Multi-task learning for the prediction of wind power ramp events with deep neural networks
In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task. However, sometimes it is possible to exploit latent information from other related tasks to improve the performance of the main one, resulting in...
Saved in:
Published in | Neural networks Vol. 123; pp. 401 - 411 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task. However, sometimes it is possible to exploit latent information from other related tasks to improve the performance of the main one, resulting in a learning paradigm known as Multi-Task Learning (MTL). In this context, the high computational capacity of deep neural networks (DNN) can be combined with the improved generalization performance of MTL, by designing independent output layers for every task and including a shared representation for them. In this paper we exploit this theoretical framework on a problem related to Wind Power Ramps Events (WPREs) prediction in wind farms. Wind energy is one of the fastest growing industries in the world, with potential global spreading and deep penetration in developed and developing countries. One of the main issues with the majority of renewable energy resources is their intrinsic intermittency, which makes it difficult to increase the penetration of these technologies into the energetic mix. In this case, we focus on the specific problem of WPREs prediction, which deeply affect the wind speed and power prediction, and they are also related to different turbines damages. Specifically, we exploit the fact that WPREs are spatially-related events, in such a way that predicting the occurrence of WPREs in different wind farms can be taken as related tasks, even when the wind farms are far away from each other. We propose a DNN-MTL architecture, receiving inputs from all the wind farms at the same time to predict WPREs simultaneously in each of the farms locations. The architecture includes some shared layers to learn a common representation for the information from all the wind farms, and it also includes some specification layers, which refine the representation to match the specific characteristics of each location. Finally we modified the Adam optimization algorithm for dealing with imbalanced data, adding costs which are updated dynamically depending on the worst classified class. We compare the proposal against a baseline approach based on building three different independent models (one for each wind farm considered), and against a state-of-the-art reservoir computing approach. The DNN-MTL proposal achieves very good performance in WPREs prediction, obtaining a good balance for all the classes included in the problem (negative ramp, no ramp and positive ramp). |
---|---|
AbstractList | In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task. However, sometimes it is possible to exploit latent information from other related tasks to improve the performance of the main one, resulting in a learning paradigm known as Multi-Task Learning (MTL). In this context, the high computational capacity of deep neural networks (DNN) can be combined with the improved generalization performance of MTL, by designing independent output layers for every task and including a shared representation for them. In this paper we exploit this theoretical framework on a problem related to Wind Power Ramps Events (WPREs) prediction in wind farms. Wind energy is one of the fastest growing industries in the world, with potential global spreading and deep penetration in developed and developing countries. One of the main issues with the majority of renewable energy resources is their intrinsic intermittency, which makes it difficult to increase the penetration of these technologies into the energetic mix. In this case, we focus on the specific problem of WPREs prediction, which deeply affect the wind speed and power prediction, and they are also related to different turbines damages. Specifically, we exploit the fact that WPREs are spatially-related events, in such a way that predicting the occurrence of WPREs in different wind farms can be taken as related tasks, even when the wind farms are far away from each other. We propose a DNN-MTL architecture, receiving inputs from all the wind farms at the same time to predict WPREs simultaneously in each of the farms locations. The architecture includes some shared layers to learn a common representation for the information from all the wind farms, and it also includes some specification layers, which refine the representation to match the specific characteristics of each location. Finally we modified the Adam optimization algorithm for dealing with imbalanced data, adding costs which are updated dynamically depending on the worst classified class. We compare the proposal against a baseline approach based on building three different independent models (one for each wind farm considered), and against a state-of-the-art reservoir computing approach. The DNN-MTL proposal achieves very good performance in WPREs prediction, obtaining a good balance for all the classes included in the problem (negative ramp, no ramp and positive ramp). |
Author | Hervás-Martínez, C. Sperduti, A. Navarin, N. Dorado-Moreno, M. Gutiérrez, P.A. Salcedo-Sanz, S. Prieto, L. |
Author_xml | – sequence: 1 givenname: M. surname: Dorado-Moreno fullname: Dorado-Moreno, M. email: manuel.dorado@uco.es organization: Department of Computer Science and Numerical Analysis, University of Cordoba, Córdoba, Spain – sequence: 2 givenname: N. surname: Navarin fullname: Navarin, N. email: nnavarin@math.unipd.it organization: Department of Computer Science, University of Nottingham, Nottingham, United Kingdom – sequence: 3 givenname: P.A. surname: Gutiérrez fullname: Gutiérrez, P.A. email: pagutierrez@uco.es organization: Department of Computer Science and Numerical Analysis, University of Cordoba, Córdoba, Spain – sequence: 4 givenname: L. orcidid: 0000-0001-6091-5032 surname: Prieto fullname: Prieto, L. organization: Department of Energy Resource, Iberdrola, Madrid, Spain – sequence: 5 givenname: A. surname: Sperduti fullname: Sperduti, A. email: sperduti@math.unipd.it organization: Department of Mathematics, University of Padova, Padova, Italy – sequence: 6 givenname: S. surname: Salcedo-Sanz fullname: Salcedo-Sanz, S. email: sancho.salcedo@uah.es organization: Department of Signal Processing and Communications, University of Alcalá, Alcalá de Henares, Spain – sequence: 7 givenname: C. surname: Hervás-Martínez fullname: Hervás-Martínez, C. email: chervas@uco.es organization: Department of Computer Science and Numerical Analysis, University of Cordoba, Córdoba, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31926464$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE9P3DAQxa0KBLuUb4CQj70k9Z_EiS-VKlRaJCoucOnFcuxJ10vWTm2HVb89Xi3tkdOTRu_Nm_mt0YkPHhC6oqSmhIrP29rD4iHXjFBZU1YT2n1AK9p3smJdz07QivSSV4L05BytU9oSQkTf8DN0zqlkohHNCv36uUzZVVmnZzyBjt7533gMEecN4DmCdSa74HEY8d55i-ewh4ij3s0YXsDnVMZ5gy3AjMs9UU9F8j7E5_QRnY56SnD5phfo6fbb482P6v7h-93N1_vKcMFy1baWSC1tS3lrSDcOgrFBAutZx62UgxCWa9LwgZhG6EHozmjoW2O10ZYSwS_Qp-PeOYY_C6Ssdi4ZmCbtISxJMV562kY2vFibo9XEkFKEUc3R7XT8qyhRB6pqq45U1YGqokwVqiV2_dawDDuw_0P_MBbDl6MByp8vDqJKxoE3BV8Ek5UN7v2GV3bojYc |
CitedBy_id | crossref_primary_10_1016_j_neunet_2020_12_027 crossref_primary_10_1016_j_jclepro_2020_124710 crossref_primary_10_1016_j_fmre_2021_06_010 crossref_primary_10_1016_j_neunet_2023_08_042 crossref_primary_10_1016_j_neunet_2023_05_051 crossref_primary_10_1021_acs_iecr_1c04075 crossref_primary_10_3390_en15249657 crossref_primary_10_1016_j_neunet_2021_02_019 crossref_primary_10_1016_j_neunet_2022_04_027 crossref_primary_10_1109_TASE_2023_3293931 crossref_primary_10_1016_j_neunet_2023_02_024 crossref_primary_10_1016_j_energy_2023_128075 crossref_primary_10_1016_j_neunet_2022_04_004 crossref_primary_10_1016_j_egyr_2020_08_047 crossref_primary_10_1016_j_ins_2022_07_002 crossref_primary_10_1177_09576509221125863 crossref_primary_10_1016_j_energy_2023_127116 crossref_primary_10_1016_j_renene_2021_11_122 crossref_primary_10_3390_app10175975 crossref_primary_10_1080_03772063_2023_2205838 crossref_primary_10_3390_en13236308 crossref_primary_10_1016_j_neunet_2024_106233 crossref_primary_10_3390_en13236449 crossref_primary_10_3390_en16145383 crossref_primary_10_3390_en15207806 crossref_primary_10_1016_j_jenvman_2024_120392 crossref_primary_10_3390_app10051609 crossref_primary_10_1016_j_fmre_2021_09_011 crossref_primary_10_1016_j_knosys_2021_107458 crossref_primary_10_1016_j_jisa_2021_103057 crossref_primary_10_17780_ksujes_1172594 crossref_primary_10_1063_5_0135711 crossref_primary_10_1109_TIM_2022_3225056 crossref_primary_10_1007_s11356_022_19902_8 crossref_primary_10_3390_en15239146 crossref_primary_10_1080_15567036_2022_2075489 crossref_primary_10_1109_TSTE_2022_3198816 crossref_primary_10_1016_j_jwpe_2022_103304 crossref_primary_10_1016_j_neunet_2024_106528 crossref_primary_10_1038_s41598_023_48443_4 crossref_primary_10_1002_er_6679 crossref_primary_10_1016_j_oceaneng_2020_108089 crossref_primary_10_1177_0309524X20941203 crossref_primary_10_1016_j_neunet_2021_01_022 crossref_primary_10_1088_1361_6668_ac455d crossref_primary_10_1016_j_asoc_2020_106476 |
Cites_doi | 10.1016/j.rser.2017.06.075 10.1002/qj.828 10.1016/j.renene.2017.04.016 10.1049/iet-rpg.2016.0516 10.1109/TSTE.2014.2386870 10.1007/s11063-017-9613-7 10.1049/iet-rpg.2014.0457 10.1145/1390156.1390177 10.1016/j.rser.2015.07.154 10.1613/jair.731 10.1007/s10546-017-0237-2 10.3390/en11040705 10.1016/j.renene.2014.10.024 10.1109/TSTE.2017.2727321 10.1016/j.ejor.2016.10.041 10.1016/j.apenergy.2019.02.015 10.1016/j.rser.2016.04.024 10.1109/WACV.2014.6835990 10.1007/s10994-007-5040-8 10.1145/1014052.1014067 10.1016/j.renene.2014.09.027 10.1016/j.rser.2013.03.058 10.1109/CVPR.2015.7298594 10.1016/j.apenergy.2019.113842 10.1007/978-3-540-73750-6_2 10.1109/TNNLS.2015.2487364 10.1111/j.1365-2656.2008.01390.x 10.1049/iet-rpg.2016.0341 10.1016/j.renene.2016.05.019 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.neunet.2019.12.017 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 411 |
ExternalDocumentID | 10_1016_j_neunet_2019_12_017 31926464 S0893608019304174 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AAXKI AFJKZ AKRWK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c362t-55d09a9d5135c07fb622b9e28273d99b66d3a043b0c46ab6a7cae85cdacad1063 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 |
IngestDate | Sat Oct 26 00:27:51 EDT 2024 Thu Sep 26 17:34:58 EDT 2024 Sat Sep 28 08:30:24 EDT 2024 Fri Feb 23 02:49:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-output Deep neural networks Renewable energies Multi-task learning Wind power ramp events |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-55d09a9d5135c07fb622b9e28273d99b66d3a043b0c46ab6a7cae85cdacad1063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6091-5032 |
PMID | 31926464 |
PQID | 2336254943 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2336254943 crossref_primary_10_1016_j_neunet_2019_12_017 pubmed_primary_31926464 elsevier_sciencedirect_doi_10_1016_j_neunet_2019_12_017 |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-Mar 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kingma, D., & Ba, J. (2014). Adam: a method for stochastic optimization. In Scholz, Fraunholz, Selbig (b29) 2008; 58 Bossavy, A., Girard, R., & Kariniotakis, G. (2010). Forecasting ramps of wind power production with numerical weather prediction ensembles. In Zhou, Cichocki, Zhang, Mandic (b39) 2016; 27 Maurer, Pontil, Romera-Paredes (b25) 2016; 17 Cui, Feng, Wang, Zhang (b8) 2017; 9 (pp. 339–348). Wang, Kisi, Zounemat-Kermani, Ariel-Salazar, Zhu, Gong (b34) 2017; 61 Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In Díaz-Vico, Torres-Barrán, Omari, Dorronsoro (b11) 2017; 46 Ouyang, Zha, Qin, Kusiak (b26) 2016; 11 Cui, Ke, Sun, Gan, Zhang, Hodge (b9) 2015; 6 (pp. 2042–2049). Dorado-Moreno, Cornejo-Bueno, Gutiérrez, Prieto, Hervás-Martínez, Salcedo-Sanz (b12) 2017; 111 Jiang, Zhuang, Huang, Wang, Fu (b20) 2013; 24 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b32) 2015 Zhang, C., & Zhang, Z. (2014). Improving multiview face detection with multi-task deep convolutional neural networks. In Salcedo-Sanz, Pastor-Sánchez, Del Ser, Prieto, Geem (b27) 2015; 75 Dorado-Moreno, Durán-Rosal, Guijo-Rubio, Gutiérrez, Prieto, Salcedo-Sanz, Hervás-Martínez (b14) 2016; vol. 9868 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b30) 2014; 15 Liu, Qiu, Huang (b23) 2016 Zhu, Chen, Zhu, Duan, Liu (b40) 2018; 11 Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012). Robust visual tracking via multi-task sparse learning. Elith, Leathwick (b15) 2008; 77 Cannon, Brayshaw, Methven, Coker, Lenaghan (b4) 2015; 75 Gallego-Castillo, Garcíia-Bustamante, Cuerva-Tejero, Navarro (b18) 2015; 9 . (pp. 1036–1041). Chidean, Caamaño, Ramiro-Bargueño, Casanova-Mateo, Salcedo-Sanz (b6) 2018; 81 Sun, Feng, Zhang (b31) 2019; 256 Caruana (b5) 1998; 21 (pp. 20–23). Dorado-Moreno, Cornejo-Bueno, Gutiérrez, Prieto, Salcedo-Sanz, Hervás-Martínez (b13) 2017; vol. 10305 Xue, Liao, Carin, Krishnapuram (b36) 2007; 8 Baxter (b2) 2000; 12 Lucheroni, Boland, Ragno (b24) 2019; 239 Dee, Uppala, Simmons, Berrisford, Poli (b10) 2011; 137 Gallego-Castillo, Cuerva-Tejero, López-García (b17) 2015; 52 Jahn, Takle, Gallus (b19) 2017; 163 Taylor (b33) 2017; 259 Xiong, Zha, Qin, Ouyang, Xia (b35) 2016; 11 Argyriou, Evgeniou, Pontil (b1) 2008; 73 Santos-Alamillos, Thomaidis, Quesada-Ruiz, Ruiz-Arias, Pozo-Vázquez (b28) 2016; 96 (pp. 160–167). (pp. 109–117). Evgeniou, T., & Pontil, M. (2004). Regularized multi–task learning. In Liu, J., Ji, S., & Ye, J. (2009). Multi-task feature learning via efficient l2,1-norm minimization. In Cui (10.1016/j.neunet.2019.12.017_b8) 2017; 9 Lucheroni (10.1016/j.neunet.2019.12.017_b24) 2019; 239 10.1016/j.neunet.2019.12.017_b7 10.1016/j.neunet.2019.12.017_b22 Taylor (10.1016/j.neunet.2019.12.017_b33) 2017; 259 10.1016/j.neunet.2019.12.017_b21 Dorado-Moreno (10.1016/j.neunet.2019.12.017_b13) 2017; vol. 10305 Szegedy (10.1016/j.neunet.2019.12.017_b32) 2015 Xue (10.1016/j.neunet.2019.12.017_b36) 2007; 8 Santos-Alamillos (10.1016/j.neunet.2019.12.017_b28) 2016; 96 Jiang (10.1016/j.neunet.2019.12.017_b20) 2013; 24 Elith (10.1016/j.neunet.2019.12.017_b15) 2008; 77 Liu (10.1016/j.neunet.2019.12.017_b23) 2016 Gallego-Castillo (10.1016/j.neunet.2019.12.017_b18) 2015; 9 Cannon (10.1016/j.neunet.2019.12.017_b4) 2015; 75 Dee (10.1016/j.neunet.2019.12.017_b10) 2011; 137 Dorado-Moreno (10.1016/j.neunet.2019.12.017_b12) 2017; 111 Díaz-Vico (10.1016/j.neunet.2019.12.017_b11) 2017; 46 10.1016/j.neunet.2019.12.017_b3 Argyriou (10.1016/j.neunet.2019.12.017_b1) 2008; 73 Wang (10.1016/j.neunet.2019.12.017_b34) 2017; 61 10.1016/j.neunet.2019.12.017_b16 10.1016/j.neunet.2019.12.017_b38 Zhou (10.1016/j.neunet.2019.12.017_b39) 2016; 27 10.1016/j.neunet.2019.12.017_b37 Baxter (10.1016/j.neunet.2019.12.017_b2) 2000; 12 Gallego-Castillo (10.1016/j.neunet.2019.12.017_b17) 2015; 52 Jahn (10.1016/j.neunet.2019.12.017_b19) 2017; 163 Sun (10.1016/j.neunet.2019.12.017_b31) 2019; 256 Ouyang (10.1016/j.neunet.2019.12.017_b26) 2016; 11 Caruana (10.1016/j.neunet.2019.12.017_b5) 1998; 21 Chidean (10.1016/j.neunet.2019.12.017_b6) 2018; 81 Cui (10.1016/j.neunet.2019.12.017_b9) 2015; 6 Salcedo-Sanz (10.1016/j.neunet.2019.12.017_b27) 2015; 75 Zhu (10.1016/j.neunet.2019.12.017_b40) 2018; 11 Srivastava (10.1016/j.neunet.2019.12.017_b30) 2014; 15 Maurer (10.1016/j.neunet.2019.12.017_b25) 2016; 17 Xiong (10.1016/j.neunet.2019.12.017_b35) 2016; 11 Scholz (10.1016/j.neunet.2019.12.017_b29) 2008; 58 Dorado-Moreno (10.1016/j.neunet.2019.12.017_b14) 2016; vol. 9868 |
References_xml | – volume: 8 start-page: 35 year: 2007 end-page: 63 ident: b36 article-title: Multi-task learning for classification with dirichlet process priors publication-title: Journal of Machine Learning Research (JMLR) contributor: fullname: Krishnapuram – volume: 111 start-page: 428 year: 2017 end-page: 437 ident: b12 article-title: Robust estimation of wind power ramp events with reservoir computing publication-title: Renewable Energy contributor: fullname: Salcedo-Sanz – volume: vol. 10305 start-page: 708 year: 2017 end-page: 719 ident: b13 article-title: Combining reservoir computing and over-sampling for ordinal wind power ramp prediction publication-title: International Work-conference on Artificial Neural Networks contributor: fullname: Hervás-Martínez – volume: 21 start-page: 95 year: 1998 end-page: 133 ident: b5 article-title: Multitask learning publication-title: Autonomous Agents and Multi-Agent Systems contributor: fullname: Caruana – volume: 6 start-page: 422 year: 2015 end-page: 433 ident: b9 article-title: Wind power ramp event forecasting using a stochastic scenario generation method publication-title: IEEE Transactions on Sustainable Energy contributor: fullname: Hodge – volume: 9 start-page: 261 year: 2017 end-page: 272 ident: b8 article-title: Statistical representation of wind power ramps using a generalized gaussian mixture model publication-title: IEEE Transactions on Sustainable Energy contributor: fullname: Zhang – volume: 9 start-page: 867 year: 2015 end-page: 875 ident: b18 article-title: Identifying wind power ramp causes from multivariate datasets: a methodological proposal and its application to reanalysis data, publication-title: IET Renewable Power Generation contributor: fullname: Navarro – volume: 11 start-page: 1278 year: 2016 end-page: 1285 ident: b35 article-title: Research on wind power ramp events prediction based on strongly convective weather classification publication-title: IET Renewable Power Generation contributor: fullname: Xia – volume: 58 start-page: 44 year: 2008 end-page: 67 ident: b29 article-title: Nonlinear principal component analysis: neural network models and applications publication-title: Lecture Notes in Computational Science and Engineering contributor: fullname: Selbig – volume: 239 start-page: 1226 year: 2019 end-page: 1241 ident: b24 article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models publication-title: Applied Energy contributor: fullname: Ragno – volume: 259 start-page: 703 year: 2017 end-page: 712 ident: b33 article-title: Probabilistic forecasting of wind power ramp events using autoregressive logit models publication-title: European Journal of Operational Research contributor: fullname: Taylor – volume: 256 start-page: 113842 year: 2019 ident: b31 article-title: Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation publication-title: Applied Energy contributor: fullname: Zhang – volume: 52 start-page: 1148 year: 2015 end-page: 1157 ident: b17 article-title: A review on the recent history of wind power ramp forecasting publication-title: Renewable and Sustainable Energy Reviews contributor: fullname: López-García – volume: vol. 9868 start-page: 300 year: 2016 end-page: 309 ident: b14 article-title: Multiclass prediction of wind power ramp events combining reservoir computing and support vector machines publication-title: Conference of the Spanish Association for Artificial Intelligence contributor: fullname: Hervás-Martínez – volume: 75 start-page: 767 year: 2015 end-page: 778 ident: b4 article-title: Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in great britain publication-title: Renewable Energy contributor: fullname: Lenaghan – volume: 163 start-page: 423 year: 2017 end-page: 446 ident: b19 article-title: Improving wind-ramp forecast in the stable boundary layer publication-title: Bounday-Layer Meteorology contributor: fullname: Gallus – volume: 96 start-page: 574 year: 2016 end-page: 582 ident: b28 article-title: Do current wind farms in spain take maximum advantage of spatiotemporal balancing of the wind resource? publication-title: Renewable Energy contributor: fullname: Pozo-Vázquez – volume: 27 start-page: 2426 year: 2016 end-page: 2439 ident: b39 article-title: Group component analysis for multiblock data: common and individual feature extraction publication-title: IEEE Transactions on Neural Networks and Learning Systems contributor: fullname: Mandic – volume: 75 start-page: 93 year: 2015 end-page: 101 ident: b27 article-title: A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction publication-title: Renewable Energy contributor: fullname: Geem – volume: 12 start-page: 149 year: 2000 end-page: 198 ident: b2 article-title: A model of inductive bias learning publication-title: Journal of Artificial Intelligence Research contributor: fullname: Baxter – volume: 137 start-page: 553 year: 2011 end-page: 597 ident: b10 article-title: The era-interim reanalysis: configuration and performance of the data assimilation system publication-title: Quarterly Journal of the Royal Meteorological Society contributor: fullname: Poli – volume: 11 start-page: 705 year: 2018 end-page: 723 ident: b40 article-title: Wind speed prediction with spatio-temporal correlation: A deep learning approach publication-title: Energies contributor: fullname: Liu – volume: 81 start-page: 2684 year: 2018 end-page: 2694 ident: b6 article-title: Spatio-temporal analysis of wind resource in the iberian peninsula with data-coupled clustering publication-title: Renewable & Sustainable Energy Reviews contributor: fullname: Salcedo-Sanz – year: 2015 ident: b32 article-title: Going deeper with convolutions publication-title: IEEE Conference on Computer Vision and Pattern Recognition contributor: fullname: Rabinovich – volume: 11 start-page: 1270 year: 2016 end-page: 1277 ident: b26 article-title: Optimisation of time window size for wind power ramps prediction publication-title: IET Renewable Power Generation contributor: fullname: Kusiak – volume: 61 start-page: 384 year: 2017 end-page: 397 ident: b34 article-title: Solar radiation prediction using different techniques: model evaluation and comparison publication-title: Renewable & Sustainable Energy Reviews contributor: fullname: Gong – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b30 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research (JMLR) contributor: fullname: Salakhutdinov – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: b15 article-title: A working guide to boosted regression trees publication-title: Journal of Animal Ecology contributor: fullname: Leathwick – year: 2016 ident: b23 article-title: Recurrent neural network for text classification with multi-task learning publication-title: Computing Research Repository contributor: fullname: Huang – volume: 46 start-page: 829 year: 2017 end-page: 844 ident: b11 article-title: Deep neural networks for wind and solar energy prediction publication-title: Neural Processing Letters contributor: fullname: Dorronsoro – volume: 17 start-page: 1 year: 2016 end-page: 32 ident: b25 article-title: The benefit of multitask representation learning publication-title: Journal of Machine Learning Research (JMLR) contributor: fullname: Romera-Paredes – volume: 73 start-page: 243 year: 2008 end-page: 272 ident: b1 article-title: Convex multi-task feature learning publication-title: Machine Learning contributor: fullname: Pontil – volume: 24 start-page: 142 year: 2013 end-page: 148 ident: b20 article-title: Evaluating the spatio-temporal variation of china’s offshore wind resources based on remotely sensed wind field data publication-title: Renewable & Sustainable Energy Reviews contributor: fullname: Fu – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.neunet.2019.12.017_b30 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research (JMLR) contributor: fullname: Srivastava – year: 2016 ident: 10.1016/j.neunet.2019.12.017_b23 article-title: Recurrent neural network for text classification with multi-task learning contributor: fullname: Liu – volume: 81 start-page: 2684 year: 2018 ident: 10.1016/j.neunet.2019.12.017_b6 article-title: Spatio-temporal analysis of wind resource in the iberian peninsula with data-coupled clustering publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2017.06.075 contributor: fullname: Chidean – volume: 137 start-page: 553 year: 2011 ident: 10.1016/j.neunet.2019.12.017_b10 article-title: The era-interim reanalysis: configuration and performance of the data assimilation system publication-title: Quarterly Journal of the Royal Meteorological Society doi: 10.1002/qj.828 contributor: fullname: Dee – volume: 111 start-page: 428 year: 2017 ident: 10.1016/j.neunet.2019.12.017_b12 article-title: Robust estimation of wind power ramp events with reservoir computing publication-title: Renewable Energy doi: 10.1016/j.renene.2017.04.016 contributor: fullname: Dorado-Moreno – volume: 11 start-page: 1278 year: 2016 ident: 10.1016/j.neunet.2019.12.017_b35 article-title: Research on wind power ramp events prediction based on strongly convective weather classification publication-title: IET Renewable Power Generation doi: 10.1049/iet-rpg.2016.0516 contributor: fullname: Xiong – volume: 6 start-page: 422 year: 2015 ident: 10.1016/j.neunet.2019.12.017_b9 article-title: Wind power ramp event forecasting using a stochastic scenario generation method publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2014.2386870 contributor: fullname: Cui – volume: vol. 10305 start-page: 708 year: 2017 ident: 10.1016/j.neunet.2019.12.017_b13 article-title: Combining reservoir computing and over-sampling for ordinal wind power ramp prediction contributor: fullname: Dorado-Moreno – volume: 46 start-page: 829 year: 2017 ident: 10.1016/j.neunet.2019.12.017_b11 article-title: Deep neural networks for wind and solar energy prediction publication-title: Neural Processing Letters doi: 10.1007/s11063-017-9613-7 contributor: fullname: Díaz-Vico – ident: 10.1016/j.neunet.2019.12.017_b22 – volume: 9 start-page: 867 issue: 8 year: 2015 ident: 10.1016/j.neunet.2019.12.017_b18 article-title: Identifying wind power ramp causes from multivariate datasets: a methodological proposal and its application to reanalysis data, publication-title: IET Renewable Power Generation doi: 10.1049/iet-rpg.2014.0457 contributor: fullname: Gallego-Castillo – ident: 10.1016/j.neunet.2019.12.017_b7 doi: 10.1145/1390156.1390177 – volume: 52 start-page: 1148 year: 2015 ident: 10.1016/j.neunet.2019.12.017_b17 article-title: A review on the recent history of wind power ramp forecasting publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2015.07.154 contributor: fullname: Gallego-Castillo – ident: 10.1016/j.neunet.2019.12.017_b3 – volume: 12 start-page: 149 year: 2000 ident: 10.1016/j.neunet.2019.12.017_b2 article-title: A model of inductive bias learning publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.731 contributor: fullname: Baxter – volume: 163 start-page: 423 year: 2017 ident: 10.1016/j.neunet.2019.12.017_b19 article-title: Improving wind-ramp forecast in the stable boundary layer publication-title: Bounday-Layer Meteorology doi: 10.1007/s10546-017-0237-2 contributor: fullname: Jahn – volume: 11 start-page: 705 issue: 4 year: 2018 ident: 10.1016/j.neunet.2019.12.017_b40 article-title: Wind speed prediction with spatio-temporal correlation: A deep learning approach publication-title: Energies doi: 10.3390/en11040705 contributor: fullname: Zhu – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.neunet.2019.12.017_b25 article-title: The benefit of multitask representation learning publication-title: Journal of Machine Learning Research (JMLR) contributor: fullname: Maurer – volume: 75 start-page: 767 year: 2015 ident: 10.1016/j.neunet.2019.12.017_b4 article-title: Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in great britain publication-title: Renewable Energy doi: 10.1016/j.renene.2014.10.024 contributor: fullname: Cannon – volume: 9 start-page: 261 year: 2017 ident: 10.1016/j.neunet.2019.12.017_b8 article-title: Statistical representation of wind power ramps using a generalized gaussian mixture model publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2017.2727321 contributor: fullname: Cui – volume: 259 start-page: 703 year: 2017 ident: 10.1016/j.neunet.2019.12.017_b33 article-title: Probabilistic forecasting of wind power ramp events using autoregressive logit models publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.10.041 contributor: fullname: Taylor – volume: vol. 9868 start-page: 300 year: 2016 ident: 10.1016/j.neunet.2019.12.017_b14 article-title: Multiclass prediction of wind power ramp events combining reservoir computing and support vector machines contributor: fullname: Dorado-Moreno – volume: 239 start-page: 1226 year: 2019 ident: 10.1016/j.neunet.2019.12.017_b24 article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.02.015 contributor: fullname: Lucheroni – volume: 61 start-page: 384 year: 2017 ident: 10.1016/j.neunet.2019.12.017_b34 article-title: Solar radiation prediction using different techniques: model evaluation and comparison publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2016.04.024 contributor: fullname: Wang – ident: 10.1016/j.neunet.2019.12.017_b38 doi: 10.1109/WACV.2014.6835990 – volume: 73 start-page: 243 issue: 3 year: 2008 ident: 10.1016/j.neunet.2019.12.017_b1 article-title: Convex multi-task feature learning publication-title: Machine Learning doi: 10.1007/s10994-007-5040-8 contributor: fullname: Argyriou – ident: 10.1016/j.neunet.2019.12.017_b16 doi: 10.1145/1014052.1014067 – volume: 8 start-page: 35 year: 2007 ident: 10.1016/j.neunet.2019.12.017_b36 article-title: Multi-task learning for classification with dirichlet process priors publication-title: Journal of Machine Learning Research (JMLR) contributor: fullname: Xue – ident: 10.1016/j.neunet.2019.12.017_b21 – volume: 75 start-page: 93 year: 2015 ident: 10.1016/j.neunet.2019.12.017_b27 article-title: A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction publication-title: Renewable Energy doi: 10.1016/j.renene.2014.09.027 contributor: fullname: Salcedo-Sanz – volume: 24 start-page: 142 year: 2013 ident: 10.1016/j.neunet.2019.12.017_b20 article-title: Evaluating the spatio-temporal variation of china’s offshore wind resources based on remotely sensed wind field data publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2013.03.058 contributor: fullname: Jiang – year: 2015 ident: 10.1016/j.neunet.2019.12.017_b32 article-title: Going deeper with convolutions doi: 10.1109/CVPR.2015.7298594 contributor: fullname: Szegedy – volume: 21 start-page: 95 issue: 1 year: 1998 ident: 10.1016/j.neunet.2019.12.017_b5 article-title: Multitask learning publication-title: Autonomous Agents and Multi-Agent Systems contributor: fullname: Caruana – ident: 10.1016/j.neunet.2019.12.017_b37 – volume: 256 start-page: 113842 year: 2019 ident: 10.1016/j.neunet.2019.12.017_b31 article-title: Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.113842 contributor: fullname: Sun – volume: 58 start-page: 44 year: 2008 ident: 10.1016/j.neunet.2019.12.017_b29 article-title: Nonlinear principal component analysis: neural network models and applications publication-title: Lecture Notes in Computational Science and Engineering doi: 10.1007/978-3-540-73750-6_2 contributor: fullname: Scholz – volume: 27 start-page: 2426 issue: 11 year: 2016 ident: 10.1016/j.neunet.2019.12.017_b39 article-title: Group component analysis for multiblock data: common and individual feature extraction publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2487364 contributor: fullname: Zhou – volume: 77 start-page: 802 issue: 4 year: 2008 ident: 10.1016/j.neunet.2019.12.017_b15 article-title: A working guide to boosted regression trees publication-title: Journal of Animal Ecology doi: 10.1111/j.1365-2656.2008.01390.x contributor: fullname: Elith – volume: 11 start-page: 1270 year: 2016 ident: 10.1016/j.neunet.2019.12.017_b26 article-title: Optimisation of time window size for wind power ramps prediction publication-title: IET Renewable Power Generation doi: 10.1049/iet-rpg.2016.0341 contributor: fullname: Ouyang – volume: 96 start-page: 574 year: 2016 ident: 10.1016/j.neunet.2019.12.017_b28 article-title: Do current wind farms in spain take maximum advantage of spatiotemporal balancing of the wind resource? publication-title: Renewable Energy doi: 10.1016/j.renene.2016.05.019 contributor: fullname: Santos-Alamillos |
SSID | ssj0006843 |
Score | 2.5371108 |
Snippet | In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task.... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 401 |
SubjectTerms | Deep neural networks Multi-output Multi-task learning Renewable energies Wind power ramp events |
Title | Multi-task learning for the prediction of wind power ramp events with deep neural networks |
URI | https://dx.doi.org/10.1016/j.neunet.2019.12.017 https://www.ncbi.nlm.nih.gov/pubmed/31926464 https://search.proquest.com/docview/2336254943 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcuFSaIGyQJGRuLrrxLETHxECbVuVS0FCvVh-BVFENtqHuPHbGTsJEhJVpV6jWHZm4plv7G9mAE6Z8pYFlVGB4JYWwTpaqdjfxCLYFrYuZere8PNKTm-K77fidg3Oh1yYSKvsbX9n05O17p9MemlO2vv7yS-GrlYi4EEIwgoE1uuwge4or0awcfbtx_Tq1SDLqiPP4fs0Dhgy6BLNqwmrJkRSZabSuWDqXPauh_obAk2e6HIbPvQQkpx1q_wIa6H5BFtDewbS79Yd-J2Sa-nSLB5I3xzijiBGJYj5SDuPNzRRK2RWkyeMzEkbG6aRuXlsSSrrtCDxkJb4EFoSy17inE1HGl_sws3lxfX5lPatFKhDD7WkQnimjPIi48KxskZN5FYFjLdK7pWyUnpuWMEtc4U0VprSmVAJ540zHqNGvgejZtaEfSCx5B6vUKmuZoX13EqRo0pDrZyTXokx0EF8uu0qZuiBSvZHd-LWUdw6yzWKewzlIGP9RvMajfo_Rp4MKtG4KeJNh2nCbLXQOcevxsi34GP43OnqdS1ocxAEyuLgv-c9hM08Rt2JiXYEo-V8Fb4gNFnaY1j_-pwd9z_gC4rb46o |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOMCFtjzKtrQYqVdrvXHsrI9oVbRbYC-AhHqx_ApaULPRPtS_37GTICGBkHqNYtmZycx8Y3-eAfjBlLcsqAEVCG5pHqyjQxX7m1gE28KWhUzdG66ncnyX_7oX9xsw6u7CRFpl6_sbn568dfuk30qzX89m_RuGoVYi4EEIwnIE1puwjWhAoXVun08ux9NnhyyHDXkO36dxQHeDLtG8qrCuQiRVDlTaF0ydy16NUG8h0BSJLj7CXgshyXmzyk-wEap9-NC1ZyCttR7A73S5lq7M8om0zSEeCGJUgpiP1It4QhO1QuYl-YuZOaljwzSyMH9qkso6LUncpCU-hJrEspc4Z9WQxpeHcHfx83Y0pm0rBeowQq2oEJ4po7wYcOFYUaImMqsC5lsF90pZKT03LOeWuVwaK03hTBgK540zHrNGfgRb1bwKx0BiyT0-RKW6kuXWcytFhioNpXJOeiV6QDvx6bqpmKE7KtmjbsSto7j1INMo7h4UnYz1C81rdOrvjDzrVKLRKOJJh6nCfL3UGcevxsw35z343OjqeS3ocxAEyvzLf897Cjvj2-srfTWZXn6F3Sxm4ImVdgJbq8U6fEOYsrLf29_wHw8A5Z4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+learning+for+the+prediction+of+wind+power+ramp+events+with+deep+neural+networks&rft.jtitle=Neural+networks&rft.au=Dorado-Moreno%2C+M&rft.au=Navarin%2C+N&rft.au=Guti%C3%A9rrez%2C+P+A&rft.au=Prieto%2C+L&rft.date=2020-03-01&rft.eissn=1879-2782&rft.volume=123&rft.spage=401&rft.epage=411&rft_id=info:doi/10.1016%2Fj.neunet.2019.12.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |