From kesterite 2D nanosheets to wurtzite 1D nanorods: controllable synthesis of Cu−Zn−Sn−S and their application in electrocatalytic hydrogen evolution
As typical quarternary copper-based chalcogenides, Cu–Zn–Sn–S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution reactions (HERs). Oleylamine (OM), a reducing surfactant and solvent, plays a significant role in the assisting synthesis of CZTS NCs due to the...
Saved in:
Published in | Journal of semiconductors Vol. 44; no. 12; pp. 122701 - 120 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Institute of Electronics
01.12.2023
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As typical quarternary copper-based chalcogenides, Cu–Zn–Sn–S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution reactions (HERs). Oleylamine (OM), a reducing surfactant and solvent, plays a significant role in the assisting synthesis of CZTS NCs due to the ligand effect. Herein, we adopted a facile one-pot colloidal method for achieving the structure evolution of CZTS NCs from 2D nanosheets to 1D nanorods assisted through the continuous addition of OM. During the process, the mechanism of OM-induced morphology evolution was further discussed. When merely adding pure 1-dodecanethiol (DDT) as the solvent, the CZTS nanosheets were obtained. As OM was gradually added to the reaction, the CZTS NCs began to grow along the sides of the nanosheets and gradually shrink at the top, followed by the formation of stable nanorods. In acidic electrolytic conditions, the CZTS NCs with 1.0 OM addition display the optimal HER activity with a low overpotential of 561 mV at 10 mA/cm
2
and a small Tafel slope of 157.6 mV/dec compared with other CZTS samples. The enhancement of HER activity could be attributed to the contribution of the synergistic effect of the diverse crystal facets to the reaction. |
---|---|
AbstractList | As typical quarternary copper-based chalcogenides, Cu–Zn–Sn–S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution reactions (HERs). Oleylamine (OM), a reducing surfactant and solvent, plays a significant role in the assisting synthesis of CZTS NCs due to the ligand effect. Herein, we adopted a facile one-pot colloidal method for achieving the structure evolution of CZTS NCs from 2D nanosheets to 1D nanorods assisted through the continuous addition of OM. During the process, the mechanism of OM-induced morphology evolution was further discussed. When merely adding pure 1-dodecanethiol (DDT) as the solvent, the CZTS nanosheets were obtained. As OM was gradually added to the reaction, the CZTS NCs began to grow along the sides of the nanosheets and gradually shrink at the top, followed by the formation of stable nanorods. In acidic electrolytic conditions, the CZTS NCs with 1.0 OM addition display the optimal HER activity with a low overpotential of 561 mV at 10 mA/cm
2
and a small Tafel slope of 157.6 mV/dec compared with other CZTS samples. The enhancement of HER activity could be attributed to the contribution of the synergistic effect of the diverse crystal facets to the reaction. As typical quarternary copper-based chalcogenides, Cu-Zn-Sn-S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution reactions (HERs). Oleylamine (OM), a reducing surfactant and solvent, plays a sig-nificant role in the assisting synthesis of CZTS NCs due to the ligand effect. Herein, we adopted a facile one-pot colloidal method for achieving the structure evolution of CZTS NCs from 2D nanosheets to 1D nanorods assisted through the continu-ous addition of OM. During the process, the mechanism of OM-induced morphology evolution was further discussed. When merely adding pure 1-dodecanethiol (DDT) as the solvent, the CZTS nanosheets were obtained. As OM was gradually added to the reaction, the CZTS NCs began to grow along the sides of the nanosheets and gradually shrink at the top, followed by the for-mation of stable nanorods. In acidic electrolytic conditions, the CZTS NCs with 1.0 OM addition display the optimal HER activ-ity with a low overpotential of 561 mV at 10 mA/cm2 and a small Tafel slope of 157.6 mV/dec compared with other CZTS sam-ples. The enhancement of HER activity could be attributed to the contribution of the synergistic effect of the diverse crystal facets to the reaction. |
Author | Li, Yu Yang, Chunhe Yin, Zhe Lin, Ouyang Tang, Aiwei Wang, Shuaibing Chen, Jie |
AuthorAffiliation | Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China |
AuthorAffiliation_xml | – name: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China |
Author_xml | – sequence: 1 givenname: Yu surname: Li fullname: Li, Yu organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China – sequence: 2 givenname: Shuaibing surname: Wang fullname: Wang, Shuaibing organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China – sequence: 3 givenname: Jie surname: Chen fullname: Chen, Jie organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China – sequence: 4 givenname: Ouyang surname: Lin fullname: Lin, Ouyang organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China – sequence: 5 givenname: Zhe surname: Yin fullname: Yin, Zhe organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China – sequence: 6 givenname: Chunhe surname: Yang fullname: Yang, Chunhe organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China – sequence: 7 givenname: Aiwei surname: Tang fullname: Tang, Aiwei organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China |
BookMark | eNqFkc9qFTEUxoO04G3rK0hW4ma8-dfMXHEjV6tCoYvqxk04k0l6c02TIcltvT6Ba_e-nE9ipiOKIhTCCSff7ztJzjlCByEGg9BjSp5R0nVLKlvRiBWTSyGWlNXFWkIfoAUjp10jqSAHaPEbeoiOct4SUnNBF-j7WYrX-JPJxSRXDGavcIAQ88aYknGJ-HaXypdJobOS4pCfYx1DSdF76L3BeR_KxmSXcbR4vfvx9dvHUMPlXcAQBlxllzCMo3caiosBu4CNN7oWqQfg98VpvNkPKV6ZqtxEv5uwE3RowWfz6Nd-jD6cvX6_ftucX7x5t3553mguWWm4oJa3PQydGeRAACQfCAHRs572WkppCIdWWLuSIBgH0PKUtoJ2K8tZawk_Rk_murcQLIQrtY27FOqNqh_K554RxikjdAJfzKBOMedkrNKu3P2oJHBeUaKmmaip3WpqtxJCUabmmVS7_Mc-JncNaX-_8elsdHH887htzH9hahxsRdl_0Hvq_wQH1LQ0 |
CitedBy_id | crossref_primary_10_1002_adfm_202407271 crossref_primary_10_1021_acs_energyfuels_4c06111 crossref_primary_10_1016_j_surfin_2024_104793 crossref_primary_10_1039_D3NR06037C crossref_primary_10_3389_fchem_2024_1394191 crossref_primary_10_3390_cryst14050479 crossref_primary_10_1016_j_ijhydene_2024_08_242 crossref_primary_10_1039_D4TA03912B crossref_primary_10_1002_adom_202400762 |
Cites_doi | 10.1039/C8TA05395B 10.1039/C8NR07353H 10.1016/j.rser.2011.07.095 10.1016/j.matdes.2018.04.015 10.1021/acs.chemrev.1c00876 10.1016/j.cej.2022.139513 10.1088/1674-4926/41/9/091706 10.1088/1674-4926/41/9/091702 10.1021/acsomega.8b03587 10.1016/j.ijhydene.2022.06.049 10.1016/j.ijhydene.2019.07.026 10.1016/j.jelechem.2021.114983 10.1021/acsomega.9b01680 10.1039/C5DT01111F 10.1021/cm4000476 10.1002/anie.202110186 10.1088/1674-4926/43/3/032701 10.1016/j.apsusc.2017.03.262 10.1039/C8RA01886C 10.1021/acsami.3c00781 10.1016/j.ijhydene.2019.02.054 10.1039/C4CS00448E 10.1016/j.ijhydene.2019.12.059 10.1039/C4TA06551D 10.1002/adfm.202110910 10.1002/admi.202202075 10.1007/s12598-021-01955-2 10.1021/jp307346k 10.1021/acs.chemrev.9b00248 10.1088/1674-4926/38/3/033007 10.1021/acs.accounts.0c00765 |
ContentType | Journal Article |
Copyright | 2023 Chinese Institute of Electronics Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Chinese Institute of Electronics – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-4926/44/12/122701 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2058-6140 |
EndPage | 120 |
ExternalDocumentID | bdtxb202312010 10_1088_1674_4926_44_12_122701 jos_44_12_122701 |
GroupedDBID | -SI -S~ 4.4 5B3 5VR 5VS 5XA 5XJ 7.M 93N AAGCD AAJIO AATNI AAXDM ABHWH ACAFW ACGFO ACGFS ACHIP AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEI CCEZO CEBXE CHBEP CJUJL CRLBU CUBFJ CW9 EBS EDWGO EQZZN FA0 IJHAN IOP IZVLO KOT N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGT U1G U5S W28 AAYXX CITATION TGMPQ 02O 042 1WK 2B. 4A8 92H 92I AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD JCGBZ M45 NS0 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c362t-341f37bad8ed6d0aa63d00a4b2b1bc666e03a74ff96a423aac65174189f327f03 |
IEDL.DBID | IOP |
ISSN | 1674-4926 |
IngestDate | Thu May 29 04:06:49 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Tue Jul 01 03:20:35 EDT 2025 Sun Aug 18 15:30:27 EDT 2024 Tue Aug 20 22:14:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | 2D nanosheets electrocatalytic hydrogen evolution Cu-Zn-Sn-S structure evolution 1D nanorods |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-341f37bad8ed6d0aa63d00a4b2b1bc666e03a74ff96a423aac65174189f327f03 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1088_1674_4926_44_12_122701 iop_journals_10_1088_1674_4926_44_12_122701 wanfang_journals_bdtxb202312010 crossref_primary_10_1088_1674_4926_44_12_122701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of semiconductors |
PublicationTitleAlternate | J. Semicond |
PublicationTitle_FL | Journal of Semiconductors |
PublicationYear | 2023 |
Publisher | Chinese Institute of Electronics Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China |
Publisher_xml | – name: Chinese Institute of Electronics – name: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China |
References | Zou (jos_44_12_122701_bib2) 2015; 44 Digraskar (jos_44_12_122701_bib20) 2021; 882 Liu (jos_44_12_122701_bib8) 2018; 6 Zheng (jos_44_12_122701_bib10) 2022; 41 Ananthakumar (jos_44_12_122701_bib14) 2017; 38 Digraskar (jos_44_12_122701_bib17) 2019; 4 Yin (jos_44_12_122701_bib25) 2022; 43 Pakhira (jos_44_12_122701_bib30) 2023; 10 Digraskar (jos_44_12_122701_bib11) 2017; 412 Kush (jos_44_12_122701_bib12) 2015; 3 Digraskar (jos_44_12_122701_bib19) 2018; 8 Li (jos_44_12_122701_bib29) 2022; 47 Ma (jos_44_12_122701_bib3) 2020; 41 Burhanuz Zaman (jos_44_12_122701_bib13) 2019; 44 Liu (jos_44_12_122701_bib22) 2019; 11 Attarzadeh (jos_44_12_122701_bib31) 2023; 15 Wu (jos_44_12_122701_bib7) 2022; 32 Tang (jos_44_12_122701_bib26) 2015; 44 Liu (jos_44_12_122701_bib24) 2018; 149 Mourdikoudis (jos_44_12_122701_bib23) 2013; 25 Digraskar (jos_44_12_122701_bib18) 2019; 44 Valentine (jos_44_12_122701_bib4) 2011; 15 Vivier (jos_44_12_122701_bib27) 2022; 122 Digraskar (jos_44_12_122701_bib16) 2019; 4 Zito (jos_44_12_122701_bib21) 2021; 54 Zhang (jos_44_12_122701_bib28) 2023; 452 Fu (jos_44_12_122701_bib9) 2020; 41 Dawood (jos_44_12_122701_bib5) 2020; 45 Li (jos_44_12_122701_bib15) 2012; 116 Zhao (jos_44_12_122701_bib6) 2022; 61 Zhu (jos_44_12_122701_bib1) 2020; 120 |
References_xml | – volume: 6 start-page: 18649 year: 2018 ident: jos_44_12_122701_bib8 article-title: Non-injection synthesis of L-shaped wurtzite Cu–Ga–Zn–S alloyed nanorods and their advantageous application in photocatalytic hydrogen evolution publication-title: J Mater Chem A doi: 10.1039/C8TA05395B – volume: 11 start-page: 158 year: 2019 ident: jos_44_12_122701_bib22 article-title: From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: Non-injection synthesis and photocatalytic evolution publication-title: Nanoscale doi: 10.1039/C8NR07353H – volume: 15 start-page: 4572 year: 2011 ident: jos_44_12_122701_bib4 article-title: Emerging symbiosis: Renewable energy and energy security publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.07.095 – volume: 149 start-page: 145 year: 2018 ident: jos_44_12_122701_bib24 article-title: Structure and band gap tunable CuInS2 nanocrystal synthesized by hot-injection method with altering the dose of oleylamine publication-title: Mater Des doi: 10.1016/j.matdes.2018.04.015 – volume: 122 start-page: 11131 year: 2022 ident: jos_44_12_122701_bib27 article-title: Impedance analysis of electrochemical systems publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00876 – volume: 452 start-page: 139513 year: 2023 ident: jos_44_12_122701_bib28 article-title: Superwettable Surface-Dependent efficiently electrocatalytic water splitting based on their excellent liquid adsorption and gas desorption publication-title: Chem Eng J doi: 10.1016/j.cej.2022.139513 – volume: 41 start-page: 091706 year: 2020 ident: jos_44_12_122701_bib9 article-title: Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution publication-title: J Semicond doi: 10.1088/1674-4926/41/9/091706 – volume: 41 start-page: 091702 year: 2020 ident: jos_44_12_122701_bib3 article-title: Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting publication-title: J Semicond doi: 10.1088/1674-4926/41/9/091702 – volume: 4 start-page: 7650 year: 2019 ident: jos_44_12_122701_bib16 article-title: CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction publication-title: ACS Omega doi: 10.1021/acsomega.8b03587 – volume: 47 start-page: 26956 year: 2022 ident: jos_44_12_122701_bib29 article-title: Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2022.06.049 – volume: 44 start-page: 23023 year: 2019 ident: jos_44_12_122701_bib13 article-title: Growth and properties of solvothermally derived highly crystalline Cu2ZnSnS4 nanoparticles for photocatalytic and electrocatalytic applications publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.07.026 – volume: 882 start-page: 114983 year: 2021 ident: jos_44_12_122701_bib20 article-title: CZTS/MoS2-rGO heterostructures: An efficient and highly stable electrocatalyst for enhanced hydrogen generation reactions publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2021.114983 – volume: 4 start-page: 18969 year: 2019 ident: jos_44_12_122701_bib17 article-title: Enhanced overall water-splitting performance: Oleylamine-functionalized GO/Cu2ZnSnS4 composite as a Nobel metal-free and nonprecious electrocatalyst publication-title: ACS Omega doi: 10.1021/acsomega.9b01680 – volume: 44 start-page: 9251 year: 2015 ident: jos_44_12_122701_bib26 article-title: One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase publication-title: Dalton Trans doi: 10.1039/C5DT01111F – volume: 25 start-page: 1465 year: 2013 ident: jos_44_12_122701_bib23 article-title: Oleylamine in nanoparticle synthesis publication-title: Chem Mater doi: 10.1021/cm4000476 – volume: 61 start-page: e202110186 year: 2022 ident: jos_44_12_122701_bib6 article-title: Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts publication-title: Angew Chem Int Ed doi: 10.1002/anie.202110186 – volume: 43 start-page: 032701 year: 2022 ident: jos_44_12_122701_bib25 article-title: Tunable crystal structure of Cu–Zn–Sn–S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation publication-title: J Semicond doi: 10.1088/1674-4926/43/3/032701 – volume: 412 start-page: 475 year: 2017 ident: jos_44_12_122701_bib11 article-title: Enhanced hydrogen evolution reactions on nanostructured Cu2ZnSnS4 (CZTS) electrocatalyst publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.03.262 – volume: 8 start-page: 20341 year: 2018 ident: jos_44_12_122701_bib19 article-title: Enhanced electrocatalytic hydrogen generation from water via cobalt-doped Cu2ZnSnS4 nanoparticles publication-title: RSC Adv doi: 10.1039/C8RA01886C – volume: 15 start-page: 22036 year: 2023 ident: jos_44_12_122701_bib31 article-title: Nature-inspired design of nano-architecture-aligned Ni5P4-Ni2P/NiS arrays for enhanced electrocatalytic activity of hydrogen evolution reaction (HER) publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.3c00781 – volume: 44 start-page: 8144 year: 2019 ident: jos_44_12_122701_bib18 article-title: Overall noble metal free Ni and Fe doped Cu2ZnSnS4 (CZTS) bifunctional electrocatalytic systems for enhanced water splitting reactions publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.02.054 – volume: 44 start-page: 5148 year: 2015 ident: jos_44_12_122701_bib2 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem Soc Rev doi: 10.1039/C4CS00448E – volume: 45 start-page: 3847 year: 2020 ident: jos_44_12_122701_bib5 article-title: Hydrogen production for energy: An overview publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.12.059 – volume: 3 start-page: 8098 year: 2015 ident: jos_44_12_122701_bib12 article-title: Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(vi) by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles publication-title: J Mater Chem A doi: 10.1039/C4TA06551D – volume: 32 start-page: 2110910 year: 2022 ident: jos_44_12_122701_bib7 article-title: Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity publication-title: Adv Funct Materials doi: 10.1002/adfm.202110910 – volume: 10 start-page: 2202075 year: 2023 ident: jos_44_12_122701_bib30 article-title: Revealing the superior electrocatalytic performance of 2D monolayer WSe2 transition metal dichalcogenide for efficient H2 evolution reaction publication-title: Adv Materials Inter doi: 10.1002/admi.202202075 – volume: 41 start-page: 2153 year: 2022 ident: jos_44_12_122701_bib10 article-title: Fundamentals and photocatalytic hydrogen evolution applications of quaternary chalcogenide semiconductor: Cu2ZnSnS4 publication-title: Rare Met doi: 10.1007/s12598-021-01955-2 – volume: 116 start-page: 26507 year: 2012 ident: jos_44_12_122701_bib15 article-title: Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method publication-title: J Phys Chem C doi: 10.1021/jp307346k – volume: 120 start-page: 851 year: 2020 ident: jos_44_12_122701_bib1 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem Rev doi: 10.1021/acs.chemrev.9b00248 – volume: 38 start-page: 033007 year: 2017 ident: jos_44_12_122701_bib14 article-title: Colloidal synthesis and characterization of Cu2ZnSnS4 nanoplates publication-title: J Semicond doi: 10.1088/1674-4926/38/3/033007 – volume: 54 start-page: 1555 year: 2021 ident: jos_44_12_122701_bib21 article-title: The future of ligand engineering in colloidal semiconductor nanocrystals publication-title: Acc Chem Res doi: 10.1021/acs.accounts.0c00765 |
SSID | ssj0067441 ssib023363340 |
Score | 2.3456562 |
Snippet | As typical quarternary copper-based chalcogenides, Cu–Zn–Sn–S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution... As typical quarternary copper-based chalcogenides, Cu-Zn-Sn-S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122701 |
SubjectTerms | 1D nanorods 2D nanosheets Cu−Zn−Sn−S electrocatalytic hydrogen evolution structure evolution |
Title | From kesterite 2D nanosheets to wurtzite 1D nanorods: controllable synthesis of Cu−Zn−Sn−S and their application in electrocatalytic hydrogen evolution |
URI | https://iopscience.iop.org/article/10.1088/1674-4926/44/12/122701 https://d.wanfangdata.com.cn/periodical/bdtxb202312010 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96IngPfpyK6-cIvkl3-5GmPd_kdDkEP0APxJeQNIl33l26bLrq3l_gs-_-c_4lTtL03BXkEKGEQmbatNPMTJOZ3xDyCD0OURqaJUqnKqHoECSi0lWijGRCskYw6ZcGXr5iu3v0xftyiCYMuTDtLKr-MZ72QMH9K4wBcfXEx80nHuduQukky_HIK5_BdaGo0Xz6HL7XbwZljKSheOUpz5Ak_NfrrNmn8ziGkM1jjbAfVwzP9AqRw5D7eJPD8aKT4-bkDzTH_3qmq-RydEvhac9wjZzTdotsroAVbpGLIVi0cdfJj-m8PYbDgLGAHivkz8AK27p9rTsHXQtfFvPuxPdkfQ8qafcEYlT8kU_WAre06Hq6AwetgZ3Fz2_fP1hs3oYGhFUQtjBgZYMdDizEqj1h0WmJY4X9pZq3OAlAf46T6AbZmz5_t7ObxDIPSYPWs0vQjpqikkLVWjGVCsEKlaaCylxmssHfK50WoqLGbDOBzp8QDfPw2lm9bYq8Mmlxk2zY1upbBIQuU-kh0Jg2NJWV0CrTqNTKWsvSyGxEykG4vIkY6L4UxxEPe_F1zb0guBcEp5RnOe8FMSKTU75ZjwJyJsdjlDWPCsGdSf1wjfpT69b6-UyZEXkQv8PfdFJ1X2XuIfx8UMPtf7rnHXLJc_ahOXfJRjdf6HvoYHXyfphCvwAaBBrn |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61RSA48FNALH81EpxQNv8_ReKAuqxaCqUSVKp6MXZs09LirNZZyvYJOHPnMXgVHoAnYZx4l10kVHHoASmyItlOJvZkZuJ88xngIUYcLFVJ6AkZCC_BgMBjucw9oXjGeFayjNulgVdb2fpO8mI33V2A79NcmGrgTH8XT1ui4HYIHSCu8C1u3rM8d36S-GGER5QHoT8QymErN-X4GL_czNONHk7zoyjqP3-7tu65zQW8Em127aH1VnHOmSikyETAWBaLIGAJj3jISwzqZRCzPFFqNWMYcjBWZpbUOSxWVRzlKojxuotwLo3RY9u8wdfbEweA4jUbZk7lnCQm_1X2OZ-4iM_dZBBpxfT7GWfXvwI_JsPUYlwOu6Oad8uTPxgk_7txvAqXXfhNnrVCXoMFqZfh0gwp4zKcb0CxpbkO3_rD6iM5bLgkMDInUY9opiuzL2VtSF2R49GwPrE1YVuDzsg8IQ79f2ST0ogZawyxzYEhlSJro59fvu5pLN40BWFakOZXDZkBEpADTdzuRM3i2hhlJftjMazwZSfykzMWN2DnTEbqJizpSstbQJhMA26p3jKpkoDnTIpQovFOC8lTxcMOpBOFoqXjerdbjhzRBnNQFNROPrWTT5OEhhFtJ78D_rTfoGU7ObXHY9Qv6gyfObX1g7nWHyozV09R-Tqw4nT_dzsu6s88slSFFrxx-5_uuQIXtnt9-nJja_MOXLQXadFId2GpHo7kPYwpa36_eYMJvDtrVf8Fk7J6aw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+kesterite+2D+nanosheets+to+wurtzite+1D+nanorods%3A+controllable+synthesis+of+Cu-Zn-Sn-S+and+their+application+in+electrocatalytic+hydrogen+evolution&rft.jtitle=%E5%8D%8A%E5%AF%BC%E4%BD%93%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yu+Li&rft.au=Shuaibing+Wang&rft.au=Jie+Chen&rft.au=Ouyang+Lin&rft.date=2023-12-01&rft.pub=Key+Laboratory+of+Luminescence+and+Optical+Information%2C+Ministry+of+Education%2C+School+of+Physical+Science+and+Engineering%2C+Beijing+Jiaotong+University%2C+Beijing+100044%2C+China&rft.issn=1674-4926&rft.volume=44&rft.issue=12&rft.spage=113&rft.epage=120&rft_id=info:doi/10.1088%2F1674-4926%2F44%2F12%2F122701&rft.externalDocID=bdtxb202312010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbdtxb%2Fbdtxb.jpg |