00417-021-05339-1
– volume: 16
  start-page: 104
  issue: 2
  year: 2020
  ident: 2022061616024386000_CIT0001
  article-title: New insights into the pathogenesis and nonsurgical management of Graves orbitopathy
  publication-title: Nat Rev Endocrinol.
  doi: 10.1038/s41574-019-0305-4
– volume: 27
  start-page: 281
  issue: 2
  year: 2018
  ident: 2022061616024386000_CIT0035
  article-title: Advances in hypoxia-inducible factor biology
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.10.005
– volume: 50
  start-page: 887
  issue: 12
  year: 2018
  ident: 2022061616024386000_CIT0049
  article-title: Mechanistic pathways of selenium in the treatment of Graves’ disease and Graves’ orbitopathy
  publication-title: Horm Metab Res.
  doi: 10.1055/a-0658-7889
– volume: 60
  start-page: 4129
  issue: 13
  year: 2019
  ident: 2022061616024386000_CIT0011
  article-title: Therapeutic effect of Curcumin, a plant polyphenol extracted from Curcuma longae, in fibroblasts from patients with Graves’ orbitopathy
  publication-title: Invest Ophthalmol Vis Sci.
  doi: 10.1167/iovs.19-27376
– volume: 218
  start-page: e20210518
  issue: 6
  year: 2021
  ident: 2022061616024386000_CIT0029
  article-title: Ferroptosis in infection, inflammation, and immunity
  publication-title: J Exp Med.
  doi: 10.1084/jem.20210518
– volume: 27
  start-page: 441
  year: 2011
  ident: 2022061616024386000_CIT0036
  article-title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
  publication-title: Annu Rev Cell Dev Biol.
  doi: 10.1146/annurev-cellbio-092910-154237
– volume: 10
  start-page: 383
  issue: 2
  year: 2021
  ident: 2022061616024386000_CIT0023
  article-title: Lessons learned from targeting IGF-I receptor in thyroid-associated ophthalmopathy
  publication-title: Cells
  doi: 10.3390/cells10020383
– volume: 29
  start-page: 347
  issue: 5
  year: 2019
  ident: 2022061616024386000_CIT0030
  article-title: The molecular machinery of regulated cell death
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0164-5
– volume: 67
  start-page: 439
  issue: 4
  year: 2020
  ident: 2022061616024386000_CIT0009
  article-title: Anti-oxidative and anti-adipogenic effects of caffeine in an in vitro model of Graves’ orbitopathy
  publication-title: Endocr J.
  doi: 10.1507/endocrj.EJ19-0521
– volume: 156
  start-page: 317
  issue: 1-2
  year: 2014
  ident: 2022061616024386000_CIT0033
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.12.010
– volume: 382
  start-page: 341
  issue: 4
  year: 2020
  ident: 2022061616024386000_CIT0021
  article-title: Teprotumumab for the treatment of active thyroid eye disease
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1910434
– volume: 49
  start-page: 203
  issue: 2
  year: 2021
  ident: 2022061616024386000_CIT0022
  article-title: Thyroid eye disease: redefining its management-a review
  publication-title: Clin Exp Ophthalmol.
  doi: 10.1111/ceo.13899
– volume: 28
  start-page: 650
  issue: 5
  year: 2018
  ident: 2022061616024386000_CIT0046
  article-title: Evidence that Graves’ ophthalmopathy immunoglobulins do not directly activate IGF-1 receptors
  publication-title: Thyroid.
  doi: 10.1089/thy.2018.0089
– volume: 106
  start-page: e2176
  issue: 5
  year: 2021
  ident: 2022061616024386000_CIT0006
  article-title: Genetic profiling of orbital fibroblasts from patients with Graves’ orbitopathy
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/clinem/dgab035
– volume: 60
  start-page: 1431
  issue: 5
  year: 2019
  ident: 2022061616024386000_CIT0025
  article-title: PH20 inhibits TGFβ1-induced differentiation of perimysial orbital fibroblasts via hyaluronan-CD44 pathway in thyroid-associated ophthalmopathy
  publication-title: Invest Ophthalmol Vis Sci.
  doi: 10.1167/iovs.18-26268
SSID ssj0014453
Score 2.4696035
Snippet Oxidative stress plays an indispensable role in pathogenesis of Graves' orbitopathy (GO). Ferroptosis is a newly discovered form of cell death resulting from...
Context: Oxidative stress plays an indispensable role in pathogenesis of Graves' orbitopathy (GO). Ferroptosis is a newly discovered form of cell death...
SourceID proquest
gale
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1994
SubjectTerms Antibodies
Cell death
Cysteine
Cystine
Glucose metabolism
Glutamate
International economic relations
Lipid peroxidation
Scientific equipment and supplies industry
Selenium
Thyrotropin
Viral antibodies
Title Insights Into Ferroptosis: Targeting Glycolysis to Treat Graves’ Orbitopathy
URI https://www.ncbi.nlm.nih.gov/pubmed/35303084
https://www.proquest.com/docview/2640994576
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKIiEuiH-6LChISBxWgSZx4obbCtFdkHa5dKWKS-Q4E6hUkqVJDrsn3oAzr8eTMGO7bloVaeESRY5jOZkv4_mc-WHs5RibSwWxH0rBfS5F6csxcH8UF2WQFioYpxQ7fHqWnJzzj7N4Nhj87HktdW3-Wl3tjCv5H6liG8qVomT_QbJuUGzAc5QvHlHCeLyWjD9UDXHrhvb16sMJLJf1RVs3c-3mNtU-3np_aXGJ4tapR6jQi94UOKayQ83K1SE9_LTM8dum-sQb_3kJRb3kEi6OEqqiRn1TrTM4fYMW8bRYZSTUm9xaft38-9x5-dhIh841dObPzxzWOtpon89f55ddf08C6SwV80n6epYcP4QulI6rjFGtKY99ERhvXKd7TclbCzLR06SUs7i3KpMP3U6Nj5QVxUSPD_gBTYovUgVWZW4k195a9JwrIpEgHCMzI2T2_hvsZoi8g0piHM-czxCST5vW1D6ezQJKYVDm_jf2_g0rZ3ut32Iw2pKZ3mV3LAXxjgye7rEBVPfZrVPrZPGAna1g5RGsvB6s3noOVN4aVB520qDyDKh-__jl9eD0kJ1P3k_fnfi27Iav0JppfaSQsoijUKYBl2UScYCREkU5hljhyp6HIIRMQwmFLEEB2reSxxAKGBVIx4MgesT2qrqCJ8wLU1nkkKNVHyccVUCaiEjFJar9KFdcjIfMX72mTNmc9FQaZZHtFsuQvXL9L0w2lr_3pLeeEVZwRCVttAnOixKeZUdCIFMWaCcM2cFGT1SvauPyi5XcMrpEPokV1F2TIZVAesWRsA_ZYyNQN6kojigRFN-_9oSfstvrL-mA7bXLDp6hvdvmzzUG_wBVWbDY
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+Into+Ferroptosis%3A+Targeting+Glycolysis+to+Treat+Graves%E2%80%99+Orbitopathy&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Ma%2C+Ruiqi&rft.au=Gan%2C+Lu&rft.au=Guo%2C+Jie&rft.au=Peng%2C+Zhiyu&rft.date=2022-06-16&rft.issn=0021-972X&rft.eissn=1945-7197&rft.volume=107&rft.issue=7&rft.spage=1994&rft.epage=2003&rft_id=info:doi/10.1210%2Fclinem%2Fdgac163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1210_clinem_dgac163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon