Using an auxiliary dataset to improve emotion estimation in users’ opinions
Sentimental analysis of social networking data is an economically affordable and effective way to track and evaluate public viewpoints that are critical for decision making in different areas. Predicting the users’ future opinions is crucial for companies and services; if companies understand users’...
Saved in:
Published in | Journal of intelligent information systems Vol. 56; no. 3; pp. 581 - 603 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0925-9902 1573-7675 |
DOI | 10.1007/s10844-021-00643-y |
Cover
Loading…
Abstract | Sentimental analysis of social networking data is an economically affordable and effective way to track and evaluate public viewpoints that are critical for decision making in different areas. Predicting the users’ future opinions is crucial for companies and services; if companies understand users’ sentiments in considered time frames, they can do much better by knowing where exactly users are satisfied or unsatisfied. Utilizing an auxiliary dataset, this study uses the opinions of users on the Twitter social network expressed in the form of short text, and presents the Auxiliary Dataset-Latent Dirichlet Allocation (AD-LDA) model to improve the learning of users’ emotions around a specific topic. The proposed model considers the emotions –as predefined sentiments with a wide sentimental outlook– to estimate users’ feelings and sentiments about a particular subject or event. Coherence score evaluation results for the four studied hashtags showed an average 64.15% improvement compared to the conventional LDA model. The average Weighted-F1 criteria for studied hashtags was 79.83% for the accuracy of learning. Experimental and evaluation results show that our proposed model can effectively learn the emotions of words which leads to a better understanding of users’ feelings. |
---|---|
AbstractList | Sentimental analysis of social networking data is an economically affordable and effective way to track and evaluate public viewpoints that are critical for decision making in different areas. Predicting the users’ future opinions is crucial for companies and services; if companies understand users’ sentiments in considered time frames, they can do much better by knowing where exactly users are satisfied or unsatisfied. Utilizing an auxiliary dataset, this study uses the opinions of users on the Twitter social network expressed in the form of short text, and presents the Auxiliary Dataset-Latent Dirichlet Allocation (AD-LDA) model to improve the learning of users’ emotions around a specific topic. The proposed model considers the emotions –as predefined sentiments with a wide sentimental outlook– to estimate users’ feelings and sentiments about a particular subject or event. Coherence score evaluation results for the four studied hashtags showed an average 64.15% improvement compared to the conventional LDA model. The average Weighted-F1 criteria for studied hashtags was 79.83% for the accuracy of learning. Experimental and evaluation results show that our proposed model can effectively learn the emotions of words which leads to a better understanding of users’ feelings. |
Author | Gholami, Gholamhossein Tajbakhsh, Mir Saman Bagherzadeh, Jamshid Abdi, Siamak |
Author_xml | – sequence: 1 givenname: Siamak orcidid: 0000-0002-9306-3048 surname: Abdi fullname: Abdi, Siamak email: st_siamak.abdi@urmia.ac.ir organization: Department of Computer Engineering, Urmia University – sequence: 2 givenname: Jamshid surname: Bagherzadeh fullname: Bagherzadeh, Jamshid organization: Department of Computer Engineering, Urmia University – sequence: 3 givenname: Gholamhossein surname: Gholami fullname: Gholami, Gholamhossein organization: Department of Mathematics, Urmia University – sequence: 4 givenname: Mir Saman surname: Tajbakhsh fullname: Tajbakhsh, Mir Saman organization: Department of Computer Engineering, Urmia University |
BookMark | eNp9kM9KAzEQxoNUsFZfwFPA8-ok2ewmRyn-g4qXeg7ZbbaktElNUnFvvoav55MYu4LgoacZhu838813ikbOO4PQBYErAlBfRwKiLAugpACoSlb0R2hMeM2Kuqr5CI1BUl5ICfQEnca4AgApKhijp5do3RJrh_Xu3a6tDj1e6KSjSTh5bDfb4N8MNhufrHfYxGQ3et9ah3fRhPj18Yn91ro8i2fouNPraM5_6wTN727n04di9nz_OL2ZFS2raCq4NNyUdaUb4FIS02jKgHEmWiGE1CVpyoWglLJWNEbTWpJOCtZSUbVC1h2boMthbTb3usue1MrvgssXFeUsf52VNKvEoGqDjzGYTrU27b2noO1aEVA_2akhO5WzU_vsVJ9R-g_dhvx36A9DbIBiFrulCX-uDlDfNzyE-w |
CitedBy_id | crossref_primary_10_1155_2022_7612276 crossref_primary_10_1145_3639409 crossref_primary_10_1007_s10844_023_00787_z crossref_primary_10_1142_S0219622022500584 crossref_primary_10_1007_s10844_024_00842_3 crossref_primary_10_1016_j_cogsys_2024_101231 crossref_primary_10_32604_csse_2023_025390 |
Cites_doi | 10.1109/MIS.2015.91 10.1016/j.dss.2016.04.007 10.3390/electronics9030483 10.1007/s10844-018-0533-4 10.1109/TKDE.2014.2313872 10.1016/j.neucom.2018.02.034 10.1109/TKDE.2011.48 10.1016/j.sbspro.2015.07.451 10.1504/IJEB.2018.094864 10.1016/j.neucom.2016.10.086 10.1080/02522667.2019.1616911 10.3844/jcssp.2016.153.168 10.1186/s40537-017-0111-6 10.1016/j.ijinfomgt.2017.09.009 10.1111/j.1467-8640.2006.00277.x 10.1111/lnc3.12228 10.3233/IDA-183998 10.4018/IJTEM.2018010102 10.1145/2063576.2063726 10.1145/1099554.1099714 10.1109/iMac4s.2013.6526500 10.24251/HICSS.2018.221 10.1007/s10844-019-00586-5 10.1109/ICTer48817.2019.9023671 10.1145/1645953.1646003 10.1007/978-3-319-50496-4_59 10.1007/978-3-319-55209-5_5 10.3115/1118693.1118704 10.1093/oxfordhb/9780199573691.013.43 10.1109/BIBM.2017.8217966 10.1145/1242572.1242596 10.1007/s10844-020-00599-5 10.1109/CITS.2017.8035341 10.1007/978-3-642-37256-8_1 10.1145/3195106.3195111 10.3115/1218955.1218990 10.1109/ISPDC.2016.39 10.1145/2896387.2896396 10.1145/1367497.1367513 10.1145/3184558.3191827 10.3115/1557690.1557765 10.1145/3055635.3056631 10.1145/3209281.3209328 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10844-021-00643-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7675 |
EndPage | 603 |
ExternalDocumentID | 10_1007_s10844_021_00643_y |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7X Z81 Z83 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c362t-59e5e476ab05991eba2303538c8889a41b4d82223c8bea2791f983c286c897f3 |
IEDL.DBID | BENPR |
ISSN | 0925-9902 |
IngestDate | Sat Jul 26 00:02:17 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Tue Jul 01 04:10:20 EDT 2025 Fri Feb 21 02:49:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Topic modeling Sentiment analysis Text analysis Latent Dirichlet allocation Emotion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-59e5e476ab05991eba2303538c8889a41b4d82223c8bea2791f983c286c897f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9306-3048 |
