Discrete quantum mechanics
A comprehensive review of the discrete quantum mechanics with the pure imaginary shifts and the real shifts is presented in parallel with the corresponding results in the ordinary quantum mechanics. The main subjects to be covered are the factorized Hamiltonians, the general structure of the solutio...
Saved in:
Published in | Journal of physics. A, Mathematical and theoretical Vol. 44; no. 35; pp. 353001 - 47 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP
02.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A comprehensive review of the discrete quantum mechanics with the pure imaginary shifts and the real shifts is presented in parallel with the corresponding results in the ordinary quantum mechanics. The main subjects to be covered are the factorized Hamiltonians, the general structure of the solution spaces of the Schrodinger equation (Crum's theorem and its modification), the shape invariance, the exact solvability in the Schrodinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, the unified theory of exact and quasi-exact solvability based on the sinusoidal coordinates, and the infinite families of new orthogonal (the exceptional) polynomials. Two newinfinite families of orthogonal polynomials, the X sub(l)Meixner-Pollaczek and the X sub(l)Meixner polynomials, are reported. |
---|---|
AbstractList | A comprehensive review of the discrete quantum mechanics with the pure imaginary shifts and the real shifts is presented in parallel with the corresponding results in the ordinary quantum mechanics. The main subjects to be covered are the factorized Hamiltonians, the general structure of the solution spaces of the Schrodinger equation (Crum's theorem and its modification), the shape invariance, the exact solvability in the Schrodinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, the unified theory of exact and quasi-exact solvability based on the sinusoidal coordinates, and the infinite families of new orthogonal (the exceptional) polynomials. Two newinfinite families of orthogonal polynomials, the X sub(l)Meixner-Pollaczek and the X sub(l)Meixner polynomials, are reported. |
Author | Sasaki, Ryu Odake, Satoru |
Author_xml | – sequence: 1 givenname: Satoru surname: Odake fullname: Odake, Satoru – sequence: 2 givenname: Ryu surname: Sasaki fullname: Sasaki, Ryu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24522654$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQhoNUsK3-AQ_Si-BlbSYfuy14kdYvKHjRc5hOsxjZzbZJ9uC_N6XVgxdhYAbmfecdnhEb-M5bxq6A3wKfzaZQaShmAHKq1FTqXJJzOGHD40LA4HcGecZGMX5yrhWfiyG7XLpIwSY72fXoU99OWksf6B3Fc3ZaYxPtxbGP2fvjw9viuVi9Pr0s7lcFyVKkQtZqI3mFiGW13miLim8EV1og1RzmsrRKU245fE5Kg1rrEqiqxFqjJkI5ZjeHu9vQ7Xobk2nzT7Zp0NuujwZKwbkCpWWWXh-lGAmbOqAnF802uBbDlxE5VZRaZd3dQUehizHY2pBLmFznU0DXGOBmj87sqZg9FaOUkdoc0GV7-cf-k_CP8Rs8FnEh |
CitedBy_id | crossref_primary_10_1063_1_4941087 crossref_primary_10_1063_1_5021462 crossref_primary_10_1063_1_4921230 crossref_primary_10_1103_PhysRevB_106_094205 crossref_primary_10_1063_1_4966985 crossref_primary_10_1063_1_4880200 crossref_primary_10_1016_j_physleta_2016_08_047 crossref_primary_10_1002_andp_202300488 crossref_primary_10_1063_1_4918707 crossref_primary_10_1093_ptep_pty076 crossref_primary_10_1063_1_4744964 crossref_primary_10_1093_ptep_ptad077 crossref_primary_10_1093_ptep_ptx165 