Multi-task learning for the prediction of wind power ramp events with deep neural networks

In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task. However, sometimes it is possible to exploit latent information from other related tasks to improve the performance of the main one, resulting in...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 123; pp. 401 - 411
Main Authors Dorado-Moreno, M., Navarin, N., Gutiérrez, P.A., Prieto, L., Sperduti, A., Salcedo-Sanz, S., Hervás-Martínez, C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task. However, sometimes it is possible to exploit latent information from other related tasks to improve the performance of the main one, resulting in a learning paradigm known as Multi-Task Learning (MTL). In this context, the high computational capacity of deep neural networks (DNN) can be combined with the improved generalization performance of MTL, by designing independent output layers for every task and including a shared representation for them. In this paper we exploit this theoretical framework on a problem related to Wind Power Ramps Events (WPREs) prediction in wind farms. Wind energy is one of the fastest growing industries in the world, with potential global spreading and deep penetration in developed and developing countries. One of the main issues with the majority of renewable energy resources is their intrinsic intermittency, which makes it difficult to increase the penetration of these technologies into the energetic mix. In this case, we focus on the specific problem of WPREs prediction, which deeply affect the wind speed and power prediction, and they are also related to different turbines damages. Specifically, we exploit the fact that WPREs are spatially-related events, in such a way that predicting the occurrence of WPREs in different wind farms can be taken as related tasks, even when the wind farms are far away from each other. We propose a DNN-MTL architecture, receiving inputs from all the wind farms at the same time to predict WPREs simultaneously in each of the farms locations. The architecture includes some shared layers to learn a common representation for the information from all the wind farms, and it also includes some specification layers, which refine the representation to match the specific characteristics of each location. Finally we modified the Adam optimization algorithm for dealing with imbalanced data, adding costs which are updated dynamically depending on the worst classified class. We compare the proposal against a baseline approach based on building three different independent models (one for each wind farm considered), and against a state-of-the-art reservoir computing approach. The DNN-MTL proposal achieves very good performance in WPREs prediction, obtaining a good balance for all the classes included in the problem (negative ramp, no ramp and positive ramp).
AbstractList In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task. However, sometimes it is possible to exploit latent information from other related tasks to improve the performance of the main one, resulting in a learning paradigm known as Multi-Task Learning (MTL). In this context, the high computational capacity of deep neural networks (DNN) can be combined with the improved generalization performance of MTL, by designing independent output layers for every task and including a shared representation for them. In this paper we exploit this theoretical framework on a problem related to Wind Power Ramps Events (WPREs) prediction in wind farms. Wind energy is one of the fastest growing industries in the world, with potential global spreading and deep penetration in developed and developing countries. One of the main issues with the majority of renewable energy resources is their intrinsic intermittency, which makes it difficult to increase the penetration of these technologies into the energetic mix. In this case, we focus on the specific problem of WPREs prediction, which deeply affect the wind speed and power prediction, and they are also related to different turbines damages. Specifically, we exploit the fact that WPREs are spatially-related events, in such a way that predicting the occurrence of WPREs in different wind farms can be taken as related tasks, even when the wind farms are far away from each other. We propose a DNN-MTL architecture, receiving inputs from all the wind farms at the same time to predict WPREs simultaneously in each of the farms locations. The architecture includes some shared layers to learn a common representation for the information from all the wind farms, and it also includes some specification layers, which refine the representation to match the specific characteristics of each location. Finally we modified the Adam optimization algorithm for dealing with imbalanced data, adding costs which are updated dynamically depending on the worst classified class. We compare the proposal against a baseline approach based on building three different independent models (one for each wind farm considered), and against a state-of-the-art reservoir computing approach. The DNN-MTL proposal achieves very good performance in WPREs prediction, obtaining a good balance for all the classes included in the problem (negative ramp, no ramp and positive ramp).
Author Hervás-Martínez, C.
Sperduti, A.
Navarin, N.
Dorado-Moreno, M.
Gutiérrez, P.A.
Salcedo-Sanz, S.
Prieto, L.
Author_xml – sequence: 1
  givenname: M.
  surname: Dorado-Moreno
  fullname: Dorado-Moreno, M.
  email: manuel.dorado@uco.es
  organization: Department of Computer Science and Numerical Analysis, University of Cordoba, Córdoba, Spain
– sequence: 2
  givenname: N.
  surname: Navarin
  fullname: Navarin, N.
  email: nnavarin@math.unipd.it
  organization: Department of Computer Science, University of Nottingham, Nottingham, United Kingdom
– sequence: 3
  givenname: P.A.
  surname: Gutiérrez
  fullname: Gutiérrez, P.A.
  email: pagutierrez@uco.es
  organization: Department of Computer Science and Numerical Analysis, University of Cordoba, Córdoba, Spain
– sequence: 4
  givenname: L.
  orcidid: 0000-0001-6091-5032
  surname: Prieto
  fullname: Prieto, L.
  organization: Department of Energy Resource, Iberdrola, Madrid, Spain
– sequence: 5
  givenname: A.
  surname: Sperduti
  fullname: Sperduti, A.
  email: sperduti@math.unipd.it
  organization: Department of Mathematics, University of Padova, Padova, Italy
– sequence: 6
  givenname: S.
  surname: Salcedo-Sanz
  fullname: Salcedo-Sanz, S.
  email: sancho.salcedo@uah.es
  organization: Department of Signal Processing and Communications, University of Alcalá, Alcalá de Henares, Spain
– sequence: 7
  givenname: C.
  surname: Hervás-Martínez
  fullname: Hervás-Martínez, C.
  email: chervas@uco.es
  organization: Department of Computer Science and Numerical Analysis, University of Cordoba, Córdoba, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31926464$$D View this record in MEDLINE/PubMed
BookMark eNp9kE9P3DAQxa0KBLuUb4CQj70k9Z_EiS-VKlRaJCoucOnFcuxJ10vWTm2HVb89Xi3tkdOTRu_Nm_mt0YkPHhC6oqSmhIrP29rD4iHXjFBZU1YT2n1AK9p3smJdz07QivSSV4L05BytU9oSQkTf8DN0zqlkohHNCv36uUzZVVmnZzyBjt7533gMEecN4DmCdSa74HEY8d55i-ewh4ij3s0YXsDnVMZ5gy3AjMs9UU9F8j7E5_QRnY56SnD5phfo6fbb482P6v7h-93N1_vKcMFy1baWSC1tS3lrSDcOgrFBAutZx62UgxCWa9LwgZhG6EHozmjoW2O10ZYSwS_Qp-PeOYY_C6Ssdi4ZmCbtISxJMV562kY2vFibo9XEkFKEUc3R7XT8qyhRB6pqq45U1YGqokwVqiV2_dawDDuw_0P_MBbDl6MByp8vDqJKxoE3BV8Ek5UN7v2GV3bojYc
CitedBy_id crossref_primary_10_1016_j_neunet_2020_12_027
crossref_primary_10_1016_j_jclepro_2020_124710
crossref_primary_10_1016_j_fmre_2021_06_010
crossref_primary_10_1016_j_neunet_2023_08_042
crossref_primary_10_1016_j_neunet_2023_05_051
crossref_primary_10_1021_acs_iecr_1c04075
crossref_primary_10_3390_en15249657
crossref_primary_10_1016_j_neunet_2021_02_019
crossref_primary_10_1016_j_neunet_2022_04_027
crossref_primary_10_1109_TASE_2023_3293931
crossref_primary_10_1016_j_neunet_2023_02_024
crossref_primary_10_1016_j_energy_2023_128075
crossref_primary_10_1016_j_neunet_2022_04_004
crossref_primary_10_1016_j_egyr_2020_08_047
crossref_primary_10_1016_j_ins_2022_07_002
crossref_primary_10_1177_09576509221125863
crossref_primary_10_1016_j_energy_2023_127116
crossref_primary_10_1016_j_renene_2021_11_122
crossref_primary_10_3390_app10175975
crossref_primary_10_1080_03772063_2023_2205838
crossref_primary_10_3390_en13236308
crossref_primary_10_1016_j_neunet_2024_106233
crossref_primary_10_3390_en13236449
crossref_primary_10_3390_en16145383
crossref_primary_10_3390_en15207806
crossref_primary_10_1016_j_jenvman_2024_120392
crossref_primary_10_3390_app10051609
crossref_primary_10_1016_j_fmre_2021_09_011
crossref_primary_10_1016_j_knosys_2021_107458
crossref_primary_10_1016_j_jisa_2021_103057
crossref_primary_10_17780_ksujes_1172594
crossref_primary_10_1063_5_0135711
crossref_primary_10_1109_TIM_2022_3225056
crossref_primary_10_1007_s11356_022_19902_8
crossref_primary_10_3390_en15239146
crossref_primary_10_1080_15567036_2022_2075489
crossref_primary_10_1109_TSTE_2022_3198816
crossref_primary_10_1016_j_jwpe_2022_103304
crossref_primary_10_1016_j_neunet_2024_106528
crossref_primary_10_1038_s41598_023_48443_4
crossref_primary_10_1002_er_6679
crossref_primary_10_1016_j_oceaneng_2020_108089
crossref_primary_10_1177_0309524X20941203
crossref_primary_10_1016_j_neunet_2021_01_022
crossref_primary_10_1088_1361_6668_ac455d
crossref_primary_10_1016_j_asoc_2020_106476
Cites_doi 10.1016/j.rser.2017.06.075
10.1002/qj.828
10.1016/j.renene.2017.04.016
10.1049/iet-rpg.2016.0516
10.1109/TSTE.2014.2386870
10.1007/s11063-017-9613-7
10.1049/iet-rpg.2014.0457
10.1145/1390156.1390177
10.1016/j.rser.2015.07.154
10.1613/jair.731
10.1007/s10546-017-0237-2
10.3390/en11040705
10.1016/j.renene.2014.10.024
10.1109/TSTE.2017.2727321
10.1016/j.ejor.2016.10.041
10.1016/j.apenergy.2019.02.015
10.1016/j.rser.2016.04.024
10.1109/WACV.2014.6835990
10.1007/s10994-007-5040-8
10.1145/1014052.1014067
10.1016/j.renene.2014.09.027
10.1016/j.rser.2013.03.058
10.1109/CVPR.2015.7298594
10.1016/j.apenergy.2019.113842
10.1007/978-3-540-73750-6_2
10.1109/TNNLS.2015.2487364
10.1111/j.1365-2656.2008.01390.x
10.1049/iet-rpg.2016.0341
10.1016/j.renene.2016.05.019
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.neunet.2019.12.017
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 411
ExternalDocumentID 10_1016_j_neunet_2019_12_017
31926464
S0893608019304174
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AAXKI
AFJKZ
AKRWK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c362t-55d09a9d5135c07fb622b9e28273d99b66d3a043b0c46ab6a7cae85cdacad1063
IEDL.DBID AIKHN
ISSN 0893-6080
IngestDate Sat Oct 26 00:27:51 EDT 2024
Thu Sep 26 17:34:58 EDT 2024
Sat Sep 28 08:30:24 EDT 2024
Fri Feb 23 02:49:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-output
Deep neural networks
Renewable energies
Multi-task learning
Wind power ramp events
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-55d09a9d5135c07fb622b9e28273d99b66d3a043b0c46ab6a7cae85cdacad1063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6091-5032
PMID 31926464
PQID 2336254943
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2336254943
crossref_primary_10_1016_j_neunet_2019_12_017
pubmed_primary_31926464
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_12_017
PublicationCentury 2000
PublicationDate March 2020
2020-Mar
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kingma, D., & Ba, J. (2014). Adam: a method for stochastic optimization. In
Scholz, Fraunholz, Selbig (b29) 2008; 58
Bossavy, A., Girard, R., & Kariniotakis, G. (2010). Forecasting ramps of wind power production with numerical weather prediction ensembles. In
Zhou, Cichocki, Zhang, Mandic (b39) 2016; 27
Maurer, Pontil, Romera-Paredes (b25) 2016; 17
Cui, Feng, Wang, Zhang (b8) 2017; 9
(pp. 339–348).
Wang, Kisi, Zounemat-Kermani, Ariel-Salazar, Zhu, Gong (b34) 2017; 61
Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In
Díaz-Vico, Torres-Barrán, Omari, Dorronsoro (b11) 2017; 46
Ouyang, Zha, Qin, Kusiak (b26) 2016; 11
Cui, Ke, Sun, Gan, Zhang, Hodge (b9) 2015; 6
(pp. 2042–2049).
Dorado-Moreno, Cornejo-Bueno, Gutiérrez, Prieto, Hervás-Martínez, Salcedo-Sanz (b12) 2017; 111
Jiang, Zhuang, Huang, Wang, Fu (b20) 2013; 24
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b32) 2015
Zhang, C., & Zhang, Z. (2014). Improving multiview face detection with multi-task deep convolutional neural networks. In
Salcedo-Sanz, Pastor-Sánchez, Del Ser, Prieto, Geem (b27) 2015; 75
Dorado-Moreno, Durán-Rosal, Guijo-Rubio, Gutiérrez, Prieto, Salcedo-Sanz, Hervás-Martínez (b14) 2016; vol. 9868
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b30) 2014; 15
Liu, Qiu, Huang (b23) 2016
Zhu, Chen, Zhu, Duan, Liu (b40) 2018; 11
Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012). Robust visual tracking via multi-task sparse learning.
Elith, Leathwick (b15) 2008; 77
Cannon, Brayshaw, Methven, Coker, Lenaghan (b4) 2015; 75
Gallego-Castillo, Garcíia-Bustamante, Cuerva-Tejero, Navarro (b18) 2015; 9
.
(pp. 1036–1041).
Chidean, Caamaño, Ramiro-Bargueño, Casanova-Mateo, Salcedo-Sanz (b6) 2018; 81
Sun, Feng, Zhang (b31) 2019; 256
Caruana (b5) 1998; 21
(pp. 20–23).
Dorado-Moreno, Cornejo-Bueno, Gutiérrez, Prieto, Salcedo-Sanz, Hervás-Martínez (b13) 2017; vol. 10305
Xue, Liao, Carin, Krishnapuram (b36) 2007; 8
Baxter (b2) 2000; 12
Lucheroni, Boland, Ragno (b24) 2019; 239
Dee, Uppala, Simmons, Berrisford, Poli (b10) 2011; 137
Gallego-Castillo, Cuerva-Tejero, López-García (b17) 2015; 52
Jahn, Takle, Gallus (b19) 2017; 163
Taylor (b33) 2017; 259
Xiong, Zha, Qin, Ouyang, Xia (b35) 2016; 11
Argyriou, Evgeniou, Pontil (b1) 2008; 73
Santos-Alamillos, Thomaidis, Quesada-Ruiz, Ruiz-Arias, Pozo-Vázquez (b28) 2016; 96
(pp. 160–167).
(pp. 109–117).
Evgeniou, T., & Pontil, M. (2004). Regularized multi–task learning. In
Liu, J., Ji, S., & Ye, J. (2009). Multi-task feature learning via efficient l2,1-norm minimization. In
Cui (10.1016/j.neunet.2019.12.017_b8) 2017; 9
Lucheroni (10.1016/j.neunet.2019.12.017_b24) 2019; 239
10.1016/j.neunet.2019.12.017_b7
10.1016/j.neunet.2019.12.017_b22
Taylor (10.1016/j.neunet.2019.12.017_b33) 2017; 259
10.1016/j.neunet.2019.12.017_b21
Dorado-Moreno (10.1016/j.neunet.2019.12.017_b13) 2017; vol. 10305
Szegedy (10.1016/j.neunet.2019.12.017_b32) 2015
Xue (10.1016/j.neunet.2019.12.017_b36) 2007; 8
Santos-Alamillos (10.1016/j.neunet.2019.12.017_b28) 2016; 96
Jiang (10.1016/j.neunet.2019.12.017_b20) 2013; 24
Elith (10.1016/j.neunet.2019.12.017_b15) 2008; 77
Liu (10.1016/j.neunet.2019.12.017_b23) 2016
Gallego-Castillo (10.1016/j.neunet.2019.12.017_b18) 2015; 9
Cannon (10.1016/j.neunet.2019.12.017_b4) 2015; 75
Dee (10.1016/j.neunet.2019.12.017_b10) 2011; 137
Dorado-Moreno (10.1016/j.neunet.2019.12.017_b12) 2017; 111
Díaz-Vico (10.1016/j.neunet.2019.12.017_b11) 2017; 46
10.1016/j.neunet.2019.12.017_b3
Argyriou (10.1016/j.neunet.2019.12.017_b1) 2008; 73
Wang (10.1016/j.neunet.2019.12.017_b34) 2017; 61
10.1016/j.neunet.2019.12.017_b16
10.1016/j.neunet.2019.12.017_b38
Zhou (10.1016/j.neunet.2019.12.017_b39) 2016; 27
10.1016/j.neunet.2019.12.017_b37
Baxter (10.1016/j.neunet.2019.12.017_b2) 2000; 12
Gallego-Castillo (10.1016/j.neunet.2019.12.017_b17) 2015; 52
Jahn (10.1016/j.neunet.2019.12.017_b19) 2017; 163
Sun (10.1016/j.neunet.2019.12.017_b31) 2019; 256
Ouyang (10.1016/j.neunet.2019.12.017_b26) 2016; 11
Caruana (10.1016/j.neunet.2019.12.017_b5) 1998; 21
Chidean (10.1016/j.neunet.2019.12.017_b6) 2018; 81
Cui (10.1016/j.neunet.2019.12.017_b9) 2015; 6
Salcedo-Sanz (10.1016/j.neunet.2019.12.017_b27) 2015; 75
Zhu (10.1016/j.neunet.2019.12.017_b40) 2018; 11
Srivastava (10.1016/j.neunet.2019.12.017_b30) 2014; 15
Maurer (10.1016/j.neunet.2019.12.017_b25) 2016; 17
Xiong (10.1016/j.neunet.2019.12.017_b35) 2016; 11
Scholz (10.1016/j.neunet.2019.12.017_b29) 2008; 58
Dorado-Moreno (10.1016/j.neunet.2019.12.017_b14) 2016; vol. 9868
References_xml – volume: 8
  start-page: 35
  year: 2007
  end-page: 63
  ident: b36
  article-title: Multi-task learning for classification with dirichlet process priors
  publication-title: Journal of Machine Learning Research (JMLR)
  contributor:
    fullname: Krishnapuram
– volume: 111
  start-page: 428
  year: 2017
  end-page: 437
  ident: b12
  article-title: Robust estimation of wind power ramp events with reservoir computing
  publication-title: Renewable Energy
  contributor:
    fullname: Salcedo-Sanz
– volume: vol. 10305
  start-page: 708
  year: 2017
  end-page: 719
  ident: b13
  article-title: Combining reservoir computing and over-sampling for ordinal wind power ramp prediction
  publication-title: International Work-conference on Artificial Neural Networks
  contributor:
    fullname: Hervás-Martínez
– volume: 21
  start-page: 95
  year: 1998
  end-page: 133
  ident: b5
  article-title: Multitask learning
  publication-title: Autonomous Agents and Multi-Agent Systems
  contributor:
    fullname: Caruana
– volume: 6
  start-page: 422
  year: 2015
  end-page: 433
  ident: b9
  article-title: Wind power ramp event forecasting using a stochastic scenario generation method
  publication-title: IEEE Transactions on Sustainable Energy
  contributor:
    fullname: Hodge
– volume: 9
  start-page: 261
  year: 2017
  end-page: 272
  ident: b8
  article-title: Statistical representation of wind power ramps using a generalized gaussian mixture model
  publication-title: IEEE Transactions on Sustainable Energy
  contributor:
    fullname: Zhang
– volume: 9
  start-page: 867
  year: 2015
  end-page: 875
  ident: b18
  article-title: Identifying wind power ramp causes from multivariate datasets: a methodological proposal and its application to reanalysis data,
  publication-title: IET Renewable Power Generation
  contributor:
    fullname: Navarro
– volume: 11
  start-page: 1278
  year: 2016
  end-page: 1285
  ident: b35
  article-title: Research on wind power ramp events prediction based on strongly convective weather classification
  publication-title: IET Renewable Power Generation
  contributor:
    fullname: Xia
– volume: 58
  start-page: 44
  year: 2008
  end-page: 67
  ident: b29
  article-title: Nonlinear principal component analysis: neural network models and applications
  publication-title: Lecture Notes in Computational Science and Engineering
  contributor:
    fullname: Selbig
– volume: 239
  start-page: 1226
  year: 2019
  end-page: 1241
  ident: b24
  article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models
  publication-title: Applied Energy
  contributor:
    fullname: Ragno
– volume: 259
  start-page: 703
  year: 2017
  end-page: 712
  ident: b33
  article-title: Probabilistic forecasting of wind power ramp events using autoregressive logit models
  publication-title: European Journal of Operational Research
  contributor:
    fullname: Taylor
– volume: 256
  start-page: 113842
  year: 2019
  ident: b31
  article-title: Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation
  publication-title: Applied Energy
  contributor:
    fullname: Zhang
– volume: 52
  start-page: 1148
  year: 2015
  end-page: 1157
  ident: b17
  article-title: A review on the recent history of wind power ramp forecasting
  publication-title: Renewable and Sustainable Energy Reviews
  contributor:
    fullname: López-García
– volume: vol. 9868
  start-page: 300
  year: 2016
  end-page: 309
  ident: b14
  article-title: Multiclass prediction of wind power ramp events combining reservoir computing and support vector machines
  publication-title: Conference of the Spanish Association for Artificial Intelligence
  contributor:
    fullname: Hervás-Martínez
– volume: 75
  start-page: 767
  year: 2015
  end-page: 778
  ident: b4
  article-title: Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in great britain
  publication-title: Renewable Energy
  contributor:
    fullname: Lenaghan
– volume: 163
  start-page: 423
  year: 2017
  end-page: 446
  ident: b19
  article-title: Improving wind-ramp forecast in the stable boundary layer
  publication-title: Bounday-Layer Meteorology
  contributor:
    fullname: Gallus
– volume: 96
  start-page: 574
  year: 2016
  end-page: 582
  ident: b28
  article-title: Do current wind farms in spain take maximum advantage of spatiotemporal balancing of the wind resource?
  publication-title: Renewable Energy
  contributor:
    fullname: Pozo-Vázquez
– volume: 27
  start-page: 2426
  year: 2016
  end-page: 2439
  ident: b39
  article-title: Group component analysis for multiblock data: common and individual feature extraction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  contributor:
    fullname: Mandic
– volume: 75
  start-page: 93
  year: 2015
  end-page: 101
  ident: b27
  article-title: A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction
  publication-title: Renewable Energy
  contributor:
    fullname: Geem
– volume: 12
  start-page: 149
  year: 2000
  end-page: 198
  ident: b2
  article-title: A model of inductive bias learning
  publication-title: Journal of Artificial Intelligence Research
  contributor:
    fullname: Baxter
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  ident: b10
  article-title: The era-interim reanalysis: configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
  contributor:
    fullname: Poli
– volume: 11
  start-page: 705
  year: 2018
  end-page: 723
  ident: b40
  article-title: Wind speed prediction with spatio-temporal correlation: A deep learning approach
  publication-title: Energies
  contributor:
    fullname: Liu
– volume: 81
  start-page: 2684
  year: 2018
  end-page: 2694
  ident: b6
  article-title: Spatio-temporal analysis of wind resource in the iberian peninsula with data-coupled clustering
  publication-title: Renewable & Sustainable Energy Reviews
  contributor:
    fullname: Salcedo-Sanz
– year: 2015
  ident: b32
  article-title: Going deeper with convolutions
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
  contributor:
    fullname: Rabinovich
– volume: 11
  start-page: 1270
  year: 2016
  end-page: 1277
  ident: b26
  article-title: Optimisation of time window size for wind power ramps prediction
  publication-title: IET Renewable Power Generation
  contributor:
    fullname: Kusiak
– volume: 61
  start-page: 384
  year: 2017
  end-page: 397
  ident: b34
  article-title: Solar radiation prediction using different techniques: model evaluation and comparison
  publication-title: Renewable & Sustainable Energy Reviews
  contributor:
    fullname: Gong
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b30
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research (JMLR)
  contributor:
    fullname: Salakhutdinov
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: b15
  article-title: A working guide to boosted regression trees
  publication-title: Journal of Animal Ecology
  contributor:
    fullname: Leathwick
– year: 2016
  ident: b23
  article-title: Recurrent neural network for text classification with multi-task learning
  publication-title: Computing Research Repository
  contributor:
    fullname: Huang
– volume: 46
  start-page: 829
  year: 2017
  end-page: 844
  ident: b11
  article-title: Deep neural networks for wind and solar energy prediction
  publication-title: Neural Processing Letters
  contributor:
    fullname: Dorronsoro
– volume: 17
  start-page: 1
  year: 2016
  end-page: 32
  ident: b25
  article-title: The benefit of multitask representation learning
  publication-title: Journal of Machine Learning Research (JMLR)
  contributor:
    fullname: Romera-Paredes
– volume: 73
  start-page: 243
  year: 2008
  end-page: 272
  ident: b1
  article-title: Convex multi-task feature learning
  publication-title: Machine Learning
  contributor:
    fullname: Pontil
– volume: 24
  start-page: 142
  year: 2013
  end-page: 148
  ident: b20
  article-title: Evaluating the spatio-temporal variation of china’s offshore wind resources based on remotely sensed wind field data
  publication-title: Renewable & Sustainable Energy Reviews
  contributor:
    fullname: Fu
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.neunet.2019.12.017_b30
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research (JMLR)
  contributor:
    fullname: Srivastava
– year: 2016
  ident: 10.1016/j.neunet.2019.12.017_b23
  article-title: Recurrent neural network for text classification with multi-task learning
  contributor:
    fullname: Liu
– volume: 81
  start-page: 2684
  year: 2018
  ident: 10.1016/j.neunet.2019.12.017_b6
  article-title: Spatio-temporal analysis of wind resource in the iberian peninsula with data-coupled clustering
  publication-title: Renewable & Sustainable Energy Reviews
  doi: 10.1016/j.rser.2017.06.075
  contributor:
    fullname: Chidean
– volume: 137
  start-page: 553
  year: 2011
  ident: 10.1016/j.neunet.2019.12.017_b10
  article-title: The era-interim reanalysis: configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
  doi: 10.1002/qj.828
  contributor:
    fullname: Dee
– volume: 111
  start-page: 428
  year: 2017
  ident: 10.1016/j.neunet.2019.12.017_b12
  article-title: Robust estimation of wind power ramp events with reservoir computing
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.04.016
  contributor:
    fullname: Dorado-Moreno
– volume: 11
  start-page: 1278
  year: 2016
  ident: 10.1016/j.neunet.2019.12.017_b35
  article-title: Research on wind power ramp events prediction based on strongly convective weather classification
  publication-title: IET Renewable Power Generation
  doi: 10.1049/iet-rpg.2016.0516
  contributor:
    fullname: Xiong
– volume: 6
  start-page: 422
  year: 2015
  ident: 10.1016/j.neunet.2019.12.017_b9
  article-title: Wind power ramp event forecasting using a stochastic scenario generation method
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2014.2386870
  contributor:
    fullname: Cui
– volume: vol. 10305
  start-page: 708
  year: 2017
  ident: 10.1016/j.neunet.2019.12.017_b13
  article-title: Combining reservoir computing and over-sampling for ordinal wind power ramp prediction
  contributor:
    fullname: Dorado-Moreno
– volume: 46
  start-page: 829
  year: 2017
  ident: 10.1016/j.neunet.2019.12.017_b11
  article-title: Deep neural networks for wind and solar energy prediction
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-017-9613-7
  contributor:
    fullname: Díaz-Vico
– ident: 10.1016/j.neunet.2019.12.017_b22
– volume: 9
  start-page: 867
  issue: 8
  year: 2015
  ident: 10.1016/j.neunet.2019.12.017_b18
  article-title: Identifying wind power ramp causes from multivariate datasets: a methodological proposal and its application to reanalysis data,
  publication-title: IET Renewable Power Generation
  doi: 10.1049/iet-rpg.2014.0457
  contributor:
    fullname: Gallego-Castillo
– ident: 10.1016/j.neunet.2019.12.017_b7
  doi: 10.1145/1390156.1390177
– volume: 52
  start-page: 1148
  year: 2015
  ident: 10.1016/j.neunet.2019.12.017_b17
  article-title: A review on the recent history of wind power ramp forecasting
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2015.07.154
  contributor:
    fullname: Gallego-Castillo
– ident: 10.1016/j.neunet.2019.12.017_b3
– volume: 12
  start-page: 149
  year: 2000
  ident: 10.1016/j.neunet.2019.12.017_b2
  article-title: A model of inductive bias learning
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.731
  contributor:
    fullname: Baxter
– volume: 163
  start-page: 423
  year: 2017
  ident: 10.1016/j.neunet.2019.12.017_b19
  article-title: Improving wind-ramp forecast in the stable boundary layer
  publication-title: Bounday-Layer Meteorology
  doi: 10.1007/s10546-017-0237-2
  contributor:
    fullname: Jahn
– volume: 11
  start-page: 705
  issue: 4
  year: 2018
  ident: 10.1016/j.neunet.2019.12.017_b40
  article-title: Wind speed prediction with spatio-temporal correlation: A deep learning approach
  publication-title: Energies
  doi: 10.3390/en11040705
  contributor:
    fullname: Zhu
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.neunet.2019.12.017_b25
  article-title: The benefit of multitask representation learning
  publication-title: Journal of Machine Learning Research (JMLR)
  contributor:
    fullname: Maurer
– volume: 75
  start-page: 767
  year: 2015
  ident: 10.1016/j.neunet.2019.12.017_b4
  article-title: Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in great britain
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.10.024
  contributor:
    fullname: Cannon
– volume: 9
  start-page: 261
  year: 2017
  ident: 10.1016/j.neunet.2019.12.017_b8
  article-title: Statistical representation of wind power ramps using a generalized gaussian mixture model
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2017.2727321
  contributor:
    fullname: Cui
– volume: 259
  start-page: 703
  year: 2017
  ident: 10.1016/j.neunet.2019.12.017_b33
  article-title: Probabilistic forecasting of wind power ramp events using autoregressive logit models
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.10.041
  contributor:
    fullname: Taylor
– volume: vol. 9868
  start-page: 300
  year: 2016
  ident: 10.1016/j.neunet.2019.12.017_b14
  article-title: Multiclass prediction of wind power ramp events combining reservoir computing and support vector machines
  contributor:
    fullname: Dorado-Moreno
– volume: 239
  start-page: 1226
  year: 2019
  ident: 10.1016/j.neunet.2019.12.017_b24
  article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.02.015
  contributor:
    fullname: Lucheroni
– volume: 61
  start-page: 384
  year: 2017
  ident: 10.1016/j.neunet.2019.12.017_b34
  article-title: Solar radiation prediction using different techniques: model evaluation and comparison
  publication-title: Renewable & Sustainable Energy Reviews
  doi: 10.1016/j.rser.2016.04.024
  contributor:
    fullname: Wang
– ident: 10.1016/j.neunet.2019.12.017_b38
  doi: 10.1109/WACV.2014.6835990
– volume: 73
  start-page: 243
  issue: 3
  year: 2008
  ident: 10.1016/j.neunet.2019.12.017_b1
  article-title: Convex multi-task feature learning
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5040-8
  contributor:
    fullname: Argyriou
– ident: 10.1016/j.neunet.2019.12.017_b16
  doi: 10.1145/1014052.1014067
– volume: 8
  start-page: 35
  year: 2007
  ident: 10.1016/j.neunet.2019.12.017_b36
  article-title: Multi-task learning for classification with dirichlet process priors
  publication-title: Journal of Machine Learning Research (JMLR)
  contributor:
    fullname: Xue
– ident: 10.1016/j.neunet.2019.12.017_b21
– volume: 75
  start-page: 93
  year: 2015
  ident: 10.1016/j.neunet.2019.12.017_b27
  article-title: A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.09.027
  contributor:
    fullname: Salcedo-Sanz
– volume: 24
  start-page: 142
  year: 2013
  ident: 10.1016/j.neunet.2019.12.017_b20
  article-title: Evaluating the spatio-temporal variation of china’s offshore wind resources based on remotely sensed wind field data
  publication-title: Renewable & Sustainable Energy Reviews
  doi: 10.1016/j.rser.2013.03.058
  contributor:
    fullname: Jiang
– year: 2015
  ident: 10.1016/j.neunet.2019.12.017_b32
  article-title: Going deeper with convolutions
  doi: 10.1109/CVPR.2015.7298594
  contributor:
    fullname: Szegedy
– volume: 21
  start-page: 95
  issue: 1
  year: 1998
  ident: 10.1016/j.neunet.2019.12.017_b5
  article-title: Multitask learning
  publication-title: Autonomous Agents and Multi-Agent Systems
  contributor:
    fullname: Caruana
– ident: 10.1016/j.neunet.2019.12.017_b37
– volume: 256
  start-page: 113842
  year: 2019
  ident: 10.1016/j.neunet.2019.12.017_b31
  article-title: Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.113842
  contributor:
    fullname: Sun
– volume: 58
  start-page: 44
  year: 2008
  ident: 10.1016/j.neunet.2019.12.017_b29
  article-title: Nonlinear principal component analysis: neural network models and applications
  publication-title: Lecture Notes in Computational Science and Engineering
  doi: 10.1007/978-3-540-73750-6_2
  contributor:
    fullname: Scholz
– volume: 27
  start-page: 2426
  issue: 11
  year: 2016
  ident: 10.1016/j.neunet.2019.12.017_b39
  article-title: Group component analysis for multiblock data: common and individual feature extraction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2487364
  contributor:
    fullname: Zhou
– volume: 77
  start-page: 802
  issue: 4
  year: 2008
  ident: 10.1016/j.neunet.2019.12.017_b15
  article-title: A working guide to boosted regression trees
  publication-title: Journal of Animal Ecology
  doi: 10.1111/j.1365-2656.2008.01390.x
  contributor:
    fullname: Elith
– volume: 11
  start-page: 1270
  year: 2016
  ident: 10.1016/j.neunet.2019.12.017_b26
  article-title: Optimisation of time window size for wind power ramps prediction
  publication-title: IET Renewable Power Generation
  doi: 10.1049/iet-rpg.2016.0341
  contributor:
    fullname: Ouyang
– volume: 96
  start-page: 574
  year: 2016
  ident: 10.1016/j.neunet.2019.12.017_b28
  article-title: Do current wind farms in spain take maximum advantage of spatiotemporal balancing of the wind resource?
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.05.019
  contributor:
    fullname: Santos-Alamillos
SSID ssj0006843
Score 2.5371108
Snippet In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task....
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 401
SubjectTerms Deep neural networks
Multi-output
Multi-task learning
Renewable energies
Wind power ramp events
Title Multi-task learning for the prediction of wind power ramp events with deep neural networks
URI https://dx.doi.org/10.1016/j.neunet.2019.12.017
https://www.ncbi.nlm.nih.gov/pubmed/31926464
https://search.proquest.com/docview/2336254943
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcuFSaIGyQJGRuLrrxLETHxECbVuVS0FCvVh-BVFENtqHuPHbGTsJEhJVpV6jWHZm4plv7G9mAE6Z8pYFlVGB4JYWwTpaqdjfxCLYFrYuZere8PNKTm-K77fidg3Oh1yYSKvsbX9n05O17p9MemlO2vv7yS-GrlYi4EEIwgoE1uuwge4or0awcfbtx_Tq1SDLqiPP4fs0Dhgy6BLNqwmrJkRSZabSuWDqXPauh_obAk2e6HIbPvQQkpx1q_wIa6H5BFtDewbS79Yd-J2Sa-nSLB5I3xzijiBGJYj5SDuPNzRRK2RWkyeMzEkbG6aRuXlsSSrrtCDxkJb4EFoSy17inE1HGl_sws3lxfX5lPatFKhDD7WkQnimjPIi48KxskZN5FYFjLdK7pWyUnpuWMEtc4U0VprSmVAJ540zHqNGvgejZtaEfSCx5B6vUKmuZoX13EqRo0pDrZyTXokx0EF8uu0qZuiBSvZHd-LWUdw6yzWKewzlIGP9RvMajfo_Rp4MKtG4KeJNh2nCbLXQOcevxsi34GP43OnqdS1ocxAEyuLgv-c9hM08Rt2JiXYEo-V8Fb4gNFnaY1j_-pwd9z_gC4rb46o
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOMCFtjzKtrQYqVdrvXHsrI9oVbRbYC-AhHqx_ApaULPRPtS_37GTICGBkHqNYtmZycx8Y3-eAfjBlLcsqAEVCG5pHqyjQxX7m1gE28KWhUzdG66ncnyX_7oX9xsw6u7CRFpl6_sbn568dfuk30qzX89m_RuGoVYi4EEIwnIE1puwjWhAoXVun08ux9NnhyyHDXkO36dxQHeDLtG8qrCuQiRVDlTaF0ydy16NUG8h0BSJLj7CXgshyXmzyk-wEap9-NC1ZyCttR7A73S5lq7M8om0zSEeCGJUgpiP1It4QhO1QuYl-YuZOaljwzSyMH9qkso6LUncpCU-hJrEspc4Z9WQxpeHcHfx83Y0pm0rBeowQq2oEJ4po7wYcOFYUaImMqsC5lsF90pZKT03LOeWuVwaK03hTBgK540zHrNGfgRb1bwKx0BiyT0-RKW6kuXWcytFhioNpXJOeiV6QDvx6bqpmKE7KtmjbsSto7j1INMo7h4UnYz1C81rdOrvjDzrVKLRKOJJh6nCfL3UGcevxsw35z343OjqeS3ocxAEyvzLf897Cjvj2-srfTWZXn6F3Sxm4ImVdgJbq8U6fEOYsrLf29_wHw8A5Z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+learning+for+the+prediction+of+wind+power+ramp+events+with+deep+neural+networks&rft.jtitle=Neural+networks&rft.au=Dorado-Moreno%2C+M&rft.au=Navarin%2C+N&rft.au=Guti%C3%A9rrez%2C+P+A&rft.au=Prieto%2C+L&rft.date=2020-03-01&rft.eissn=1879-2782&rft.volume=123&rft.spage=401&rft.epage=411&rft_id=info:doi/10.1016%2Fj.neunet.2019.12.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon