Using an auxiliary dataset to improve emotion estimation in users’ opinions

Sentimental analysis of social networking data is an economically affordable and effective way to track and evaluate public viewpoints that are critical for decision making in different areas. Predicting the users’ future opinions is crucial for companies and services; if companies understand users’...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent information systems Vol. 56; no. 3; pp. 581 - 603
Main Authors Abdi, Siamak, Bagherzadeh, Jamshid, Gholami, Gholamhossein, Tajbakhsh, Mir Saman
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-9902
1573-7675
DOI10.1007/s10844-021-00643-y

Cover

Loading…
Abstract Sentimental analysis of social networking data is an economically affordable and effective way to track and evaluate public viewpoints that are critical for decision making in different areas. Predicting the users’ future opinions is crucial for companies and services; if companies understand users’ sentiments in considered time frames, they can do much better by knowing where exactly users are satisfied or unsatisfied. Utilizing an auxiliary dataset, this study uses the opinions of users on the Twitter social network expressed in the form of short text, and presents the Auxiliary Dataset-Latent Dirichlet Allocation (AD-LDA) model to improve the learning of users’ emotions around a specific topic. The proposed model considers the emotions –as predefined sentiments with a wide sentimental outlook– to estimate users’ feelings and sentiments about a particular subject or event. Coherence score evaluation results for the four studied hashtags showed an average 64.15% improvement compared to the conventional LDA model. The average Weighted-F1 criteria for studied hashtags was 79.83% for the accuracy of learning. Experimental and evaluation results show that our proposed model can effectively learn the emotions of words which leads to a better understanding of users’ feelings.
AbstractList Sentimental analysis of social networking data is an economically affordable and effective way to track and evaluate public viewpoints that are critical for decision making in different areas. Predicting the users’ future opinions is crucial for companies and services; if companies understand users’ sentiments in considered time frames, they can do much better by knowing where exactly users are satisfied or unsatisfied. Utilizing an auxiliary dataset, this study uses the opinions of users on the Twitter social network expressed in the form of short text, and presents the Auxiliary Dataset-Latent Dirichlet Allocation (AD-LDA) model to improve the learning of users’ emotions around a specific topic. The proposed model considers the emotions –as predefined sentiments with a wide sentimental outlook– to estimate users’ feelings and sentiments about a particular subject or event. Coherence score evaluation results for the four studied hashtags showed an average 64.15% improvement compared to the conventional LDA model. The average Weighted-F1 criteria for studied hashtags was 79.83% for the accuracy of learning. Experimental and evaluation results show that our proposed model can effectively learn the emotions of words which leads to a better understanding of users’ feelings.