crossref_primary_10_1063_5_0207300 crossref_primary_10_1093_ptep_ptz124 crossref_primary_10_1016_j_heliyon_2024_e34402 crossref_primary_10_1103_PhysRevA_96_042106 crossref_primary_10_1142_S021797921350135X crossref_primary_10_1007_s12043_019_1787_2 crossref_primary_10_1063_1_5038057 crossref_primary_10_1016_j_aop_2014_06_016 crossref_primary_10_1016_j_jmaa_2024_128591 crossref_primary_10_1016_j_jmaa_2012_10_032 crossref_primary_10_1063_5_0006440 crossref_primary_10_1063_5_0152234 crossref_primary_10_1007_s00220_015_2467_9 crossref_primary_10_1007_s00220_019_03323_9 crossref_primary_10_1038_s41467_024_49747_3 crossref_primary_10_1063_1_5144338 crossref_primary_10_1093_ptep_ptx051 crossref_primary_10_1063_1_4826475 crossref_primary_10_1016_j_jat_2014_04_009 crossref_primary_10_1063_1_3671966 crossref_primary_10_1007_s11785_016_0544_5 crossref_primary_10_1016_j_aop_2014_09_022 crossref_primary_10_1063_1_4819255 crossref_primary_10_1063_1_4926351 crossref_primary_10_1063_1_4859795 |
Cites_doi | 10.1007/BF01017247 10.1063/1.1927080 10.1016/0370-1573(94)00080-M 10.1007/BF02748213 10.1016/j.physletb.2009.12.062 10.1017/CBO9781107325937 10.1016/j.physletb.2008.03.043 10.1103/PhysRevD.20.1342 10.1137/0513044 10.2991/jnmp.2005.12.s1.53 10.1143/PTP.126.1 10.1088/0305-4470/28/10/002 10.1063/1.1367328 10.1088/0305-4470/32/1/013 10.1143/PTP.114.1245 10.1063/1.3215983 10.1016/j.physletb.2006.08.017 10.1007/s11232-008-0044-5 10.1088/0305-4470/35/33/306 10.1088/1751-8113/42/40/404009 10.1006/aphy.1998.5856 10.1063/1.1429321 10.1088/1751-8113/43/33/335201 10.1088/0305-4470/28/13/003 10.1088/1751-8113/43/31/315204 10.1063/1.1665604 10.1063/1.2898695 10.1088/0305-4470/37/49/006 10.1007/978-3-642-61544-3 10.1016/0003-4916(92)90336-K 10.1063/1.2818560 10.1098/rsta.2010.0262 10.1155/S1073792897000251 10.1143/PTP.122.1067 10.1016/j.cam.2006.11.004 10.1007/BF01035458 10.1143/PTP.124.1 10.1007/BF01466727 10.1103/PhysRevD.20.1332 10.1016/S0375-9601(97)00422-2 10.1006/aphy.2001.6169 10.4310/MAA.1999.v6.n3.a1 10.1007/BF01207363 10.1016/j.jat.2009.11.002 10.1007/BF01180560 10.1016/0375-9601(93)90137-O 10.1088/0305-4470/34/44/313 10.1093/qmath/6.1.121 10.1016/S0377-0427(99)00090-4 10.1016/0022-247X(69)90037-7 10.1016/S0370-2693(01)00250-7 10.1007/s12043-009-0126-4 10.1007/BF01614245 10.2991/jnmp.2005.12.s1.41 10.1016/0377-0427(95)00262-6 10.1063/1.531122 10.1007/BF00760860 10.1063/1.530498 10.1007/978-1-4899-1219-0_5 10.2991/jnmp.2008.15.s3.36 10.1007/BF02785163 10.1143/PTP.119.663 10.1007/BF01015906 10.1088/0305-4470/37/2/015 10.1103/PhysRevLett.41.207 10.1016/0001-8708(75)90151-6 10.1088/0305-4470/34/28/303 10.1016/S0550-3213(01)00389-3 10.1007/978-3-642-74748-9 10.1103/RevModPhys.23.21 10.1016/0550-3213(81)90006-7 10.1143/PTP.125.851 10.1103/PhysRevA.5.1372 10.1088/1751-8113/40/31/009 10.1016/0003-4916(86)90097-7 10.1142/S0217751X90000374 10.1090/coll/023 10.1063/1.3339676 10.1143/PTP.103.463 10.1088/0305-4470/34/47/502 10.1063/1.2349485 10.1016/j.physletb.2009.10.078 10.1112/plms/s1-16.1.245 10.1016/0375-9601(93)91182-5 10.1016/j.jmaa.2009.05.052 10.1016/j.physletb.2009.08.004 10.1017/CBO9780511526251 10.1016/S0375-9601(01)00249-3 10.1088/0305-4470/33/49/303 10.1017/CBO9781107325982 10.1088/0305-4470/37/35/008 10.1103/PhysRevD.20.1321 10.1088/0305-4470/30/21/030 10.1088/0305-4470/21/4/002 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7U5 8FD H8D L7M |
DOI | 10.1088/1751-8113/44/35/353001 |
DatabaseName | CrossRef Pascal-Francis Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1751-8121 |
EndPage | 47 |
ExternalDocumentID | 24522654 10_1088_1751_8113_44_35_353001 |
GroupedDBID | 1JI 1WK 4.4 5B3 5GY 5VS 5ZH 5ZI 6TJ 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI AAYXX ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT ADEQX AEFHF AERVB AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CITATION CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L NT- NT. PJBAE Q02 RIN RNS RO9 ROL RPA SY9 TN5 W28 02O AFFNX CBCFC CEBXE H~9 IQODW 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c362t-3f4d307aaa67bd5ea40d20452acf01936e45c9368119c4514b561c772b5a5cca3 |
ISSN | 1751-8113 |
IngestDate | Fri Jul 11 16:06:40 EDT 2025 Mon Jul 21 09:15:35 EDT 2025 Tue Jul 01 02:32:25 EDT 2025 Thu Apr 24 22:52:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | Hamiltonians Quantum mechanics Dynamical symmetry Unified theory Annihilation operators Schroedinger equation Creation operators Invariance Heisenberg picture Solvability Orthogonal polynomial |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c362t-3f4d307aaa67bd5ea40d20452acf01936e45c9368119c4514b561c772b5a5cca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://soar-ir.repo.nii.ac.jp/records/11740 |
PQID | 1620041453 |
PQPubID | 23500 |
PageCount | 47 |
ParticipantIDs | proquest_miscellaneous_1620041453 pascalfrancis_primary_24522654 crossref_citationtrail_10_1088_1751_8113_44_35_353001 crossref_primary_10_1088_1751_8113_44_35_353001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-02 |
PublicationDateYYYYMMDD | 2011-09-02 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. A, Mathematical and theoretical |
PublicationYear | 2011 |
Publisher | IOP |
Publisher_xml | – name: IOP |
References | 88 89 Odake S (119) 2005; 18 Gazeau J P (77) 1999; 32 112 113 Darboux G (59) 1882; 94 114 90 Gómez-Ullate D (107) 2010; 43 Ismail M E H (5) 2005 91 118 93 94 95 96 97 10 11 Corrigan E (108) 2002; 35 12 15 19 Koekoek R Swarttouw R F (6) 1996 Odake S (20) 2008; 49 Gómez-Ullate D Kamran N Milson R (101) 2011 120 1 4 7 8 Floreanini R (84) 1995; 28 Terwilliger P (34) 2004 21 22 24 25 26 27 Stieltjes T (109) 1885; 100 29 Gendenshtein L E (30) 1983; 38 Odake S (14) 2006; 47 32 Odake S (16) 2007; 48 35 Chihara T S (70) 1978 van Diejen J F (57) 1996 Gaillard P (60) 2009; 42 Spiridonov V (43) 1997; 30 Andrews G E (3) 1999 Risken H (67) 1996 Odake S (39) 2011; 44 40 41 42 44 46 47 48 49 Dabrowska J W (31) 1988; 21 Vinet L (75) 2008; 4 Askey R (83) 1993; 6 Odake S (13) 2005; 46 50 52 53 Ho C-L Odake S Sasaki R (9) 2009 54 56 Parthasarathy P R (68) 2004 58 Odake S (117) 2005; 46 Sasaki R (69) 2009; 50 Szegö G (111) 1939 Sasaki R (99) 2001; 34 Ushveridze A G (98) 1988; 2 Quesne C (105) 2009; 5 van Diejen J F (55) 1995; 28 Bannai E (33) 1984 Odake S (38) 2010; 43 Stieltjes T (110) 1885; 100 61 62 63 64 Quesne C (92) 2008; 41 65 Odake S (17) 2007; 48 Khastgir S P (51) 2000; 33 Sasaki R (100) 2001; 34 Krein M G (28) 1957; 113 Dutta D (106) 2010; 51 Odake S (23) 2010; 51 Sasaki R (18) 2007; 48 71 72 73 Ragnisco O (115) 2004; 37 74 76 78 79 Odake S (36) 2010; 51 Alexio A N F (81) 2004; 37 Ho C-L Sasaki R (102) 2011 Nikiforov A F (2) 1991 Atakishiyev M N (85) 2007; 40 Yermolayeva O (66) 1999; 6 103 104 Odake S (116) 2004; 37 Sasaki R (37) 2010; 43 80 82 Bangerezako G (45) 2001; 34 86 87 |
References_xml | – ident: 82 doi: 10.1007/BF01017247 – volume: 46 year: 2005 ident: 117 publication-title: J. Math. Phys. doi: 10.1063/1.1927080 – ident: 62 doi: 10.1016/0370-1573(94)00080-M – ident: 112 doi: 10.1007/BF02748213 – ident: 8 doi: 10.1016/j.physletb.2009.12.062 – year: 1999 ident: 3 publication-title: Special Functions doi: 10.1017/CBO9781107325937 – ident: 19 doi: 10.1016/j.physletb.2008.03.043 – ident: 74 doi: 10.1103/PhysRevD.20.1342 – ident: 32 doi: 10.1137/0513044 – ident: 120 doi: 10.2991/jnmp.2005.12.s1.53 – ident: 26 doi: 10.1143/PTP.126.1 – volume: 28 start-page: L287 issn: 0305-4470 year: 1995 ident: 84 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/28/10/002 – volume: 100 start-page: 620 year: 1885 ident: 110 publication-title: Comptes Rendus – volume: 44 issn: 1751-8113 year: 2011 ident: 39 publication-title: J. Phys. A: Math. Theor. – year: 1996 ident: 6 – ident: 78 doi: 10.1063/1.1367328 – volume: 41 issn: 1751-8113 year: 2008 ident: 92 publication-title: J. Phys. A: Math. Theor. – volume: 32 start-page: 123 issn: 0305-4470 year: 1999 ident: 77 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/32/1/013 – ident: 118 doi: 10.1143/PTP.114.1245 – year: 2004 ident: 34 publication-title: Universidad Carlos III de Madrid, Leganes, Spain – volume: 50 year: 2009 ident: 69 publication-title: J. Math. Phys. doi: 10.1063/1.3215983 – ident: 15 doi: 10.1016/j.physletb.2006.08.017 – ident: 86 doi: 10.1007/s11232-008-0044-5 – volume: 35 start-page: 7017 issn: 0305-4470 year: 2002 ident: 108 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/35/33/306 – volume: 43 issn: 1751-8113 year: 2010 ident: 107 publication-title: J. Phys. A: Math. Theor. – volume: 42 issn: 1751-8113 year: 2009 ident: 60 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/42/40/404009 – ident: 104 doi: 10.1006/aphy.1998.5856 – ident: 80 doi: 10.1063/1.1429321 – volume: 43 issn: 1751-8113 year: 2010 ident: 38 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/43/33/335201 – volume: 28 start-page: L369 issn: 0305-4470 year: 1995 ident: 55 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/28/13/003 – volume: 5 start-page: 084 year: 2009 ident: 105 publication-title: SIGMA – volume: 43 issn: 1751-8113 year: 2010 ident: 37 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/43/31/315204 – volume: 2 start-page: 50, 54–8 year: 1988 ident: 98 publication-title: Sov. Phys.—Lebedev Inst. Rep. – volume: 51 year: 2010 ident: 23 publication-title: J. Math. Phys. – year: 2009 ident: 9 – year: 2004 ident: 68 publication-title: Birth and Death Processes (BDP) Models with Applications – ident: 47 doi: 10.1063/1.1665604 – volume: 49 year: 2008 ident: 20 publication-title: J. Math. Phys. doi: 10.1063/1.2898695 – volume: 37 start-page: 11841 issn: 0305-4470 year: 2004 ident: 116 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/49/006 – year: 1996 ident: 67 publication-title: The Fokker–Planck Equation doi: 10.1007/978-3-642-61544-3 – ident: 87 doi: 10.1016/0003-4916(92)90336-K – year: 2011 ident: 101 – volume: 48 year: 2007 ident: 18 publication-title: J. Math. Phys. doi: 10.1063/1.2818560 – ident: 40 doi: 10.1098/rsta.2010.0262 – volume: 4 start-page: 015 year: 2008 ident: 75 