PQID | 2535732862 |
PQPubID | 30807 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2535732862 crossref_citationtrail_10_1007_s10844_021_00643_y crossref_primary_10_1007_s10844_021_00643_y springer_journals_10_1007_s10844_021_00643_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Integrating Artificial Intelligence and Database Technologies |
PublicationTitle | Journal of intelligent information systems |
PublicationTitleAbbrev | J Intell Inf Syst |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Rao (CR34) 2015; 31 CR39 CR37 Kennedy, Inkpen (CR22) 2006; 22 Xiong, Wang, Ji, Wang (CR52) 2018; 297 CR35 CR33 CR32 CR31 Tajbakhsh, Bagherzadeh (CR42) 2019; 23 CR30 Sohangir, Wang, Pomeranets, Khoshgoftaar (CR41) 2018; 5 Ain, Ali, Riaz, Noureen, Kamran, Hayat, Rehman (CR1) 2017; 8 CR2 Tang, Qin, Liu (CR43) 2015; 5 CR3 CR5 CR8 CR7 Olaleye, Sanusi, Salo (CR29) 2018; 14 CR9 CR48 CR47 CR46 Cheng, Yan, Lan, Guo (CR11) 2014; 26 CR45 Sharef, Zin, Nadali (CR38) 2016; 12 CR44 CR40 Blei, Ng, Jordan (CR6) 2003; 3 Yu, Jannasch-Pennell, DiGangi (CR54) 2018; 8 Jeong, Yoon, Lee (CR20) 2019; 48 CR19 CR17 CR16 CR15 CR13 CR57 CR12 CR56 CR55 CR10 CR53 CR51 Wu, Huang, Song, Liu (CR49) 2016; 87 Huang, Zhang, Zhang, Yu (CR18) 2017; 253 Rojas-Barahona (CR36) 2016; 10 CR27 CR26 CR24 CR23 Bhat, Kundroo, Tarray, Agarwal (CR4) 2020; 41 CR21 Lin, He, Everson, Ruger (CR25) 2011; 24 Dang, Moreno-garcía, De la Prieta (CR14) 2020; 9 Moreno-Ortiz, Fernández-Cruz (CR28) 2015; 198 Wu, Shen, Wang, Chen (CR50) 2020; 54 MR Bhat (643_CR4) 2020; 41 643_CR19 Y Rao (643_CR34) 2015; 31 NM Sharef (643_CR38) 2016; 12 643_CR26 643_CR27 643_CR21 643_CR24 643_CR23 C Lin (643_CR25) 2011; 24 LM Rojas-Barahona (643_CR36) 2016; 10 S Sohangir (643_CR41) 2018; 5 643_CR51 643_CR53 MY Wu (643_CR50) 2020; 54 MS Tajbakhsh (643_CR42) 2019; 23 643_CR15 643_CR17 D Tang (643_CR43) 2015; 5 643_CR16 643_CR55 643_CR10 643_CR13 643_CR57 643_CR12 NC Dang (643_CR14) 2020; 9 643_CR56 CH Yu (643_CR54) 2018; 8 X Cheng (643_CR11) 2014; 26 643_CR40 SA Olaleye (643_CR29) 2018; 14 DM Blei (643_CR6) 2003; 3 643_CR8 643_CR48 643_CR7 643_CR47 F Wu (643_CR49) 2016; 87 643_CR5 643_CR44 643_CR3 A Kennedy (643_CR22) 2006; 22 643_CR2 643_CR46 643_CR45 643_CR9 S Xiong (643_CR52) 2018; 297 643_CR31 643_CR30 643_CR37 F Huang (643_CR18) 2017; 253 B Jeong (643_CR20) 2019; 48 QT Ain (643_CR1) 2017; 8 643_CR39 643_CR33 643_CR32 643_CR35 A Moreno-Ortiz (643_CR28) 2015; 198 |
References_xml | – ident: CR45 – volume: 31 start-page: 41 issue: 1 year: 2015 end-page: 47 ident: CR34 article-title: Contextual sentiment topic model for adaptive social emotion classification publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2015.91 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR12 – ident: CR35 – ident: CR8 – volume: 87 start-page: 39 year: 2016 end-page: 49 ident: CR49 article-title: Towards building a high-quality microblog-specific chinese sentiment lexicon publication-title: Decision Support Systems doi: 10.1016/j.dss.2016.04.007 – volume: 9 start-page: 483 issue: 3 year: 2020 ident: CR14 article-title: Sentiment analysis based on deep learning: A comparative study publication-title: Electronics doi: 10.3390/electronics9030483 – ident: CR21 – ident: CR46 – ident: CR19 – volume: 54 start-page: 225 issue: 2 year: 2020 end-page: 244 ident: CR50 article-title: A deep architecture for depression detection using posting, behavior, and living environment data publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-018-0533-4 – volume: 3 start-page: 993 issue: Jan year: 2003 end-page: 1022 ident: CR6 article-title: Latent dirichlet allocation publication-title: Journal of machine Learning research – volume: 26 start-page: 2928 issue: 12 year: 2014 end-page: 2941 ident: CR11 article-title: Btm: Topic modeling over short texts publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2313872 – ident: CR15 – ident: CR9 – ident: CR57 – ident: CR32 – ident: CR5 – volume: 297 start-page: 94 year: 2018 end-page: 102 ident: CR52 article-title: A short text sentiment-topic model for product reviews publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.034 – volume: 24 start-page: 1134 issue: 6 year: 2011 end-page: 1145 ident: CR25 article-title: Weakly supervised joint sentiment-topic detection from text publication-title: IEEE Transactions on Knowledge and Data engineering doi: 10.1109/TKDE.2011.48 – ident: CR26 – ident: CR47 – ident: CR2 – ident: CR37 – ident: CR53 – volume: 8 start-page: 424 issue: 6 year: 2017 ident: CR1 article-title: Sentiment analysis using deep learning techniques: a review publication-title: International Journal of Advanced Computer Science and Applications – ident: CR30 – volume: 198 start-page: 330 year: 2015 end-page: 338 ident: CR28 article-title: Identifying polarity in financial texts for sentiment analysis: a corpus-based approach publication-title: Procedia-Social and Behavioral Sciences doi: 10.1016/j.sbspro.2015.07.451 – ident: CR10 – ident: CR33 – volume: 5 start-page: 292 issue: 6 year: 2015 end-page: 303 ident: CR43 article-title: Deep learning for sentiment analysis: successful approaches and future challenges publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 14 start-page: 85 issue: 2 year: 2018 end-page: 102 ident: CR29 article-title: Sentiment analysis of social commerce: a harbinger of online reputation management publication-title: International Journal of Electronic Business doi: 10.1504/IJEB.2018.094864 – volume: 253 start-page: 144 year: 2017 end-page: 153 ident: CR18 article-title: Multimodal learning for topic sentiment analysis in microblogging publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.086 – ident: CR56 – ident: CR40 – volume: 41 start-page: 823 issue: 3 year: 2020 end-page: 834 ident: CR4 article-title: Deep lda: a new way to topic model publication-title: Journal of Information and Optimization Sciences doi: 10.1080/02522667.2019.1616911 – ident: CR27 – ident: CR23 – volume: 12 start-page: 153 issue: 3 year: 2016 end-page: 168 ident: CR38 article-title: Overview and future opportunities of sentiment analysis approaches for big data publication-title: Journal of Computer Science doi: 10.3844/jcssp.2016.153.168 – ident: CR44 – volume: 5 start-page: 3 issue: 1 year: 2018 ident: CR41 article-title: Big data: Deep learning for financial sentiment analysis publication-title: Journal of Big Data doi: 10.1186/s40537-017-0111-6 – ident: CR48 – volume: 48 start-page: 280 year: 2019 end-page: 290 ident: CR20 article-title: Social media mining for product planning: a product opportunity mining approach based on topic modeling and sentiment analysis publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2017.09.009 – ident: CR3 – volume: 22 start-page: 110 issue: 2 year: 2006 end-page: 125 ident: CR22 article-title: Sentiment classification of movie reviews using contextual valence shifters publication-title: Computational Intelligence doi: 10.1111/j.1467-8640.2006.00277.x – ident: CR17 – ident: CR31 – volume: 10 start-page: 701 issue: 12 year: 2016 end-page: 719 ident: CR36 article-title: Deep learning for sentiment analysis publication-title: Language and Linguistics Compass doi: 10.1111/lnc3.12228 – ident: CR13 – ident: CR55 – volume: 23 start-page: 609 issue: 3 year: 2019 end-page: 622 ident: CR42 article-title: Semantic knowledge lda with topic vector for recommending hashtags: Twitter use case publication-title: Intelligent Data Analysis doi: 10.3233/IDA-183998 – ident: CR7 – volume: 8 start-page: 16 issue: 1 year: 2018 end-page: 33 ident: CR54 article-title: Enhancement of student experience management in higher education by sentiment analysis and text mining publication-title: International Journal of Technology and Educational Marketing (IJTEM) doi: 10.4018/IJTEM.2018010102 – ident: CR24 – volume: 87 start-page: 39 year: 2016 ident: 643_CR49 publication-title: Decision Support Systems doi: 10.1016/j.dss.2016.04.007 – volume: 26 start-page: 2928 issue: 12 year: 2014 ident: 643_CR11 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2313872 – ident: 643_CR27 – ident: 643_CR47 doi: 10.1145/2063576.2063726 – ident: 643_CR48 doi: 10.1145/1099554.1099714 – ident: 643_CR39 doi: 10.1109/iMac4s.2013.6526500 – volume: 8 start-page: 424 issue: 6 year: 2017 ident: 643_CR1 publication-title: International Journal of Advanced Computer Science and Applications – ident: 643_CR7 – volume: 5 start-page: 3 issue: 1 year: 2018 ident: 643_CR41 publication-title: Journal of Big Data doi: 10.1186/s40537-017-0111-6 – ident: 643_CR5 doi: 10.24251/HICSS.2018.221 – ident: 643_CR3 – volume: 41 start-page: 823 issue: 3 year: 2020 ident: 643_CR4 publication-title: Journal of Information and Optimization Sciences doi: 10.1080/02522667.2019.1616911 – volume: 9 start-page: 483 issue: 3 year: 2020 ident: 643_CR14 publication-title: Electronics doi: 10.3390/electronics9030483 – ident: 643_CR53 doi: 10.1007/s10844-019-00586-5 – volume: 198 start-page: 330 year: 2015 ident: 643_CR28 publication-title: Procedia-Social and Behavioral Sciences doi: 10.1016/j.sbspro.2015.07.451 – ident: 643_CR10 doi: 10.1109/ICTer48817.2019.9023671 – ident: 643_CR24 doi: 10.1145/1645953.1646003 – volume: 54 start-page: 225 issue: 2 year: 2020 ident: 643_CR50 publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-018-0533-4 – ident: 643_CR55 doi: 10.1007/978-3-319-50496-4_59 – ident: 643_CR13 doi: 10.1007/978-3-319-55209-5_5 – volume: 14 start-page: 85 issue: 2 year: 2018 ident: 643_CR29 publication-title: International Journal of Electronic Business doi: 10.1504/IJEB.2018.094864 – ident: 643_CR51 – ident: 643_CR17 – volume: 8 start-page: 16 issue: 1 year: 2018 ident: 643_CR54 publication-title: International Journal of Technology and Educational Marketing (IJTEM) doi: 10.4018/IJTEM.2018010102 – ident: 643_CR31 doi: 10.3115/1118693.1118704 – ident: 643_CR8 doi: 10.1093/oxfordhb/9780199573691.013.43 – ident: 643_CR57 doi: 10.1109/BIBM.2017.8217966 – ident: 643_CR45 – ident: 643_CR26 doi: 10.1145/1242572.1242596 – ident: 643_CR12 doi: 10.1007/s10844-020-00599-5 – volume: 5 start-page: 292 issue: 6 year: 2015 ident: 643_CR43 publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 31 start-page: 41 issue: 1 year: 2015 ident: 643_CR34 publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2015.91 – volume: 10 start-page: 701 issue: 12 year: 2016 ident: 643_CR36 publication-title: Language and Linguistics Compass doi: 10.1111/lnc3.12228 – volume: 48 start-page: 280 year: 2019 ident: 643_CR20 publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2017.09.009 – ident: 643_CR32 doi: 10.1109/CITS.2017.8035341 – ident: 643_CR35 – volume: 297 start-page: 94 year: 2018 ident: 643_CR52 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.034 – ident: 643_CR44 doi: 10.1007/978-3-642-37256-8_1 – ident: 643_CR33 doi: 10.1145/3195106.3195111 – ident: 643_CR16 – ident: 643_CR30 doi: 10.3115/1218955.1218990 – ident: 643_CR56 doi: 10.1109/ISPDC.2016.39 – volume: 12 start-page: 153 issue: 3 year: 2016 ident: 643_CR38 publication-title: Journal of Computer Science doi: 10.3844/jcssp.2016.153.168 – ident: 643_CR9 – ident: 643_CR15 doi: 10.1145/2896387.2896396 – ident: 643_CR21 – ident: 643_CR40 – volume: 253 start-page: 144 year: 2017 ident: 643_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.086 – ident: 643_CR46 doi: 10.1145/1367497.1367513 – ident: 643_CR19 doi: 10.1145/3184558.3191827 – volume: 24 start-page: 1134 issue: 6 year: 2011 ident: 643_CR25 publication-title: IEEE Transactions on Knowledge and Data engineering doi: 10.1109/TKDE.2011.48 – volume: 22 start-page: 110 issue: 2 year: 2006 ident: 643_CR22 publication-title: Computational Intelligence doi: 10.1111/j.1467-8640.2006.00277.x – volume: 3 start-page: 993 issue: Jan year: 2003 ident: 643_CR6 publication-title: Journal of machine Learning research – ident: 643_CR23 doi: 10.3115/1557690.1557765 – volume: 23 start-page: 609 issue: 3 year: 2019 ident: 643_CR42 publication-title: Intelligent Data Analysis doi: 10.3233/IDA-183998 – ident: 643_CR2 doi: 10.1145/3055635.3056631 – ident: 643_CR37 doi: 10.1145/3209281.3209328 |
SSID | ssj0009860 |
Score | 2.3010762 |
Snippet | Sentimental analysis of social networking data is an economically affordable and effective way to track and evaluate public viewpoints that are critical for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 581 |
SubjectTerms | Artificial Intelligence Computer Science Data Structures and Information Theory Datasets Decision making Dirichlet problem Economic analysis Emotions Information Storage and Retrieval IT in Business Learning Natural Language Processing (NLP) Social networks User satisfaction |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEA66Xrz4L66ukoM3DWzSpG2Oi7gsgp52YW8lSVMoLF3ZVnBvvoav55M4SVurooKlt6Y5zExmvsn8IXQZUAZAPsxIChwmXAvQgzaTxFCuqaGhi5S5bIuHcDLjd3Mxb4rCyjbbvQ1Jek39qdgt5py4lAJvR8l6E20J57uDFM_YqGu1G_va4KFkgoCuZU2pzM97fDVHHcb8Fhb11ma8h3YamIhHNV_30YYtDtBuO4IBNyfyEN37kD9WBVZPz_kiV6s1dkmfpa1wtcS5vzKw2NbDerBrqVHXKuK8wO6Conx7ecWuaMqJ3xGajm-nNxPSTEggBgxPRYS0wvIoVNq1WaFWK_AoAtBhBhxbqTjVPPUIwMTaKhZJmsk4MCwOTSyjLDhGvWJZ2BOEAQal3Mos0oCpsiE4EfAAf1MNr6VhH9GWTolpuoe7IRaLpOt77GibAG0TT9tk3UdXH_881r0z_lw9aMmfNOeoTJgIhGsnFLI-um5Z0n3-fbfT_y0_Q9vMS4W7XhmgXrV6sueANip94YXrHX0Zy14 priority: 102 providerName: Springer Nature |
Title | Using an auxiliary dataset to improve emotion estimation in users’ opinions |
URI | https://link.springer.com/article/10.1007/s10844-021-00643-y https://www.proquest.com/docview/2535732862 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsNAcFB78eJbrI-yB2-66CabNDlJK62iWEQU9BSymw0UJNU2BXvzN_w9v8SZ7cagoCGQw272MDM77wfAoS88VOTDnGeIYS5VgHzQ5DHXQiqhRUiRMsq2GISXD_LqMXh0DreJS6useKJl1NlIk4_8xAv8gBrLhN7ZyyunqVEUXXUjNBahgSw4QuOr0e0Nbu_qtruRrRM-jb2AI9_1XNmMK56LpOSUomDlMp_9FE21vvkrRGolT38NVpzKyDpzHK_Dgik2YLUax8Dc7dyEGxv-Z2nB0unb8HmYjmeMEkAnpmTliA2t-8AwMx_cw6i9xrxukQ0LRs6Kyef7B6MCKiLFLbjv9-7PL7mblsA1CqGSB7EJjGyHqaKWK8KoFK0LH_mZRiM3TqVQMrPagI6USb12LPI48jVCVEdxO_e3YakYFWYHGKpEmTRx3laoX-WnaFDgg7jOFL5GhE0QFZwS7TqJ00CL56TugUywTRC2iYVtMmvC0fc_L_M-Gv_u3q_An7g7NUlqCmjCcYWSevnv03b_P20Plj1LBeRa2Yelcjw1B6hplKoFi1H_ogWNTr_bHdD34um613JEhqsPXucLOHfUQA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7R7aG9QFtadWFLfWhP1Cp2nGx8QAi1bJfyc1okblbsONJKKEvZINgbr8FD8FI8CTNO0qhI5UaUWxJHGn8ef55fgC-RkEjkk4LnOMNc2Rj1oC80d0JZ4URCnjKKtjhOxifq92l8ugR3bS4MhVW2OjEo6nzmyEb-XcZRTIVlErlz_odT1yjyrrYtNGpYHPjFFR7Z5tv7P3F-v0o52pv8GPOmqwB3qKwrHmsfezVMMkulSYS3GbLwCNe9w8OgzpSwKg-7pkutz-RQi0KnkcM_u1QPiwiHfQEvVRRpWlDp6FdX4zcNSclbWsYclbxscnSaTL1UKU7xEIEE8MW_-2BHbh_5Y8M2N3oDyw0_Zbs1oN7Cki_fwUrb-4E1qmAVjkKsActKll1eT8-m2cWCUbTp3FesmrFpsFV45usuQYxqedRJkmxaMrKMzO9vbhllaxHu38PkOYT4AXrlrPQfgSH_ypXXxdAimSu28PSCFwIrt3h7kfRBtHIyrilbTt0zzkxXcJlka1C2JsjWLPqw-feb87pox5NvD1rxm2YBz00Htz58a6eke_z_0daeHu0zvBpPjg7N4f7xwTq8lgERZNMZQK-6uPSfkOJUdiMAi4F5ZiA_AKBbCKw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7RRap6of9iC6U-lFNrsXacv0NVtcAKSlmhikrcrNhxpJVQFtigsre-Bo_C6_RJOuM4RFQqN6LckljR-PP4m_H8ALyPhEQin1S8xBnmysSoB12VcyuUEVYkdFJG0RaTZO-n-nYSnyzBTZcLQ2GVnU70irqcWfKRb8k4iqmwTCK3qhAWcbQz_nx2zqmDFJ20du00WogcuMUvNN_mn_Z3cK43pRzvHm_v8dBhgFtU3A2Pcxc7lSaFoTIlwpkCGXmEOsCiYZgXShhV-h3UZsYVMs1FlWeRxb-wWZ5WEQ77CJZTNIpGA1j-ujs5-tFX_M18ivIolzFHlS9Dxk7I28uU4hQd4SkBX9zdFXuq-8_prN_0xs9gJbBV9qWF13NYcvULeNp1gmBBMbyEQx95wIqaFZdX09NpcbFgFHs6dw1rZmzqPReOubZnEKPKHm3KJJvWjPwk8z-_rxnlbtEqeAXHDyHG1zCoZ7VbBYZsrFQur1KD1K4aoS2DF8KsNHg7kQxBdHLSNhQxp14ap7ovv0yy1Shb7WWrF0P4cPvNWVvC49631zvx67Cc57oH3xA-dlPSP_7_aG_uH-0dPEYQ6-_7k4M1eCI9IMjBsw6D5uLSvUW-05iNgCwG-oGx_Bd8ng4- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+an+auxiliary+dataset+to+improve+emotion+estimation+in+users%E2%80%99+opinions&rft.jtitle=Journal+of+intelligent+information+systems&rft.au=Abdi+Siamak&rft.au=Bagherzadeh+Jamshid&rft.au=Gholami+Gholamhossein&rft.au=Tajbakhsh+Mir+Saman&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-9902&rft.eissn=1573-7675&rft.volume=56&rft.issue=3&rft.spage=581&rft.epage=603&rft_id=info:doi/10.1007%2Fs10844-021-00643-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9902&client=summon |