Author Gholami, Gholamhossein
Tajbakhsh, Mir Saman
Bagherzadeh, Jamshid
Abdi, Siamak
Author_xml – sequence: 1
  givenname: Siamak
  orcidid: 0000-0002-9306-3048
  surname: Abdi
  fullname: Abdi, Siamak
  email: st_siamak.abdi@urmia.ac.ir
  organization: Department of Computer Engineering, Urmia University
– sequence: 2
  givenname: Jamshid
  surname: Bagherzadeh
  fullname: Bagherzadeh, Jamshid
  organization: Department of Computer Engineering, Urmia University
– sequence: 3
  givenname: Gholamhossein
  surname: Gholami
  fullname: Gholami, Gholamhossein
  organization: Department of Mathematics, Urmia University
– sequence: 4
  givenname: Mir Saman
  surname: Tajbakhsh
  fullname: Tajbakhsh, Mir Saman
  organization: Department of Computer Engineering, Urmia University
BookMark eNp9kM9KAzEQxoNUsFZfwFPA8-ok2ewmRyn-g4qXeg7ZbbaktElNUnFvvoav55MYu4LgoacZhu838813ikbOO4PQBYErAlBfRwKiLAugpACoSlb0R2hMeM2Kuqr5CI1BUl5ICfQEnca4AgApKhijp5do3RJrh_Xu3a6tDj1e6KSjSTh5bDfb4N8MNhufrHfYxGQ3et9ah3fRhPj18Yn91ro8i2fouNPraM5_6wTN727n04di9nz_OL2ZFS2raCq4NNyUdaUb4FIS02jKgHEmWiGE1CVpyoWglLJWNEbTWpJOCtZSUbVC1h2boMthbTb3usue1MrvgssXFeUsf52VNKvEoGqDjzGYTrU27b2noO1aEVA_2akhO5WzU_vsVJ9R-g_dhvx36A9DbIBiFrulCX-uDlDfNzyE-w
CitedBy_id crossref_primary_10_1155_2022_7612276
crossref_primary_10_1145_3639409
crossref_primary_10_1007_s10844_023_00787_z
crossref_primary_10_1142_S0219622022500584
crossref_primary_10_1007_s10844_024_00842_3
crossref_primary_10_1016_j_cogsys_2024_101231
crossref_primary_10_32604_csse_2023_025390
Cites_doi 10.1109/MIS.2015.91
10.1016/j.dss.2016.04.007
10.3390/electronics9030483
10.1007/s10844-018-0533-4
10.1109/TKDE.2014.2313872
10.1016/j.neucom.2018.02.034
10.1109/TKDE.2011.48
10.1016/j.sbspro.2015.07.451
10.1504/IJEB.2018.094864
10.1016/j.neucom.2016.10.086
10.1080/02522667.2019.1616911
10.3844/jcssp.2016.153.168
10.1186/s40537-017-0111-6
10.1016/j.ijinfomgt.2017.09.009
10.1111/j.1467-8640.2006.00277.x
10.1111/lnc3.12228
10.3233/IDA-183998
10.4018/IJTEM.2018010102
10.1145/2063576.2063726
10.1145/1099554.1099714
10.1109/iMac4s.2013.6526500
10.24251/HICSS.2018.221
10.1007/s10844-019-00586-5
10.1109/ICTer48817.2019.9023671
10.1145/1645953.1646003
10.1007/978-3-319-50496-4_59
10.1007/978-3-319-55209-5_5
10.3115/1118693.1118704
10.1093/oxfordhb/9780199573691.013.43
10.1109/BIBM.2017.8217966
10.1145/1242572.1242596
10.1007/s10844-020-00599-5
10.1109/CITS.2017.8035341
10.1007/978-3-642-37256-8_1
10.1145/3195106.3195111
10.3115/1218955.1218990
10.1109/ISPDC.2016.39
10.1145/2896387.2896396
10.1145/1367497.1367513
10.1145/3184558.3191827
10.3115/1557690.1557765
10.1145/3055635.3056631
10.1145/3209281.3209328
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10844-021-00643-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7675
EndPage 603
ExternalDocumentID 10_1007_s10844_021_00643_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c362t-59e5e476ab05991eba2303538c8889a41b4d82223c8bea2791f983c286c897f3
IEDL.DBID BENPR
ISSN 0925-9902
IngestDate Sat Jul 26 00:02:17 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Tue Jul 01 04:10:20 EDT 2025
Fri Feb 21 02:49:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Topic modeling
Sentiment analysis
Text analysis
Latent Dirichlet allocation
Emotion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-59e5e476ab05991eba2303538c8889a41b4d82223c8bea2791f983c286c897f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9306-3048
PQID 2535732862
PQPubID 30807
PageCount 23
ParticipantIDs proquest_journals_2535732862
crossref_citationtrail_10_1007_s10844_021_00643_y
crossref_primary_10_1007_s10844_021_00643_y
springer_journals_10_1007_s10844_021_00643_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Integrating Artificial Intelligence and Database Technologies
PublicationTitle Journal of intelligent information systems
PublicationTitleAbbrev J Intell Inf Syst
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rao (CR34) 2015; 31
CR39
CR37
Kennedy, Inkpen (CR22) 2006; 22
Xiong, Wang, Ji, Wang (CR52) 2018; 297
CR35
CR33
CR32
CR31
Tajbakhsh, Bagherzadeh (CR42) 2019; 23
CR30
Sohangir, Wang, Pomeranets, Khoshgoftaar (CR41) 2018; 5
Ain, Ali, Riaz, Noureen, Kamran, Hayat, Rehman (CR1) 2017; 8
CR2
Tang, Qin, Liu (CR43) 2015; 5
CR3
CR5
CR8
CR7
Olaleye, Sanusi, Salo (CR29) 2018; 14
CR9
CR48
CR47
CR46
Cheng, Yan, Lan, Guo (CR11) 2014; 26
CR45
Sharef, Zin, Nadali (CR38) 2016; 12
CR44
CR40
Blei, Ng, Jordan (CR6) 2003; 3
Yu, Jannasch-Pennell, DiGangi (CR54) 2018; 8
Jeong, Yoon, Lee (CR20) 2019; 48
CR19
CR17
CR16
CR15
CR13
CR57
CR12
CR56
CR55
CR10
CR53
CR51
Wu, Huang, Song, Liu (CR49) 2016; 87
Huang, Zhang, Zhang, Yu (CR18) 2017; 253
Rojas-Barahona (CR36) 2016; 10
CR27
CR26
CR24
CR23
Bhat, Kundroo, Tarray, Agarwal (CR4) 2020; 41
CR21
Lin, He, Everson, Ruger (CR25) 2011; 24
Dang, Moreno-garcía, De la Prieta (CR14) 2020; 9
Moreno-Ortiz, Fernández-Cruz (CR28) 2015; 198
Wu, Shen, Wang, Chen (CR50) 2020; 54
MR Bhat (643_CR4) 2020; 41
643_CR19
Y Rao (643_CR34) 2015; 31
NM Sharef (643_CR38) 2016; 12
643_CR26
643_CR27
643_CR21
643_CR24
643_CR23
C Lin (643_CR25) 2011; 24
LM Rojas-Barahona (643_CR36) 2016; 10
S Sohangir (643_CR41) 2018; 5
643_CR51
643_CR53
MY Wu (643_CR50) 2020; 54
MS Tajbakhsh (643_CR42) 2019; 23
643_CR15
643_CR17
D Tang (643_CR43) 2015; 5
643_CR16
643_CR55
643_CR10
643_CR13
643_CR57
643_CR12
NC Dang (643_CR14) 2020; 9
643_CR56
CH Yu (643_CR54) 2018; 8
X Cheng (643_CR11) 2014; 26
643_CR40
SA Olaleye (643_CR29) 2018; 14
DM Blei (643_CR6) 2003; 3
643_CR8
643_CR48
643_CR7
643_CR47
F Wu (643_CR49) 2016; 87
643_CR5
643_CR44
643_CR3
A Kennedy (643_CR22) 2006; 22
643_CR2
643_CR46
643_CR45
643_CR9
S Xiong (643_CR52) 2018; 297
643_CR31
643_CR30
643_CR37
F Huang (643_CR18) 2017; 253
B Jeong (643_CR20) 2019; 48
QT Ain (643_CR1) 2017; 8
643_CR39
643_CR33
643_CR32
643_CR35
A Moreno-Ortiz (643_CR28) 2015; 198
References_xml – ident: CR45
– volume: 31
  start-page: 41
  issue: 1
  year: 2015
  end-page: 47
  ident: CR34
  article-title: Contextual sentiment topic model for adaptive social emotion classification
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2015.91
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR12
– ident: CR35
– ident: CR8
– volume: 87
  start-page: 39
  year: 2016
  end-page: 49
  ident: CR49
  article-title: Towards building a high-quality microblog-specific chinese sentiment lexicon
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2016.04.007
– volume: 9
  start-page: 483
  issue: 3
  year: 2020
  ident: CR14
  article-title: Sentiment analysis based on deep learning: A comparative study
  publication-title: Electronics
  doi: 10.3390/electronics9030483
– ident: CR21
– ident: CR46
– ident: CR19
– volume: 54
  start-page: 225
  issue: 2
  year: 2020
  end-page: 244
  ident: CR50
  article-title: A deep architecture for depression detection using posting, behavior, and living environment data
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-018-0533-4
– volume: 3
  start-page: 993
  issue: Jan
  year: 2003
  end-page: 1022
  ident: CR6
  article-title: Latent dirichlet allocation
  publication-title: Journal of machine Learning research
– volume: 26
  start-page: 2928
  issue: 12
  year: 2014
  end-page: 2941
  ident: CR11
  article-title: Btm: Topic modeling over short texts
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2313872
– ident: CR15
– ident: CR9
– ident: CR57
– ident: CR32
– ident: CR5
– volume: 297
  start-page: 94
  year: 2018
  end-page: 102
  ident: CR52
  article-title: A short text sentiment-topic model for product reviews
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.034
– volume: 24
  start-page: 1134
  issue: 6
  year: 2011
  end-page: 1145
  ident: CR25
  article-title: Weakly supervised joint sentiment-topic detection from text
  publication-title: IEEE Transactions on Knowledge and Data engineering
  doi: 10.1109/TKDE.2011.48
– ident: CR26
– ident: CR47
– ident: CR2
– ident: CR37
– ident: CR53
– volume: 8
  start-page: 424
  issue: 6
  year: 2017
  ident: CR1
  article-title: Sentiment analysis using deep learning techniques: a review
  publication-title: International Journal of Advanced Computer Science and Applications
– ident: CR30
– volume: 198
  start-page: 330
  year: 2015
  end-page: 338
  ident: CR28
  article-title: Identifying polarity in financial texts for sentiment analysis: a corpus-based approach
  publication-title: Procedia-Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2015.07.451
– ident: CR10
– ident: CR33
– volume: 5
  start-page: 292
  issue: 6
  year: 2015
  end-page: 303
  ident: CR43
  article-title: Deep learning for sentiment analysis: successful approaches and future challenges
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 14
  start-page: 85
  issue: 2
  year: 2018
  end-page: 102
  ident: CR29
  article-title: Sentiment analysis of social commerce: a harbinger of online reputation management
  publication-title: International Journal of Electronic Business
  doi: 10.1504/IJEB.2018.094864
– volume: 253
  start-page: 144
  year: 2017
  end-page: 153
  ident: CR18
  article-title: Multimodal learning for topic sentiment analysis in microblogging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.086
– ident: CR56
– ident: CR40
– volume: 41
  start-page: 823
  issue: 3
  year: 2020
  end-page: 834
  ident: CR4
  article-title: Deep lda: a new way to topic model
  publication-title: Journal of Information and Optimization Sciences
  doi: 10.1080/02522667.2019.1616911
– ident: CR27
– ident: CR23
– volume: 12
  start-page: 153
  issue: 3
  year: 2016
  end-page: 168
  ident: CR38
  article-title: Overview and future opportunities of sentiment analysis approaches for big data
  publication-title: Journal of Computer Science
  doi: 10.3844/jcssp.2016.153.168
– ident: CR44
– volume: 5
  start-page: 3
  issue: 1
  year: 2018
  ident: CR41
  article-title: Big data: Deep learning for financial sentiment analysis
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-017-0111-6
– ident: CR48
– volume: 48
  start-page: 280
  year: 2019
  end-page: 290
  ident: CR20
  article-title: Social media mining for product planning: a product opportunity mining approach based on topic modeling and sentiment analysis
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2017.09.009
– ident: CR3
– volume: 22
  start-page: 110
  issue: 2
  year: 2006
  end-page: 125
  ident: CR22
  article-title: Sentiment classification of movie reviews using contextual valence shifters
  publication-title: Computational Intelligence
  doi: 10.1111/j.1467-8640.2006.00277.x
– ident: CR17
– ident: CR31
– volume: 10
  start-page: 701
  issue: 12
  year: 2016
  end-page: 719
  ident: CR36
  article-title: Deep learning for sentiment analysis
  publication-title: Language and Linguistics Compass
  doi: 10.1111/lnc3.12228
– ident: CR13
– ident: CR55
– volume: 23
  start-page: 609
  issue: 3
  year: 2019
  end-page: 622
  ident: CR42
  article-title: Semantic knowledge lda with topic vector for recommending hashtags: Twitter use case
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-183998
– ident: CR7
– volume: 8
  start-page: 16
  issue: 1
  year: 2018
  end-page: 33
  ident: CR54
  article-title: Enhancement of student experience management in higher education by sentiment analysis and text mining
  publication-title: International Journal of Technology and Educational Marketing (IJTEM)
  doi: 10.4018/IJTEM.2018010102
– ident: CR24
– volume: 87
  start-page: 39
  year: 2016
  ident: 643_CR49
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2016.04.007
– volume: 26
  start-page: 2928
  issue: 12
  year: 2014
  ident: 643_CR11
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2313872
– ident: 643_CR27
– ident: 643_CR47
  doi: 10.1145/2063576.2063726
– ident: 643_CR48
  doi: 10.1145/1099554.1099714
– ident: 643_CR39
  doi: 10.1109/iMac4s.2013.6526500
– volume: 8
  start-page: 424
  issue: 6
  year: 2017
  ident: 643_CR1
  publication-title: International Journal of Advanced Computer Science and Applications
– ident: 643_CR7
– volume: 5
  start-page: 3
  issue: 1
  year: 2018
  ident: 643_CR41
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-017-0111-6
– ident: 643_CR5
  doi: 10.24251/HICSS.2018.221
– ident: 643_CR3
– volume: 41
  start-page: 823
  issue: 3
  year: 2020
  ident: 643_CR4
  publication-title: Journal of Information and Optimization Sciences
  doi: 10.1080/02522667.2019.1616911
– volume: 9
  start-page: 483
  issue: 3
  year: 2020
  ident: 643_CR14
  publication-title: Electronics
  doi: 10.3390/electronics9030483
– ident: 643_CR53
  doi: 10.1007/s10844-019-00586-5
– volume: 198
  start-page: 330
  year: 2015
  ident: 643_CR28
  publication-title: Procedia-Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2015.07.451
– ident: 643_CR10
  doi: 10.1109/ICTer48817.2019.9023671
– ident: 643_CR24
  doi: 10.1145/1645953.1646003
– volume: 54
  start-page: 225
  issue: 2
  year: 2020
  ident: 643_CR50
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-018-0533-4
– ident: 643_CR55
  doi: 10.1007/978-3-319-50496-4_59
– ident: 643_CR13
  doi: 10.1007/978-3-319-55209-5_5
– volume: 14
  start-page: 85
  issue: 2
  year: 2018
  ident: 643_CR29
  publication-title: International Journal of Electronic Business
  doi: 10.1504/IJEB.2018.094864
– ident: 643_CR51
– ident: 643_CR17
– volume: 8
  start-page: 16
  issue: 1
  year: 2018
  ident: 643_CR54
  publication-title: International Journal of Technology and Educational Marketing (IJTEM)
  doi: 10.4018/IJTEM.2018010102
– ident: 643_CR31
  doi: 10.3115/1118693.1118704
– ident: 643_CR8
  doi: 10.1093/oxfordhb/9780199573691.013.43
– ident: 643_CR57
  doi: 10.1109/BIBM.2017.8217966
– ident: 643_CR45
– ident: 643_CR26
  doi: 10.1145/1242572.1242596
– ident: 643_CR12
  doi: 10.1007/s10844-020-00599-5
– volume: 5
  start-page: 292
  issue: 6
  year: 2015
  ident: 643_CR43
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 31
  start-page: 41
  issue: 1
  year: 2015
  ident: 643_CR34
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2015.91
– volume: 10
  start-page: 701
  issue: 12
  year: 2016
  ident: 643_CR36
  publication-title: Language and Linguistics Compass
  doi: 10.1111/lnc3.12228
– volume: 48
  start-page: 280
  year: 2019
  ident: 643_CR20
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2017.09.009
– ident: 643_CR32
  doi: 10.1109/CITS.2017.8035341
– ident: 643_CR35
– volume: 297
  start-page: 94
  year: 2018
  ident: 643_CR52
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.034
– ident: 643_CR44
  doi: 10.1007/978-3-642-37256-8_1
– ident: 643_CR33
  doi: 10.1145/3195106.3195111
– ident: 643_CR16
– ident: 643_CR30
  doi: 10.3115/1218955.1218990
– ident: 643_CR56
  doi: 10.1109/ISPDC.2016.39
– volume: 12
  start-page: 153
  issue: 3
  year: 2016
  ident: 643_CR38
  publication-title: Journal of Computer Science
  doi: 10.3844/jcssp.2016.153.168
– ident: 643_CR9
– ident: 643_CR15
  doi: 10.1145/2896387.2896396
– ident: 643_CR21
– ident: 643_CR40
– volume: 253
  start-page: 144
  year: 2017
  ident: 643_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.086
– ident: 643_CR46
  doi: 10.1145/1367497.1367513
– ident: 643_CR19
  doi: 10.1145/3184558.3191827
– volume: 24
  start-page: 1134
  issue: 6
  year: 2011
  ident: 643_CR25
  publication-title: IEEE Transactions on Knowledge and Data engineering
  doi: 10.1109/TKDE.2011.48
– volume: 22
  start-page: 110
  issue: 2
  year: 2006
  ident: 643_CR22
  publication-title: Computational Intelligence
  doi: 10.1111/j.1467-8640.2006.00277.x
– volume: 3
  start-page: 993
  issue: Jan
  year: 2003
  ident: 643_CR6
  publication-title: Journal of machine Learning research
– ident: 643_CR23
  doi: 10.3115/1557690.1557765
– volume: 23
  start-page: 609
  issue: 3
  year: 2019
  ident: 643_CR42
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-183998
– ident: 643_CR2
  doi: 10.1145/3055635.3056631
– ident: 643_CR37
  doi: 10.1145/3209281.3209328
SSID ssj0009860
Score 2.3010762
Snippet Sentimental analysis of social networking data is an economically affordable and effective way to track and evaluate public viewpoints that are critical for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 581
SubjectTerms Artificial Intelligence
Computer Science
Data Structures and Information Theory
Datasets
Decision making
Dirichlet problem
Economic analysis
Emotions
Information Storage and Retrieval
IT in Business
Learning
Natural Language Processing (NLP)
Social networks
User satisfaction
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEA66Xrz4L66ukoM3DWzSpG2Oi7gsgp52YW8lSVMoLF3ZVnBvvoav55M4SVurooKlt6Y5zExmvsn8IXQZUAZAPsxIChwmXAvQgzaTxFCuqaGhi5S5bIuHcDLjd3Mxb4rCyjbbvQ1Jek39qdgt5py4lAJvR8l6E20J57uDFM_YqGu1G_va4KFkgoCuZU2pzM97fDVHHcb8Fhb11ma8h3YamIhHNV_30YYtDtBuO4IBNyfyEN37kD9WBVZPz_kiV6s1dkmfpa1wtcS5vzKw2NbDerBrqVHXKuK8wO6Conx7ecWuaMqJ3xGajm-nNxPSTEggBgxPRYS0wvIoVNq1WaFWK_AoAtBhBhxbqTjVPPUIwMTaKhZJmsk4MCwOTSyjLDhGvWJZ2BOEAQal3Mos0oCpsiE4EfAAf1MNr6VhH9GWTolpuoe7IRaLpOt77GibAG0TT9tk3UdXH_881r0z_lw9aMmfNOeoTJgIhGsnFLI-um5Z0n3-fbfT_y0_Q9vMS4W7XhmgXrV6sueANip94YXrHX0Zy14
  priority: 102
  providerName: Springer Nature
Title Using an auxiliary dataset to improve emotion estimation in users’ opinions
URI https://link.springer.com/article/10.1007/s10844-021-00643-y
https://www.proquest.com/docview/2535732862
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsNAcFB78eJbrI-yB2-66CabNDlJK62iWEQU9BSymw0UJNU2BXvzN_w9v8SZ7cagoCGQw272MDM77wfAoS88VOTDnGeIYS5VgHzQ5DHXQiqhRUiRMsq2GISXD_LqMXh0DreJS6useKJl1NlIk4_8xAv8gBrLhN7ZyyunqVEUXXUjNBahgSw4QuOr0e0Nbu_qtruRrRM-jb2AI9_1XNmMK56LpOSUomDlMp_9FE21vvkrRGolT38NVpzKyDpzHK_Dgik2YLUax8Dc7dyEGxv-Z2nB0unb8HmYjmeMEkAnpmTliA2t-8AwMx_cw6i9xrxukQ0LRs6Kyef7B6MCKiLFLbjv9-7PL7mblsA1CqGSB7EJjGyHqaKWK8KoFK0LH_mZRiM3TqVQMrPagI6USb12LPI48jVCVEdxO_e3YakYFWYHGKpEmTRx3laoX-WnaFDgg7jOFL5GhE0QFZwS7TqJ00CL56TugUywTRC2iYVtMmvC0fc_L_M-Gv_u3q_An7g7NUlqCmjCcYWSevnv03b_P20Plj1LBeRa2Yelcjw1B6hplKoFi1H_ogWNTr_bHdD34um613JEhqsPXucLOHfUQA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7R7aG9QFtadWFLfWhP1Cp2nGx8QAi1bJfyc1okblbsONJKKEvZINgbr8FD8FI8CTNO0qhI5UaUWxJHGn8ef55fgC-RkEjkk4LnOMNc2Rj1oC80d0JZ4URCnjKKtjhOxifq92l8ugR3bS4MhVW2OjEo6nzmyEb-XcZRTIVlErlz_odT1yjyrrYtNGpYHPjFFR7Z5tv7P3F-v0o52pv8GPOmqwB3qKwrHmsfezVMMkulSYS3GbLwCNe9w8OgzpSwKg-7pkutz-RQi0KnkcM_u1QPiwiHfQEvVRRpWlDp6FdX4zcNSclbWsYclbxscnSaTL1UKU7xEIEE8MW_-2BHbh_5Y8M2N3oDyw0_Zbs1oN7Cki_fwUrb-4E1qmAVjkKsActKll1eT8-m2cWCUbTp3FesmrFpsFV45usuQYxqedRJkmxaMrKMzO9vbhllaxHu38PkOYT4AXrlrPQfgSH_ypXXxdAimSu28PSCFwIrt3h7kfRBtHIyrilbTt0zzkxXcJlka1C2JsjWLPqw-feb87pox5NvD1rxm2YBz00Htz58a6eke_z_0daeHu0zvBpPjg7N4f7xwTq8lgERZNMZQK-6uPSfkOJUdiMAi4F5ZiA_AKBbCKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7RRap6of9iC6U-lFNrsXacv0NVtcAKSlmhikrcrNhxpJVQFtigsre-Bo_C6_RJOuM4RFQqN6LckljR-PP4m_H8ALyPhEQin1S8xBnmysSoB12VcyuUEVYkdFJG0RaTZO-n-nYSnyzBTZcLQ2GVnU70irqcWfKRb8k4iqmwTCK3qhAWcbQz_nx2zqmDFJ20du00WogcuMUvNN_mn_Z3cK43pRzvHm_v8dBhgFtU3A2Pcxc7lSaFoTIlwpkCGXmEOsCiYZgXShhV-h3UZsYVMs1FlWeRxb-wWZ5WEQ77CJZTNIpGA1j-ujs5-tFX_M18ivIolzFHlS9Dxk7I28uU4hQd4SkBX9zdFXuq-8_prN_0xs9gJbBV9qWF13NYcvULeNp1gmBBMbyEQx95wIqaFZdX09NpcbFgFHs6dw1rZmzqPReOubZnEKPKHm3KJJvWjPwk8z-_rxnlbtEqeAXHDyHG1zCoZ7VbBYZsrFQur1KD1K4aoS2DF8KsNHg7kQxBdHLSNhQxp14ap7ovv0yy1Shb7WWrF0P4cPvNWVvC49631zvx67Cc57oH3xA-dlPSP_7_aG_uH-0dPEYQ6-_7k4M1eCI9IMjBsw6D5uLSvUW-05iNgCwG-oGx_Bd8ng4-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+an+auxiliary+dataset+to+improve+emotion+estimation+in+users%E2%80%99+opinions&rft.jtitle=Journal+of+intelligent+information+systems&rft.au=Abdi+Siamak&rft.au=Bagherzadeh+Jamshid&rft.au=Gholami+Gholamhossein&rft.au=Tajbakhsh+Mir+Saman&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-9902&rft.eissn=1573-7675&rft.volume=56&rft.issue=3&rft.spage=581&rft.epage=603&rft_id=info:doi/10.1007%2Fs10844-021-00643-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9902&client=summon