publication-title: SIGMA – volume: 18 start-page: 85 year: 2005 ident: 119 publication-title: Rokko Lectures Math. (Kobe University) – ident: 1 doi: 10.1155/S1073792897000251 – ident: 24 doi: 10.1143/PTP.122.1067 – ident: 95 doi: 10.1016/j.cam.2006.11.004 – ident: 29 doi: 10.1007/BF01035458 – volume: 38 start-page: 356 year: 1983 ident: 30 publication-title: JETP Lett. – ident: 25 doi: 10.1143/PTP.124.1 – ident: 97 doi: 10.1007/BF01466727 – ident: 73 doi: 10.1103/PhysRevD.20.1332 – ident: 103 doi: 10.1016/S0375-9601(97)00422-2 – volume: 46 year: 2005 ident: 13 publication-title: J. Math. Phys. doi: 10.1063/1.1927080 – ident: 58 doi: 10.1006/aphy.2001.6169 – volume: 6 start-page: 1 issn: 1073-2772 year: 1999 ident: 66 publication-title: Methods Appl. Anal. doi: 10.4310/MAA.1999.v6.n3.a1 – volume: 100 start-page: 439 year: 1885 ident: 109 publication-title: Comptes Rendus – ident: 53 doi: 10.1007/BF01207363 – ident: 90 doi: 10.1016/j.jat.2009.11.002 – ident: 89 doi: 10.1007/BF01180560 – ident: 63 doi: 10.1016/0375-9601(93)90137-O – volume: 34 start-page: 9533 issn: 0305-4470 year: 2001 ident: 99 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/44/313 – ident: 27 doi: 10.1093/qmath/6.1.121 – ident: 44 doi: 10.1016/S0377-0427(99)00090-4 – ident: 42 doi: 10.1016/0022-247X(69)90037-7 – ident: 65 doi: 10.1016/S0370-2693(01)00250-7 – ident: 93 doi: 10.1007/s12043-009-0126-4 – ident: 114 doi: 10.1007/BF01614245 – ident: 12 doi: 10.2991/jnmp.2005.12.s1.41 – ident: 94 doi: 10.1016/0377-0427(95)00262-6 – ident: 56 doi: 10.1063/1.531122 – ident: 46 doi: 10.1007/BF00760860 – ident: 54 doi: 10.1063/1.530498 – volume: 6 start-page: 57 year: 1993 ident: 83 publication-title: Symmetries in Science doi: 10.1007/978-1-4899-1219-0_5 – ident: 22 doi: 10.2991/jnmp.2008.15.s3.36 – ident: 113 doi: 10.1007/BF02785163 – ident: 21 doi: 10.1143/PTP.119.663 – ident: 35 doi: 10.1007/BF01015906 – volume: 37 start-page: 469 issn: 0305-4470 year: 2004 ident: 115 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/2/015 – ident: 71 doi: 10.1103/PhysRevLett.41.207 – volume: 48 year: 2007 ident: 16 publication-title: J. Math. Phys. – ident: 49 doi: 10.1016/0001-8708(75)90151-6 – volume: 34 start-page: 5653 issn: 0305-4470 year: 2001 ident: 45 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/28/303 – start-page: 470 year: 1996 ident: 57 publication-title: Proc. 4th Wigner Symposium (Guadalajara, 1995) – ident: 64 doi: 10.1016/S0550-3213(01)00389-3 – year: 2011 ident: 102 – year: 1991 ident: 2 publication-title: Classical Orthogonal Polynomials of a Discrete Variable doi: 10.1007/978-3-642-74748-9 – ident: 41 doi: 10.1103/RevModPhys.23.21 – ident: 61 doi: 10.1016/0550-3213(81)90006-7 – ident: 11 doi: 10.1143/PTP.125.851 – ident: 48 doi: 10.1103/PhysRevA.5.1372 – volume: 40 start-page: 9311 issn: 1751-8113 year: 2007 ident: 85 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/31/009 – volume: 48 year: 2007 ident: 17 publication-title: J. Math. Phys. – ident: 52 doi: 10.1016/0003-4916(86)90097-7 – ident: 96 doi: 10.1142/S0217751X90000374 – volume: 94 start-page: 1456 issn: 1620-7742 year: 1882 ident: 59 publication-title: C. R. Acad. Sci. – year: 1939 ident: 111 publication-title: Orthogonal Polynomials doi: 10.1090/coll/023 – volume: 51 year: 2010 ident: 36 publication-title: J. Math. Phys. – volume: 51 year: 2010 