From kesterite 2D nanosheets to wurtzite 1D nanorods: controllable synthesis of Cu−Zn−Sn−S and their application in electrocatalytic hydrogen evolution

As typical quarternary copper-based chalcogenides, Cu–Zn–Sn–S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution reactions (HERs). Oleylamine (OM), a reducing surfactant and solvent, plays a significant role in the assisting synthesis of CZTS NCs due to the...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 44; no. 12; pp. 122701 - 120
Main Authors Li, Yu, Wang, Shuaibing, Chen, Jie, Lin, Ouyang, Yin, Zhe, Yang, Chunhe, Tang, Aiwei
Format Journal Article
LanguageEnglish
Published Chinese Institute of Electronics 01.12.2023
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As typical quarternary copper-based chalcogenides, Cu–Zn–Sn–S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution reactions (HERs). Oleylamine (OM), a reducing surfactant and solvent, plays a significant role in the assisting synthesis of CZTS NCs due to the ligand effect. Herein, we adopted a facile one-pot colloidal method for achieving the structure evolution of CZTS NCs from 2D nanosheets to 1D nanorods assisted through the continuous addition of OM. During the process, the mechanism of OM-induced morphology evolution was further discussed. When merely adding pure 1-dodecanethiol (DDT) as the solvent, the CZTS nanosheets were obtained. As OM was gradually added to the reaction, the CZTS NCs began to grow along the sides of the nanosheets and gradually shrink at the top, followed by the formation of stable nanorods. In acidic electrolytic conditions, the CZTS NCs with 1.0 OM addition display the optimal HER activity with a low overpotential of 561 mV at 10 mA/cm 2 and a small Tafel slope of 157.6 mV/dec compared with other CZTS samples. The enhancement of HER activity could be attributed to the contribution of the synergistic effect of the diverse crystal facets to the reaction.
AbstractList As typical quarternary copper-based chalcogenides, Cu–Zn–Sn–S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution reactions (HERs). Oleylamine (OM), a reducing surfactant and solvent, plays a significant role in the assisting synthesis of CZTS NCs due to the ligand effect. Herein, we adopted a facile one-pot colloidal method for achieving the structure evolution of CZTS NCs from 2D nanosheets to 1D nanorods assisted through the continuous addition of OM. During the process, the mechanism of OM-induced morphology evolution was further discussed. When merely adding pure 1-dodecanethiol (DDT) as the solvent, the CZTS nanosheets were obtained. As OM was gradually added to the reaction, the CZTS NCs began to grow along the sides of the nanosheets and gradually shrink at the top, followed by the formation of stable nanorods. In acidic electrolytic conditions, the CZTS NCs with 1.0 OM addition display the optimal HER activity with a low overpotential of 561 mV at 10 mA/cm 2 and a small Tafel slope of 157.6 mV/dec compared with other CZTS samples. The enhancement of HER activity could be attributed to the contribution of the synergistic effect of the diverse crystal facets to the reaction.
As typical quarternary copper-based chalcogenides, Cu-Zn-Sn-S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution reactions (HERs). Oleylamine (OM), a reducing surfactant and solvent, plays a sig-nificant role in the assisting synthesis of CZTS NCs due to the ligand effect. Herein, we adopted a facile one-pot colloidal method for achieving the structure evolution of CZTS NCs from 2D nanosheets to 1D nanorods assisted through the continu-ous addition of OM. During the process, the mechanism of OM-induced morphology evolution was further discussed. When merely adding pure 1-dodecanethiol (DDT) as the solvent, the CZTS nanosheets were obtained. As OM was gradually added to the reaction, the CZTS NCs began to grow along the sides of the nanosheets and gradually shrink at the top, followed by the for-mation of stable nanorods. In acidic electrolytic conditions, the CZTS NCs with 1.0 OM addition display the optimal HER activ-ity with a low overpotential of 561 mV at 10 mA/cm2 and a small Tafel slope of 157.6 mV/dec compared with other CZTS sam-ples. The enhancement of HER activity could be attributed to the contribution of the synergistic effect of the diverse crystal facets to the reaction.
Author Li, Yu
Yang, Chunhe
Yin, Zhe
Lin, Ouyang
Tang, Aiwei
Wang, Shuaibing
Chen, Jie
AuthorAffiliation Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
AuthorAffiliation_xml – name: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
Author_xml – sequence: 1
  givenname: Yu
  surname: Li
  fullname: Li, Yu
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China
– sequence: 2
  givenname: Shuaibing
  surname: Wang
  fullname: Wang, Shuaibing
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China
– sequence: 3
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China
– sequence: 4
  givenname: Ouyang
  surname: Lin
  fullname: Lin, Ouyang
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China
– sequence: 5
  givenname: Zhe
  surname: Yin
  fullname: Yin, Zhe
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China
– sequence: 6
  givenname: Chunhe
  surname: Yang
  fullname: Yang, Chunhe
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China
– sequence: 7
  givenname: Aiwei
  surname: Tang
  fullname: Tang, Aiwei
  organization: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University , Beijing 100044, China
BookMark eNqFkc9qFTEUxoO04G3rK0hW4ma8-dfMXHEjV6tCoYvqxk04k0l6c02TIcltvT6Ba_e-nE9ipiOKIhTCCSff7ztJzjlCByEGg9BjSp5R0nVLKlvRiBWTSyGWlNXFWkIfoAUjp10jqSAHaPEbeoiOct4SUnNBF-j7WYrX-JPJxSRXDGavcIAQ88aYknGJ-HaXypdJobOS4pCfYx1DSdF76L3BeR_KxmSXcbR4vfvx9dvHUMPlXcAQBlxllzCMo3caiosBu4CNN7oWqQfg98VpvNkPKV6ZqtxEv5uwE3RowWfz6Nd-jD6cvX6_ftucX7x5t3553mguWWm4oJa3PQydGeRAACQfCAHRs572WkppCIdWWLuSIBgH0PKUtoJ2K8tZawk_Rk_murcQLIQrtY27FOqNqh_K554RxikjdAJfzKBOMedkrNKu3P2oJHBeUaKmmaip3WpqtxJCUabmmVS7_Mc-JncNaX-_8elsdHH887htzH9hahxsRdl_0Hvq_wQH1LQ0
CitedBy_id crossref_primary_10_1002_adfm_202407271
crossref_primary_10_1021_acs_energyfuels_4c06111
crossref_primary_10_1016_j_surfin_2024_104793
crossref_primary_10_1039_D3NR06037C
crossref_primary_10_3389_fchem_2024_1394191
crossref_primary_10_3390_cryst14050479
crossref_primary_10_1016_j_ijhydene_2024_08_242
crossref_primary_10_1039_D4TA03912B
crossref_primary_10_1002_adom_202400762
Cites_doi 10.1039/C8TA05395B
10.1039/C8NR07353H
10.1016/j.rser.2011.07.095
10.1016/j.matdes.2018.04.015
10.1021/acs.chemrev.1c00876
10.1016/j.cej.2022.139513
10.1088/1674-4926/41/9/091706
10.1088/1674-4926/41/9/091702
10.1021/acsomega.8b03587
10.1016/j.ijhydene.2022.06.049
10.1016/j.ijhydene.2019.07.026
10.1016/j.jelechem.2021.114983
10.1021/acsomega.9b01680
10.1039/C5DT01111F
10.1021/cm4000476
10.1002/anie.202110186
10.1088/1674-4926/43/3/032701
10.1016/j.apsusc.2017.03.262
10.1039/C8RA01886C
10.1021/acsami.3c00781
10.1016/j.ijhydene.2019.02.054
10.1039/C4CS00448E
10.1016/j.ijhydene.2019.12.059
10.1039/C4TA06551D
10.1002/adfm.202110910
10.1002/admi.202202075
10.1007/s12598-021-01955-2
10.1021/jp307346k
10.1021/acs.chemrev.9b00248
10.1088/1674-4926/38/3/033007
10.1021/acs.accounts.0c00765
ContentType Journal Article
Copyright 2023 Chinese Institute of Electronics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Institute of Electronics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-4926/44/12/122701
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2058-6140
EndPage 120
ExternalDocumentID bdtxb202312010
10_1088_1674_4926_44_12_122701
jos_44_12_122701
GroupedDBID -SI
-S~
4.4
5B3
5VR
5VS
5XA
5XJ
7.M
93N
AAGCD
AAJIO
AATNI
AAXDM
ABHWH
ACAFW
ACGFO
ACGFS
ACHIP
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEI
CCEZO
CEBXE
CHBEP
CJUJL
CRLBU
CUBFJ
CW9
EBS
EDWGO
EQZZN
FA0
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGT
U1G
U5S
W28
AAYXX
CITATION
TGMPQ
02O
042
1WK
2B.
4A8
92H
92I
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
JCGBZ
M45
NS0
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c362t-341f37bad8ed6d0aa63d00a4b2b1bc666e03a74ff96a423aac65174189f327f03
IEDL.DBID IOP
ISSN 1674-4926
IngestDate Thu May 29 04:06:49 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 03:20:35 EDT 2025
Sun Aug 18 15:30:27 EDT 2024
Tue Aug 20 22:14:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 2D nanosheets
electrocatalytic hydrogen evolution
Cu-Zn-Sn-S
structure evolution
1D nanorods
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-341f37bad8ed6d0aa63d00a4b2b1bc666e03a74ff96a423aac65174189f327f03
PageCount 7
ParticipantIDs crossref_citationtrail_10_1088_1674_4926_44_12_122701
iop_journals_10_1088_1674_4926_44_12_122701
wanfang_journals_bdtxb202312010
crossref_primary_10_1088_1674_4926_44_12_122701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of semiconductors
PublicationTitleAlternate J. Semicond
PublicationTitle_FL Journal of Semiconductors
PublicationYear 2023
Publisher Chinese Institute of Electronics
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
Publisher_xml – name: Chinese Institute of Electronics
– name: Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
References Zou (jos_44_12_122701_bib2) 2015; 44
Digraskar (jos_44_12_122701_bib20) 2021; 882
Liu (jos_44_12_122701_bib8) 2018; 6
Zheng (jos_44_12_122701_bib10) 2022; 41
Ananthakumar (jos_44_12_122701_bib14) 2017; 38
Digraskar (jos_44_12_122701_bib17) 2019; 4
Yin (jos_44_12_122701_bib25) 2022; 43
Pakhira (jos_44_12_122701_bib30) 2023; 10
Digraskar (jos_44_12_122701_bib11) 2017; 412
Kush (jos_44_12_122701_bib12) 2015; 3
Digraskar (jos_44_12_122701_bib19) 2018; 8
Li (jos_44_12_122701_bib29) 2022; 47
Ma (jos_44_12_122701_bib3) 2020; 41
Burhanuz Zaman (jos_44_12_122701_bib13) 2019; 44
Liu (jos_44_12_122701_bib22) 2019; 11
Attarzadeh (jos_44_12_122701_bib31) 2023; 15
Wu (jos_44_12_122701_bib7) 2022; 32
Tang (jos_44_12_122701_bib26) 2015; 44
Liu (jos_44_12_122701_bib24) 2018; 149
Mourdikoudis (jos_44_12_122701_bib23) 2013; 25
Digraskar (jos_44_12_122701_bib18) 2019; 44
Valentine (jos_44_12_122701_bib4) 2011; 15
Vivier (jos_44_12_122701_bib27) 2022; 122
Digraskar (jos_44_12_122701_bib16) 2019; 4
Zito (jos_44_12_122701_bib21) 2021; 54
Zhang (jos_44_12_122701_bib28) 2023; 452
Fu (jos_44_12_122701_bib9) 2020; 41
Dawood (jos_44_12_122701_bib5) 2020; 45
Li (jos_44_12_122701_bib15) 2012; 116
Zhao (jos_44_12_122701_bib6) 2022; 61
Zhu (jos_44_12_122701_bib1) 2020; 120
References_xml – volume: 6
  start-page: 18649
  year: 2018
  ident: jos_44_12_122701_bib8
  article-title: Non-injection synthesis of L-shaped wurtzite Cu–Ga–Zn–S alloyed nanorods and their advantageous application in photocatalytic hydrogen evolution
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA05395B
– volume: 11
  start-page: 158
  year: 2019
  ident: jos_44_12_122701_bib22
  article-title: From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: Non-injection synthesis and photocatalytic evolution
  publication-title: Nanoscale
  doi: 10.1039/C8NR07353H
– volume: 15
  start-page: 4572
  year: 2011
  ident: jos_44_12_122701_bib4
  article-title: Emerging symbiosis: Renewable energy and energy security
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.07.095
– volume: 149
  start-page: 145
  year: 2018
  ident: jos_44_12_122701_bib24
  article-title: Structure and band gap tunable CuInS2 nanocrystal synthesized by hot-injection method with altering the dose of oleylamine
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.04.015
– volume: 122
  start-page: 11131
  year: 2022
  ident: jos_44_12_122701_bib27
  article-title: Impedance analysis of electrochemical systems
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.1c00876
– volume: 452
  start-page: 139513
  year: 2023
  ident: jos_44_12_122701_bib28
  article-title: Superwettable Surface-Dependent efficiently electrocatalytic water splitting based on their excellent liquid adsorption and gas desorption
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.139513
– volume: 41
  start-page: 091706
  year: 2020
  ident: jos_44_12_122701_bib9
  article-title: Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution
  publication-title: J Semicond
  doi: 10.1088/1674-4926/41/9/091706
– volume: 41
  start-page: 091702
  year: 2020
  ident: jos_44_12_122701_bib3
  article-title: Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting
  publication-title: J Semicond
  doi: 10.1088/1674-4926/41/9/091702
– volume: 4
  start-page: 7650
  year: 2019
  ident: jos_44_12_122701_bib16
  article-title: CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03587
– volume: 47
  start-page: 26956
  year: 2022
  ident: jos_44_12_122701_bib29
  article-title: Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.06.049
– volume: 44
  start-page: 23023
  year: 2019
  ident: jos_44_12_122701_bib13
  article-title: Growth and properties of solvothermally derived highly crystalline Cu2ZnSnS4 nanoparticles for photocatalytic and electrocatalytic applications
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.07.026
– volume: 882
  start-page: 114983
  year: 2021
  ident: jos_44_12_122701_bib20
  article-title: CZTS/MoS2-rGO heterostructures: An efficient and highly stable electrocatalyst for enhanced hydrogen generation reactions
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2021.114983
– volume: 4
  start-page: 18969
  year: 2019
  ident: jos_44_12_122701_bib17
  article-title: Enhanced overall water-splitting performance: Oleylamine-functionalized GO/Cu2ZnSnS4 composite as a Nobel metal-free and nonprecious electrocatalyst
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01680
– volume: 44
  start-page: 9251
  year: 2015
  ident: jos_44_12_122701_bib26
  article-title: One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase
  publication-title: Dalton Trans
  doi: 10.1039/C5DT01111F
– volume: 25
  start-page: 1465
  year: 2013
  ident: jos_44_12_122701_bib23
  article-title: Oleylamine in nanoparticle synthesis
  publication-title: Chem Mater
  doi: 10.1021/cm4000476
– volume: 61
  start-page: e202110186
  year: 2022
  ident: jos_44_12_122701_bib6
  article-title: Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202110186
– volume: 43
  start-page: 032701
  year: 2022
  ident: jos_44_12_122701_bib25
  article-title: Tunable crystal structure of Cu–Zn–Sn–S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation
  publication-title: J Semicond
  doi: 10.1088/1674-4926/43/3/032701
– volume: 412
  start-page: 475
  year: 2017
  ident: jos_44_12_122701_bib11
  article-title: Enhanced hydrogen evolution reactions on nanostructured Cu2ZnSnS4 (CZTS) electrocatalyst
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.03.262
– volume: 8
  start-page: 20341
  year: 2018
  ident: jos_44_12_122701_bib19
  article-title: Enhanced electrocatalytic hydrogen generation from water via cobalt-doped Cu2ZnSnS4 nanoparticles
  publication-title: RSC Adv
  doi: 10.1039/C8RA01886C
– volume: 15
  start-page: 22036
  year: 2023
  ident: jos_44_12_122701_bib31
  article-title: Nature-inspired design of nano-architecture-aligned Ni5P4-Ni2P/NiS arrays for enhanced electrocatalytic activity of hydrogen evolution reaction (HER)
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.3c00781
– volume: 44
  start-page: 8144
  year: 2019
  ident: jos_44_12_122701_bib18
  article-title: Overall noble metal free Ni and Fe doped Cu2ZnSnS4 (CZTS) bifunctional electrocatalytic systems for enhanced water splitting reactions
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.02.054
– volume: 44
  start-page: 5148
  year: 2015
  ident: jos_44_12_122701_bib2
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00448E
– volume: 45
  start-page: 3847
  year: 2020
  ident: jos_44_12_122701_bib5
  article-title: Hydrogen production for energy: An overview
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.12.059
– volume: 3
  start-page: 8098
  year: 2015
  ident: jos_44_12_122701_bib12
  article-title: Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(vi) by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA06551D
– volume: 32
  start-page: 2110910
  year: 2022
  ident: jos_44_12_122701_bib7
  article-title: Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity
  publication-title: Adv Funct Materials
  doi: 10.1002/adfm.202110910
– volume: 10
  start-page: 2202075
  year: 2023
  ident: jos_44_12_122701_bib30
  article-title: Revealing the superior electrocatalytic performance of 2D monolayer WSe2 transition metal dichalcogenide for efficient H2 evolution reaction
  publication-title: Adv Materials Inter
  doi: 10.1002/admi.202202075
– volume: 41
  start-page: 2153
  year: 2022
  ident: jos_44_12_122701_bib10
  article-title: Fundamentals and photocatalytic hydrogen evolution applications of quaternary chalcogenide semiconductor: Cu2ZnSnS4
  publication-title: Rare Met
  doi: 10.1007/s12598-021-01955-2
– volume: 116
  start-page: 26507
  year: 2012
  ident: jos_44_12_122701_bib15
  article-title: Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method
  publication-title: J Phys Chem C
  doi: 10.1021/jp307346k
– volume: 120
  start-page: 851
  year: 2020
  ident: jos_44_12_122701_bib1
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00248
– volume: 38
  start-page: 033007
  year: 2017
  ident: jos_44_12_122701_bib14
  article-title: Colloidal synthesis and characterization of Cu2ZnSnS4 nanoplates
  publication-title: J Semicond
  doi: 10.1088/1674-4926/38/3/033007
– volume: 54
  start-page: 1555
  year: 2021
  ident: jos_44_12_122701_bib21
  article-title: The future of ligand engineering in colloidal semiconductor nanocrystals
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.0c00765
SSID ssj0067441
ssib023363340
Score 2.3456562
Snippet As typical quarternary copper-based chalcogenides, Cu–Zn–Sn–S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution...
As typical quarternary copper-based chalcogenides, Cu-Zn-Sn-S nanocrystals (CZTS NCs) have emerged as a new-fashioned electrocatalyst in hydrogen evolution...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122701
SubjectTerms 1D nanorods
2D nanosheets
Cu−Zn−Sn−S
electrocatalytic hydrogen evolution
structure evolution
Title From kesterite 2D nanosheets to wurtzite 1D nanorods: controllable synthesis of Cu−Zn−Sn−S and their application in electrocatalytic hydrogen evolution
URI https://iopscience.iop.org/article/10.1088/1674-4926/44/12/122701
https://d.wanfangdata.com.cn/periodical/bdtxb202312010
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96IngPfpyK6-cIvkl3-5GmPd_kdDkEP0APxJeQNIl33l26bLrq3l_gs-_-c_4lTtL03BXkEKGEQmbatNPMTJOZ3xDyCD0OURqaJUqnKqHoECSi0lWijGRCskYw6ZcGXr5iu3v0xftyiCYMuTDtLKr-MZ72QMH9K4wBcfXEx80nHuduQukky_HIK5_BdaGo0Xz6HL7XbwZljKSheOUpz5Ak_NfrrNmn8ziGkM1jjbAfVwzP9AqRw5D7eJPD8aKT4-bkDzTH_3qmq-RydEvhac9wjZzTdotsroAVbpGLIVi0cdfJj-m8PYbDgLGAHivkz8AK27p9rTsHXQtfFvPuxPdkfQ8qafcEYlT8kU_WAre06Hq6AwetgZ3Fz2_fP1hs3oYGhFUQtjBgZYMdDizEqj1h0WmJY4X9pZq3OAlAf46T6AbZmz5_t7ObxDIPSYPWs0vQjpqikkLVWjGVCsEKlaaCylxmssHfK50WoqLGbDOBzp8QDfPw2lm9bYq8Mmlxk2zY1upbBIQuU-kh0Jg2NJWV0CrTqNTKWsvSyGxEykG4vIkY6L4UxxEPe_F1zb0guBcEp5RnOe8FMSKTU75ZjwJyJsdjlDWPCsGdSf1wjfpT69b6-UyZEXkQv8PfdFJ1X2XuIfx8UMPtf7rnHXLJc_ahOXfJRjdf6HvoYHXyfphCvwAaBBrn
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61RSA48FNALH81EpxQNv8_ReKAuqxaCqUSVKp6MXZs09LirNZZyvYJOHPnMXgVHoAnYZx4l10kVHHoASmyItlOJvZkZuJ88xngIUYcLFVJ6AkZCC_BgMBjucw9oXjGeFayjNulgVdb2fpO8mI33V2A79NcmGrgTH8XT1ui4HYIHSCu8C1u3rM8d36S-GGER5QHoT8QymErN-X4GL_czNONHk7zoyjqP3-7tu65zQW8Em127aH1VnHOmSikyETAWBaLIGAJj3jISwzqZRCzPFFqNWMYcjBWZpbUOSxWVRzlKojxuotwLo3RY9u8wdfbEweA4jUbZk7lnCQm_1X2OZ-4iM_dZBBpxfT7GWfXvwI_JsPUYlwOu6Oad8uTPxgk_7txvAqXXfhNnrVCXoMFqZfh0gwp4zKcb0CxpbkO3_rD6iM5bLgkMDInUY9opiuzL2VtSF2R49GwPrE1YVuDzsg8IQ79f2ST0ogZawyxzYEhlSJro59fvu5pLN40BWFakOZXDZkBEpADTdzuRM3i2hhlJftjMazwZSfykzMWN2DnTEbqJizpSstbQJhMA26p3jKpkoDnTIpQovFOC8lTxcMOpBOFoqXjerdbjhzRBnNQFNROPrWTT5OEhhFtJ78D_rTfoGU7ObXHY9Qv6gyfObX1g7nWHyozV09R-Tqw4nT_dzsu6s88slSFFrxx-5_uuQIXtnt9-nJja_MOXLQXadFId2GpHo7kPYwpa36_eYMJvDtrVf8Fk7J6aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+kesterite+2D+nanosheets+to+wurtzite+1D+nanorods%3A+controllable+synthesis+of+Cu-Zn-Sn-S+and+their+application+in+electrocatalytic+hydrogen+evolution&rft.jtitle=%E5%8D%8A%E5%AF%BC%E4%BD%93%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yu+Li&rft.au=Shuaibing+Wang&rft.au=Jie+Chen&rft.au=Ouyang+Lin&rft.date=2023-12-01&rft.pub=Key+Laboratory+of+Luminescence+and+Optical+Information%2C+Ministry+of+Education%2C+School+of+Physical+Science+and+Engineering%2C+Beijing+Jiaotong+University%2C+Beijing+100044%2C+China&rft.issn=1674-4926&rft.volume=44&rft.issue=12&rft.spage=113&rft.epage=120&rft_id=info:doi/10.1088%2F1674-4926%2F44%2F12%2F122701&rft.externalDocID=bdtxb202312010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbdtxb%2Fbdtxb.jpg