Challenging gait leads to stronger lower-limb kinematic synergies: The effects of walking within a more narrow pathway

•We quantify synergies in joint configuration space stabilizing the mediolateral swing foot trajectory.•Walking within a more narrow pathway results in stronger synergies at midswing.•Strong synergies at midswing may help prevent between-limb collisions during gait. Previous studies using the uncont...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience letters Vol. 600; pp. 110 - 114
Main Authors Rosenblatt, N.J., Latash, M.L., Hurt, C.P., Grabiner, M.D.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 23.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We quantify synergies in joint configuration space stabilizing the mediolateral swing foot trajectory.•Walking within a more narrow pathway results in stronger synergies at midswing.•Strong synergies at midswing may help prevent between-limb collisions during gait. Previous studies using the uncontrolled manifold (UCM) analysis demonstrated that during the swing phase of gait, multi-joint kinematic synergies act to stabilize, i.e., minimize the variance of, the mediolateral trajectory of the swinging limb. Importantly, these synergies are strongest during midswing, suggesting that during gait, individuals may employ strategies to avoid collisions between the limbs at this instance. The purpose of the current study was to test this hypothesis by quantifying whether the synergy index (ΔV) during the middle period of the swing phase of treadmill walking was affected when the width of the treadmill belt was narrowed, a task expected to increase the risk of limb collisions. Eleven healthy young adults walked on a dual-belt treadmill under two conditions: (1) dual-belt – both belts of the treadmill moved at 1.2 m/s (total width: 62.5cm) and the subject walked with one foot on each of the moving belts and (2) single-belt – one treadmill belt moved at 1.2m/s while the other belt remained stationary and the subject walked with both feet on the moving belt (total width: 30.5cm). During both conditions, motion capture recorded the positions of 22 passive reflective markers from which UCM analysis was used to quantify ΔV in the joint configuration space. Results indicate that ΔV during the middle-third of swing phase significantly increased by 20% during single-belt walking (p<.01). We interpret this as evidence that the stronger synergies at midswing are needed to stabilize the limb trajectory in order to reduce the risk of between-limb collisions during a period when the lower limbs are nearest each other in the frontal plane.
AbstractList •We quantify synergies in joint configuration space stabilizing the mediolateral swing foot trajectory.•Walking within a more narrow pathway results in stronger synergies at midswing.•Strong synergies at midswing may help prevent between-limb collisions during gait. Previous studies using the uncontrolled manifold (UCM) analysis demonstrated that during the swing phase of gait, multi-joint kinematic synergies act to stabilize, i.e., minimize the variance of, the mediolateral trajectory of the swinging limb. Importantly, these synergies are strongest during midswing, suggesting that during gait, individuals may employ strategies to avoid collisions between the limbs at this instance. The purpose of the current study was to test this hypothesis by quantifying whether the synergy index (ΔV) during the middle period of the swing phase of treadmill walking was affected when the width of the treadmill belt was narrowed, a task expected to increase the risk of limb collisions. Eleven healthy young adults walked on a dual-belt treadmill under two conditions: (1) dual-belt – both belts of the treadmill moved at 1.2 m/s (total width: 62.5cm) and the subject walked with one foot on each of the moving belts and (2) single-belt – one treadmill belt moved at 1.2m/s while the other belt remained stationary and the subject walked with both feet on the moving belt (total width: 30.5cm). During both conditions, motion capture recorded the positions of 22 passive reflective markers from which UCM analysis was used to quantify ΔV in the joint configuration space. Results indicate that ΔV during the middle-third of swing phase significantly increased by 20% during single-belt walking (p<.01). We interpret this as evidence that the stronger synergies at midswing are needed to stabilize the limb trajectory in order to reduce the risk of between-limb collisions during a period when the lower limbs are nearest each other in the frontal plane.
Previous studies using the uncontrolled manifold (UCM) analysis demonstrated that during the swing phase of gait, multi-joint kinematic synergies act to stabilize, i.e., minimize the variance of, the mediolateral trajectory of the swinging limb. Importantly, these synergies are strongest during midswing, suggesting that during gait, individuals may employ strategies to avoid collisions between the limbs at this instance. The purpose of the current study was to test this hypothesis by quantifying whether the synergy index (ΔV) during the middle period of the swing phase of treadmill walking was affected when the width of the treadmill belt was narrowed, a task expected to increase the risk of limb collisions. Eleven healthy young adults walked on a dual-belt treadmill under two conditions: (1) dual-belt - both belts of the treadmill moved at 1.2 m/s (total width: 62.5 cm) and the subject walked with one foot on each of the moving belts and (2) single-belt - one treadmill belt moved at 1.2m/s while the other belt remained stationary and the subject walked with both feet on the moving belt (total width: 30.5 cm). During both conditions, motion capture recorded the positions of 22 passive reflective markers from which UCM analysis was used to quantify ΔV in the joint configuration space. Results indicate that ΔV during the middle-third of swing phase significantly increased by 20% during single-belt walking (p<.01). We interpret this as evidence that the stronger synergies at midswing are needed to stabilize the limb trajectory in order to reduce the risk of between-limb collisions during a period when the lower limbs are nearest each other in the frontal plane.
Author Rosenblatt, N.J.
Hurt, C.P.
Grabiner, M.D.
Latash, M.L.
Author_xml – sequence: 1
  givenname: N.J.
  surname: Rosenblatt
  fullname: Rosenblatt, N.J.
  email: noah.rosenblatt@rosalindfranklin.edu
  organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W. Taylor St. MC 994, Chicago, IL 60612, USA
– sequence: 2
  givenname: M.L.
  surname: Latash
  fullname: Latash, M.L.
  email: mll11@psu.edu
  organization: Department of Kinesiology, The Pennsylvania State University, 268N Recreation Building, University Park, PA 16802, USA
– sequence: 3
  givenname: C.P.
  surname: Hurt
  fullname: Hurt, C.P.
  email: cphurt@uab.edu
  organization: Department of Physical Therapy, The University of Alabama at Birmingham, 720 2nd Avenue South, SHPB 360X, Birmingham, AL 35294-1212, USA
– sequence: 4
  givenname: M.D.
  surname: Grabiner
  fullname: Grabiner, M.D.
  email: grabiner@uic.edu
  organization: Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W. Taylor St. MC 994, Chicago, IL 60612, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26003449$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVIaCZp_0EoWnbjiR6WH1kUytBHIJBNuhaydO3RRJamkiZm_n1sJtl00cKFuznfWXznCp374AGhG0rWlNDqdrf2cHCQ14xQsSbz8fYMrWhTs6Jua3aOVoSTsuBtSS7RVUo7QoigovyALllFCC_LdoVeNlvlHPjB-gEPymbsQJmEc8Apx-AHiNiFCWLh7NjhZ-thVNlqnI4e4mAh3eGnLWDoe9A54dDjSbnnpW2yeWs9VngMEbBXMYYJ71XeTur4EV30yiX49Pav0e8f3582v4qHx5_3m28PheYVy4Vouo43TQ2kZ5q2plWGMi0UCFOXbaOAC0WAGMUqKI3W3PQtNCBYx0reiIpfoy-n3n0Mfw6Qshxt0uCc8hAOSdJqNkVbzpbo57fooRvByH20o4pH-e5qDtydAjqGlCL0Uts8uwg-R2WdpEQuw8idPA0jl2EkmY8vcPkX_N7_H-zrCYNZ0ouFKJO24DUYG2ff0gT774JXotGr2A
CitedBy_id crossref_primary_10_1016_j_clinbiomech_2023_105990
crossref_primary_10_1098_rsos_180996
crossref_primary_10_1016_j_gaitpost_2020_07_075
crossref_primary_10_1016_j_jbiomech_2019_06_010
crossref_primary_10_1093_ptj_pzad075
crossref_primary_10_1007_s00221_019_05560_9
crossref_primary_10_1123_jab_2020_0217
crossref_primary_10_1016_j_jbiomech_2017_10_016
crossref_primary_10_1016_j_jbiomech_2020_109837
crossref_primary_10_1097_MD_0000000000038024
crossref_primary_10_1152_jn_00519_2017
crossref_primary_10_1242_jeb_206383
crossref_primary_10_1016_j_gaitpost_2022_05_030
crossref_primary_10_1016_j_jbiomech_2022_111203
crossref_primary_10_1016_j_jbiomech_2021_110311
crossref_primary_10_1038_s41598_018_31507_1
crossref_primary_10_1109_TNSRE_2016_2633960
crossref_primary_10_1016_j_jbiomech_2023_111702
crossref_primary_10_3389_fnagi_2019_00032
crossref_primary_10_1016_j_humov_2018_09_008
crossref_primary_10_1007_s00221_020_05822_x
crossref_primary_10_1016_j_gaitpost_2019_06_006
crossref_primary_10_1080_09638288_2021_2025273
crossref_primary_10_3390_app7111130
crossref_primary_10_1177_1687814018760353
crossref_primary_10_1016_j_jbiomech_2022_111353
crossref_primary_10_1016_j_jbiomech_2018_10_032
crossref_primary_10_1016_j_humov_2019_03_016
crossref_primary_10_1016_j_jbiomech_2024_112305
crossref_primary_10_1111_evj_12737
Cites_doi 10.1016/j.gaitpost.2013.04.023
10.1007/s00221-013-3748-1
10.1001/jama.2010.1923
10.1123/jab.28.5.616
10.1016/j.gaitpost.2006.03.008
10.1016/j.gaitpost.2008.02.009
10.1016/j.gaitpost.2010.02.001
10.1152/jn.00138.2014
10.1007/BF00237997
10.1097/00003677-200504000-00006
10.1007/s00221-010-2424-y
10.1016/S0021-9290(00)00101-9
10.1002/jor.1100080310
10.1016/j.gaitpost.2014.09.013
10.1007/s002210050738
10.1007/s00221-009-1904-4
10.1682/JRRD.2014.01.0031
10.1186/1748-5908-8-33
10.1002/jor.1100060208
ContentType Journal Article
Copyright 2015 Elsevier Ireland Ltd
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ireland Ltd
– notice: Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neulet.2015.05.039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-7972
EndPage 114
ExternalDocumentID 26003449
10_1016_j_neulet_2015_05_039
S0304394015003961
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
WH7
YCJ
~G-
.55
.GJ
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
MVM
R2-
SEW
SNS
SSH
WUQ
X7M
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-58bb3887e0f2c19d9ad12c5ae5d7498ae35a0e0da26e4dcc3df9e8e52b2438563
IEDL.DBID .~1
ISSN 0304-3940
IngestDate Fri Jul 11 03:08:30 EDT 2025
Mon Jul 21 05:54:20 EDT 2025
Tue Jul 01 04:07:16 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Fri Feb 23 02:24:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Synergy
Uncontrolled manifold analysis
Frontal plane
Swing limb control
Language English
License Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-58bb3887e0f2c19d9ad12c5ae5d7498ae35a0e0da26e4dcc3df9e8e52b2438563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26003449
PQID 1697219326
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1697219326
pubmed_primary_26003449
crossref_citationtrail_10_1016_j_neulet_2015_05_039
crossref_primary_10_1016_j_neulet_2015_05_039
elsevier_sciencedirect_doi_10_1016_j_neulet_2015_05_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-23
PublicationDateYYYYMMDD 2015-07-23
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-23
  day: 23
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Neuroscience letters
PublicationTitleAlternate Neurosci Lett
PublicationYear 2015
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Waters, Lunsford, Perry, Byrd (bib0105) 1988; 6
Begg, Best, Dell'Oro, Taylor (bib0010) 2007; 25
Scholz, Schoner (bib0080) 1999; 126
Krishnan, Rosenblatt, Latash, Grabiner (bib0040) 2013; 38
Kadaba, Ramakrishnan, Wootten (bib0035) 1990; 8
Rankin, Buffo, Dean (bib0055) 2014; 112
Kubinski, McQueen, Sittloh, Dean (bib0045) 2015; 41
Kuo, Donelan, Ruina (bib0050) 2005; 33
Schrager, Kelly, Price, Ferrucci, Shumway-Cook (bib0085) 2008; 28
Flanagan, Wing (bib0020) 1995; 105
Hurt, Rosenblatt, Crenshaw, Grabiner (bib0025) 2010; 31
Robert, Bennett, Russell, Zirker, Abel (bib0060) 2009; 197
Bernstein (bib0015) 1967
Rosenblatt, Hurt, Grabiner (bib0070) 2012; 28
Verrel, Lovden, Lindenberger (bib0100) 2010; 207
Bauby, Kuo (bib0005) 2000; 33
Studenski, Perera, Patel, Rosano, Faulkner, Inzitari, Brach, Chandler, Cawthon, Connor, Nevitt, Visser, Kritchevsky, Badinelli, Harris, Newman, Cauley, Ferrucci, Guralnik (bib0095) 2011; 305
Johansson, Westling (bib0030) 1984; 56
Rosenblatt, Bauer, Rotter, Grabiner (bib0065) 2014; 51
Rosenblatt, Hurt, Latash, Grabiner (bib0075) 2014; 232
Sibley, Straus, Inness, Salbach, Jaglal (bib0090) 2013; 8
Robert (10.1016/j.neulet.2015.05.039_bib0060) 2009; 197
Flanagan (10.1016/j.neulet.2015.05.039_bib0020) 1995; 105
Scholz (10.1016/j.neulet.2015.05.039_bib0080) 1999; 126
Begg (10.1016/j.neulet.2015.05.039_bib0010) 2007; 25
Kuo (10.1016/j.neulet.2015.05.039_bib0050) 2005; 33
Schrager (10.1016/j.neulet.2015.05.039_bib0085) 2008; 28
Johansson (10.1016/j.neulet.2015.05.039_bib0030) 1984; 56
Krishnan (10.1016/j.neulet.2015.05.039_bib0040) 2013; 38
Waters (10.1016/j.neulet.2015.05.039_bib0105) 1988; 6
Hurt (10.1016/j.neulet.2015.05.039_bib0025) 2010; 31
Kadaba (10.1016/j.neulet.2015.05.039_bib0035) 1990; 8
Studenski (10.1016/j.neulet.2015.05.039_bib0095) 2011; 305
Verrel (10.1016/j.neulet.2015.05.039_bib0100) 2010; 207
Bauby (10.1016/j.neulet.2015.05.039_bib0005) 2000; 33
Rankin (10.1016/j.neulet.2015.05.039_bib0055) 2014; 112
Bernstein (10.1016/j.neulet.2015.05.039_bib0015) 1967
Rosenblatt (10.1016/j.neulet.2015.05.039_bib0075) 2014; 232
Rosenblatt (10.1016/j.neulet.2015.05.039_bib0065) 2014; 51
Rosenblatt (10.1016/j.neulet.2015.05.039_bib0070) 2012; 28
Sibley (10.1016/j.neulet.2015.05.039_bib0090) 2013; 8
Kubinski (10.1016/j.neulet.2015.05.039_bib0045) 2015; 41
References_xml – volume: 25
  start-page: 191
  year: 2007
  end-page: 198
  ident: bib0010
  article-title: Minimum foot clearance during walking: strategies for the minimisation of trip-related falls
  publication-title: Gait Posture
– volume: 33
  start-page: 88
  year: 2005
  end-page: 97
  ident: bib0050
  article-title: Energetic consequences of walking like an inverted pendulum: step-to-step transitions
  publication-title: Exerc. Sport Sci. Rev.
– volume: 28
  start-page: 616
  year: 2012
  end-page: 621
  ident: bib0070
  article-title: Sensitivity of dynamic stability to changes in step width during treadmill walking by young adults
  publication-title: J. Appl. Biomech.
– volume: 8
  start-page: 33
  year: 2013
  ident: bib0090
  article-title: Clinical balance assessment: perceptions of commonly-used standardized measures and current practices among physiotherapists in Ontario, Canada
  publication-title: Implement. Sci.
– volume: 105
  start-page: 455
  year: 1995
  end-page: 464
  ident: bib0020
  article-title: The stability of precision grip forces during cyclic arm movements with a hand-held load
  publication-title: Exp. Brain Res.
– volume: 197
  start-page: 185
  year: 2009
  end-page: 197
  ident: bib0060
  article-title: Angular momentum synergies during walking
  publication-title: Exp. Brain Res
– volume: 207
  start-page: 13
  year: 2010
  end-page: 26
  ident: bib0100
  article-title: Motor-equivalent covariation stabilizes step parameters and center of mass position during treadmill walking
  publication-title: Exp. Brain Res.
– volume: 31
  start-page: 461
  year: 2010
  end-page: 464
  ident: bib0025
  article-title: Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults
  publication-title: Gait Posture
– volume: 38
  start-page: 923
  year: 2013
  end-page: 928
  ident: bib0040
  article-title: The effects of age on stabilization of the mediolateral trajectory of the swing foot
  publication-title: Gait Posture
– volume: 6
  start-page: 215
  year: 1988
  end-page: 222
  ident: bib0105
  article-title: Energy-speed relationship of walking: standard tables
  publication-title: J. Orthop. Res.
– volume: 8
  start-page: 383
  year: 1990
  end-page: 392
  ident: bib0035
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
– volume: 28
  start-page: 466
  year: 2008
  end-page: 471
  ident: bib0085
  article-title: The effects of age on medio-lateral stability during normal and narrow base walking
  publication-title: Gait Posture
– volume: 56
  start-page: 550
  year: 1984
  end-page: 564
  ident: bib0030
  article-title: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects
  publication-title: Exp. Brain Res.
– volume: 305
  start-page: 50
  year: 2011
  end-page: 58
  ident: bib0095
  article-title: Gait speed and survival in older adults
  publication-title: JAMA
– volume: 33
  start-page: 1433
  year: 2000
  end-page: 1440
  ident: bib0005
  article-title: Active control of lateral balance in human walking
  publication-title: J. Biomech.
– volume: 51
  start-page: 1229
  year: 2014
  end-page: 1242
  ident: bib0065
  article-title: Active dorsiflexing prostheses may reduce trip-related fall risk in people with transtibial amputation
  publication-title: J. Rehabil. Res. Dev.
– volume: 232
  start-page: 403
  year: 2014
  end-page: 413
  ident: bib0075
  article-title: An apparent contradiction: increasing variability to achieve greater precision
  publication-title: Exp. Brain Res.
– volume: 126
  start-page: 289
  year: 1999
  end-page: 306
  ident: bib0080
  article-title: The uncontrolled manifold concept: identifying control variables for a functional task
  publication-title: Exp. Brain Res.
– volume: 112
  start-page: 374
  year: 2014
  end-page: 383
  ident: bib0055
  article-title: A neuromechanical strategy for mediolateral foot placement in walking humans
  publication-title: J. Neurophysiol.
– year: 1967
  ident: bib0015
  article-title: The Co-ordination and Regulation of Movements
– volume: 41
  start-page: 130
  year: 2015
  end-page: 135
  ident: bib0045
  article-title: Walking with wider steps increases stance phase gluteus medius activity
  publication-title: Gait Posture
– volume: 38
  start-page: 923
  issue: 4
  year: 2013
  ident: 10.1016/j.neulet.2015.05.039_bib0040
  article-title: The effects of age on stabilization of the mediolateral trajectory of the swing foot
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.04.023
– volume: 232
  start-page: 403
  issue: 2
  year: 2014
  ident: 10.1016/j.neulet.2015.05.039_bib0075
  article-title: An apparent contradiction: increasing variability to achieve greater precision
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-013-3748-1
– volume: 105
  start-page: 455
  issue: 3
  year: 1995
  ident: 10.1016/j.neulet.2015.05.039_bib0020
  article-title: The stability of precision grip forces during cyclic arm movements with a hand-held load
  publication-title: Exp. Brain Res.
– volume: 305
  start-page: 50
  issue: 1
  year: 2011
  ident: 10.1016/j.neulet.2015.05.039_bib0095
  article-title: Gait speed and survival in older adults
  publication-title: JAMA
  doi: 10.1001/jama.2010.1923
– volume: 28
  start-page: 616
  issue: 5
  year: 2012
  ident: 10.1016/j.neulet.2015.05.039_bib0070
  article-title: Sensitivity of dynamic stability to changes in step width during treadmill walking by young adults
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.28.5.616
– year: 1967
  ident: 10.1016/j.neulet.2015.05.039_bib0015
– volume: 25
  start-page: 191
  issue: 2
  year: 2007
  ident: 10.1016/j.neulet.2015.05.039_bib0010
  article-title: Minimum foot clearance during walking: strategies for the minimisation of trip-related falls
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.03.008
– volume: 28
  start-page: 466
  issue: 3
  year: 2008
  ident: 10.1016/j.neulet.2015.05.039_bib0085
  article-title: The effects of age on medio-lateral stability during normal and narrow base walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.02.009
– volume: 31
  start-page: 461
  issue: 4
  year: 2010
  ident: 10.1016/j.neulet.2015.05.039_bib0025
  article-title: Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.02.001
– volume: 112
  start-page: 374
  issue: 2
  year: 2014
  ident: 10.1016/j.neulet.2015.05.039_bib0055
  article-title: A neuromechanical strategy for mediolateral foot placement in walking humans
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00138.2014
– volume: 56
  start-page: 550
  issue: 3
  year: 1984
  ident: 10.1016/j.neulet.2015.05.039_bib0030
  article-title: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00237997
– volume: 33
  start-page: 88
  issue: 2
  year: 2005
  ident: 10.1016/j.neulet.2015.05.039_bib0050
  article-title: Energetic consequences of walking like an inverted pendulum: step-to-step transitions
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1097/00003677-200504000-00006
– volume: 207
  start-page: 13
  issue: 1–2
  year: 2010
  ident: 10.1016/j.neulet.2015.05.039_bib0100
  article-title: Motor-equivalent covariation stabilizes step parameters and center of mass position during treadmill walking
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-010-2424-y
– volume: 33
  start-page: 1433
  issue: 11
  year: 2000
  ident: 10.1016/j.neulet.2015.05.039_bib0005
  article-title: Active control of lateral balance in human walking
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00101-9
– volume: 8
  start-page: 383
  issue: 3
  year: 1990
  ident: 10.1016/j.neulet.2015.05.039_bib0035
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080310
– volume: 41
  start-page: 130
  issue: 1
  year: 2015
  ident: 10.1016/j.neulet.2015.05.039_bib0045
  article-title: Walking with wider steps increases stance phase gluteus medius activity
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.09.013
– volume: 126
  start-page: 289
  issue: 3
  year: 1999
  ident: 10.1016/j.neulet.2015.05.039_bib0080
  article-title: The uncontrolled manifold concept: identifying control variables for a functional task
  publication-title: Exp. Brain Res.
  doi: 10.1007/s002210050738
– volume: 197
  start-page: 185
  issue: 2
  year: 2009
  ident: 10.1016/j.neulet.2015.05.039_bib0060
  article-title: Angular momentum synergies during walking
  publication-title: Exp. Brain Res
  doi: 10.1007/s00221-009-1904-4
– volume: 51
  start-page: 1229
  issue: 8
  year: 2014
  ident: 10.1016/j.neulet.2015.05.039_bib0065
  article-title: Active dorsiflexing prostheses may reduce trip-related fall risk in people with transtibial amputation
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2014.01.0031
– volume: 8
  start-page: 33
  year: 2013
  ident: 10.1016/j.neulet.2015.05.039_bib0090
  article-title: Clinical balance assessment: perceptions of commonly-used standardized measures and current practices among physiotherapists in Ontario, Canada
  publication-title: Implement. Sci.
  doi: 10.1186/1748-5908-8-33
– volume: 6
  start-page: 215
  issue: 2
  year: 1988
  ident: 10.1016/j.neulet.2015.05.039_bib0105
  article-title: Energy-speed relationship of walking: standard tables
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100060208
SSID ssj0005154
Score 2.3002229
Snippet •We quantify synergies in joint configuration space stabilizing the mediolateral swing foot trajectory.•Walking within a more narrow pathway results in...
Previous studies using the uncontrolled manifold (UCM) analysis demonstrated that during the swing phase of gait, multi-joint kinematic synergies act to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110
SubjectTerms Biomechanical Phenomena
Exercise - physiology
Exercise Test
Female
Frontal plane
Gait - physiology
Humans
Lower Extremity - physiology
Male
Swing limb control
Synergy
Uncontrolled manifold analysis
Walking - physiology
Young Adult
Title Challenging gait leads to stronger lower-limb kinematic synergies: The effects of walking within a more narrow pathway
URI https://dx.doi.org/10.1016/j.neulet.2015.05.039
https://www.ncbi.nlm.nih.gov/pubmed/26003449
https://www.proquest.com/docview/1697219326
Volume 600
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhgdJLaZI-tmnCFEpv6tqW5Udvy5KwbUkubSA3IctScON4Q9absJf-9s7IcmihJVAwBhsLG814ZjTz6RvG3rtKFs7WkjuXC56mecZLZwqe6RrdIZ6ML8WcnmWL8_TLhbzYYvNxLwzBKoPtH2y6t9bhzjTM5vSmaabfqKhHfb0xpIlE6ZdA9C7U6Y8_f4N5xHKgkKIKAD49bp_zGK_OrnF2COAlPX8ntQz_u3v6V_jp3dDJc_YsxI8wGz5xl23Zbo_tzzpcO19v4AN4RKdPle-xJ6ehcL7P7uahaQp6KrjUTQ8tCncF_RJWlAy_tLfQUsM03jbXFVzhIM_lCqsNbQ7E5fQnQI2CAP-ApYN73VKaHSiT23SggSC70HlSR6BGx_d684Kdnxx_ny94aLnADXqynsuiqgTaHRu5xMRljdKKEyO1lXWeloW2QurIRrVOMpvWxojalbawMqmSVBQyEy_Zdrfs7GsGApWAuJuNxggzslZb42KRiwyNSuJMPWFinGllAh85tcVo1Qg8-6EG-SiSj4rwEOWE8YdRNwMfxyPP56MQ1R96pdBlPDLy3Shzhb8c1VF0Z5frlYozojyiwHfCXg3K8PAtxPcv0rR889_vPWBP6Yryx4l4y7b727U9xMCnr468Zh-xndnnr4uzX7PcBUE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhbaX0iZ9bNPHFEpv6tqW5UdvYWnYttlcmkBuQpal4NTxhqw3YS_97Z2R5dBCS6BgfLAtbDTjmdHM6PsYe-8qWThbS-5cLnia5hkvnSl4pmt0h3gyvhSzOMrmJ-nXU3m6xWbjXhhqqwy2f7Dp3lqHK9Mwm9PLppl-p6Ie8XpjSBOJkpZA91L8fYnG4OPP3_o8YjlgSFEJAB8f98_5Jq_OrnF6qMNLegBP4gz_u3_6V_zp_dDBY_YoBJCwP3zjE7Zlux22u9_h4vliAx_At3T6XPkOu78IlfNddj0LrCnoquBMNz20KN0V9EtYUTb8zF5BS4xpvG0uKviBgzyYK6w2tDsQ19OfAFUKQv8HLB3c6Jby7ECp3KYDDdSzC51HdQRiOr7Rm6fs5ODz8WzOA-cCN-jKei6LqhJoeGzkEhOXNYorTozUVtZ5WhbaCqkjG9U6yWxaGyNqV9rCyqRKUlHITDxj292ysy8YCNQCAm82GkPMyFptjYtFLjK0Kokz9YSJcaaVCYDkxIvRqrHz7FwN8lEkHxXhIcoJ47ejLgdAjjuez0chqj8US6HPuGPku1HmCv85KqTozi7XKxVnhHlEke-EPR-U4fZbCPBfpGn58r_f-5Y9mB8vDtXhl6Nve-wh3aFkciJese3-am1fYxTUV2-8lv8ClNIGzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenging+gait+leads+to+stronger+lower-limb+kinematic+synergies%3A+The+effects+of+walking+within+a+more+narrow+pathway&rft.jtitle=Neuroscience+letters&rft.au=Rosenblatt%2C+N.J.&rft.au=Latash%2C+M.L.&rft.au=Hurt%2C+C.P.&rft.au=Grabiner%2C+M.D.&rft.date=2015-07-23&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0304-3940&rft.eissn=1872-7972&rft.volume=600&rft.spage=110&rft.epage=114&rft_id=info:doi/10.1016%2Fj.neulet.2015.05.039&rft.externalDocID=S0304394015003961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3940&client=summon