ident: 106 publication-title: J. Math. Phys. doi: 10.1063/1.3339676 – ident: 50 doi: 10.1143/PTP.103.463 – volume: 113 start-page: 970 year: 1957 ident: 28 publication-title: Dokl. Acad. Nauk. CCCP – volume: 34 start-page: 10335 issn: 0305-4470 year: 2001 ident: 100 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/47/502 – volume: 47 year: 2006 ident: 14 publication-title: J. Math. Phys. doi: 10.1063/1.2349485 – ident: 10 doi: 10.1016/j.physletb.2009.10.078 – year: 1984 ident: 33 publication-title: Algebraic Combinatorics: I. Association Schemes – ident: 88 doi: 10.1112/plms/s1-16.1.245 – ident: 76 doi: 10.1016/0375-9601(93)91182-5 – ident: 91 doi: 10.1016/j.jmaa.2009.05.052 – ident: 7 doi: 10.1016/j.physletb.2009.08.004 – ident: 4 doi: 10.1017/CBO9780511526251 – ident: 79 doi: 10.1016/S0375-9601(01)00249-3 – volume: 33 start-page: 9033 issn: 0305-4470 year: 2000 ident: 51 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/33/49/303 – year: 2005 ident: 5 publication-title: Classical and Quantum Orthogonal Polynomials in One Variable doi: 10.1017/CBO9781107325982 – volume: 37 start-page: 8513 issn: 0305-4470 year: 2004 ident: 81 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/35/008 – ident: 72 doi: 10.1103/PhysRevD.20.1321 – year: 1978 ident: 70 publication-title: An Introduction to Orthogonal Polynomials – volume: 30 start-page: 7621 issn: 0305-4470 year: 1997 ident: 43 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/30/21/030 – volume: 21 start-page: L195 issn: 0305-4470 year: 1988 ident: 31 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/21/4/002 |
SSID | ssj0054092 |
Score | 2.2653844 |
SecondaryResourceType | review_article |
Snippet | A comprehensive review of the discrete quantum mechanics with the pure imaginary shifts and the real shifts is presented in parallel with the corresponding... |
SourceID | proquest pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 353001 |
SubjectTerms | Algebra Exact sciences and technology Mathematical analysis Physics Pictures Polynomials Quantum mechanics Schroedinger equation Solution space Symmetry |
Title | Discrete quantum mechanics |
URI | https://www.proquest.com/docview/1620041453 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVrx6AwxrauNN1WMthbcRJbH7Ufy9bSja4tJYG8CUmWodCmZUketl-_cy3LdchgXV-UICI7vkcfR9c69zL2WVa2KnKlktyWtbfKJoWpPIicE4fOSSsUqZF_nKvTifg-ldOHfHm1umRhB-73X3UlT0EVdcCVVLL_gWx7UVTgO_BFCYRRPgrjr9cY9GC9JI3E2nF7cOtJyBsPsK9zzuDHmA8OjoJOJ4ZsbQIGdFSNrfO1NM3xHdqdL1uHjJmbkPD66tey6zkgV2iRjDrORDCHNMnToAUd-G5dUC3HGTJEaGx6Aped-S7tLJwhcubalIxpjLwD8V6Ua0mg4LIu-KjxZaxEwj6_0CeTszM9Pp6ON9jzDFsAyk7x7eIyrrIgmnXC6_a6Uf2NDX1bNxRiyOUw3GWFeLy8N3PYsgrJS9bW4ZpcjF-zVw1C_aMA8Rv2zM_esheXAa1ttheB7jdA91ug37HJyfH4y2nSJLVIHLjCIuGVKDGvGmPUoS2lN2JUUkqAzLgKdJsrL6TDB_5_4QTorAXDdTCAlUZiuPEdtjm7m_ld1sdzZqWowMHKAhfNC6eySnqMECdJT91jMj6xdk3Ed0o8cqPrkwd5rslSmiylhdBc6mCpHhu27e5DzJN_tthfMWjbjN7rZ0qKHvsULawxf9FLKTPzd8u5ThWN6FRIvveI37xnWw89-QPbXPxc-o9ghQu7X3ePP4LDWIw |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+quantum+mechanics&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Odake%2C+Satoru&rft.au=Sasaki%2C+Ryu&rft.date=2011-09-02&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=44&rft.issue=35&rft.spage=1&rft.epage=47&rft_id=info:doi/10.1088%2F1751-8113%2F44%2F35%2F353001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |