Adsorption of Solvent Cations on Au(111) and Au(100) in Alkylimidazolium-Based Ionic Liquids – Worm-Like versus Micelle-Like Structures

By employing high resolution in-situ STM, the adsorption of alkylimidazolium-based cations of EMI , PMI , BMI and OMI on Au(111) and Au(100) surfaces are investigated systematically. The cation adsorption on both Au(111) and Au(100) are composed of double rows arising from counter-facing imidazolium...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für physikalische Chemie (Neue Folge) Vol. 226; no. 9; pp. 979 - 994
Main Authors Su, Yu-Zhuan, Yan, Jia-Wei, Li, Mian-Gang, Xie, Zhao-Xiong, Mao, Bing-Wei, Tian, Zhong-Qun
Format Journal Article
LanguageEnglish
Published De Gruyter Oldenbourg 01.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By employing high resolution in-situ STM, the adsorption of alkylimidazolium-based cations of EMI , PMI , BMI and OMI on Au(111) and Au(100) surfaces are investigated systematically. The cation adsorption on both Au(111) and Au(100) are composed of double rows arising from counter-facing imidazolium-based cation pairs. On Au(100), the double rows associated with the four cations show micelle-like appearance along the two √ 2 directions of the Au(100) surface lattice units. The width of the double rows varies depending on the side chain length of the cations, but is constrained by the periodicity along the √ 2 directions. Anions of BF , PF , CF SO and Tf do not influence the micelle-like adsorption structure. On Au(111), the double rows are formed only when the terraces are etched to several atoms wide. Most likely, the underneath Au surface experiences restructuring to accommodate the double row structure, and the worm-like orientation of the double rows is the consequence of strain release. Both the micelle-like and worm-like adsorption structures would be lifted upon cathodic potential excursions when the surfaces are driven to undergo ordinary Au(100)-hex and Au(111)-( √ 3 × 22 ) reconstructions. These results reveal that the ordered micelle-like structure on Au(100) and the irregular worm-like structure on Au(111) are of the same nature.
AbstractList Abstract By employing high resolution in-situ STM, the adsorption of alkylimidazolium-based cations of EMI + , PMI + , BMI + and OMI + on Au(111) and Au(100) surfaces are investigated systematically. The cation adsorption on both Au(111) and Au(100) are composed of double rows arising from counter-facing imidazolium-based cation pairs. On Au(100), the double rows associated with the four cations show micelle-like appearance along the two √ 2 directions of the Au(100) surface lattice units. The width of the double rows varies depending on the side chain length of the cations, but is constrained by the periodicity along the √ 2 directions. Anions of BF 4 - , PF 6 - , CF 3 SO 3 - and Tf 2 N - do not influence the micelle-like adsorption structure. On Au(111), the double rows are formed only when the terraces are etched to several atoms wide. Most likely, the underneath Au surface experiences restructuring to accommodate the double row structure, and the worm-like orientation of the double rows is the consequence of strain release. Both the micelle-like and worm-like adsorption structures would be lifted upon cathodic potential excursions when the surfaces are driven to undergo ordinary Au(100)-hex and Au(111)-( √ 3 × 22 ) reconstructions. These results reveal that the ordered micelle-like structure on Au(100) and the irregular worm-like structure on Au(111) are of the same nature.
By employing high resolution in-situ STM, the adsorption of alkylimidazolium-based cations of EMI , PMI , BMI and OMI on Au(111) and Au(100) surfaces are investigated systematically. The cation adsorption on both Au(111) and Au(100) are composed of double rows arising from counter-facing imidazolium-based cation pairs. On Au(100), the double rows associated with the four cations show micelle-like appearance along the two √ 2 directions of the Au(100) surface lattice units. The width of the double rows varies depending on the side chain length of the cations, but is constrained by the periodicity along the √ 2 directions. Anions of BF , PF , CF SO and Tf do not influence the micelle-like adsorption structure. On Au(111), the double rows are formed only when the terraces are etched to several atoms wide. Most likely, the underneath Au surface experiences restructuring to accommodate the double row structure, and the worm-like orientation of the double rows is the consequence of strain release. Both the micelle-like and worm-like adsorption structures would be lifted upon cathodic potential excursions when the surfaces are driven to undergo ordinary Au(100)-hex and Au(111)-( √ 3 × 22 ) reconstructions. These results reveal that the ordered micelle-like structure on Au(100) and the irregular worm-like structure on Au(111) are of the same nature.
Author Tian, Zhong-Qun
Xie, Zhao-Xiong
Li, Mian-Gang
Mao, Bing-Wei
Su, Yu-Zhuan
Yan, Jia-Wei
Author_xml – sequence: 1
  givenname: Yu-Zhuan
  surname: Su
  fullname: Su, Yu-Zhuan
– sequence: 2
  givenname: Jia-Wei
  surname: Yan
  fullname: Yan, Jia-Wei
– sequence: 3
  givenname: Mian-Gang
  surname: Li
  fullname: Li, Mian-Gang
– sequence: 4
  givenname: Zhao-Xiong
  surname: Xie
  fullname: Xie, Zhao-Xiong
– sequence: 5
  givenname: Bing-Wei
  surname: Mao
  fullname: Mao, Bing-Wei
– sequence: 6
  givenname: Zhong-Qun
  surname: Tian
  fullname: Tian, Zhong-Qun
  organization: Xiamen University, State Key Lab of Physical, Xiamen, 361005, Volksrepublik China
BookMark eNp1kD1PwzAQhi1UJNrCyuwRhhR_JE69USo-KhUxAGKMXPsMLmlc7ARUJlZm_iG_hISyMt2r5_SeTs8A9SpfAUKHlIxoxtKT97V-GjFC2YiwLNtBfUalSHKaiR7qE5myRPKM7aFBjEtCmOA576PPiYk-rGvnK-wtvvXlK1Q1nqqORNzSSXNEKT3GqjK_mZBj7FpcPm9Kt3JGvfvSNavkTEUweOYrp_HcvTTORPz98YUffFglc_cM-BVCbCK-dhrKErbstg6NrpsAcR_tWlVGOPibQ3R_cX43vUrmN5ez6WSeaC5YnXBGtBI2telinJnFGHKeccmkZNaCzkRqjV1wo1JhKOFaEJEDGMhNzowxlPIhGm3v6uBjDGCLdXArFTYFJUUnsuhEFp3IohPZFk63hTdV1hAMPIZm04Zi6ZtQta_-U2RMyHYlc8l_AIL1f2o
CitedBy_id crossref_primary_10_1002_celc_201701209
crossref_primary_10_1021_cr400374x
crossref_primary_10_1021_jp5047062
crossref_primary_10_1021_jp512617j
crossref_primary_10_1002_celc_201902010
crossref_primary_10_1039_C8CP02074D
crossref_primary_10_1007_s10008_014_2516_x
crossref_primary_10_1039_D0TC01092H
crossref_primary_10_1039_C4CP01570C
crossref_primary_10_1039_C5CP03787E
crossref_primary_10_1021_cr500411q
crossref_primary_10_1016_j_electacta_2020_136167
crossref_primary_10_1002_elsa_202100199
crossref_primary_10_1021_ja508222m
crossref_primary_10_1016_j_jelechem_2015_08_036
crossref_primary_10_1063_5_0077449
crossref_primary_10_1002_celc_202001294
crossref_primary_10_1016_j_molliq_2013_08_006
crossref_primary_10_1021_acs_langmuir_1c02129
crossref_primary_10_1088_0953_8984_26_28_284111
crossref_primary_10_1021_acsomega_8b02163
crossref_primary_10_1021_acs_jpcb_0c09994
crossref_primary_10_1021_acs_jpcc_5b09704
crossref_primary_10_1039_C4CC06269H
crossref_primary_10_1021_acs_jpcc_9b09871
crossref_primary_10_1016_j_elecom_2014_05_032
crossref_primary_10_1021_acs_jpcc_3c05404
crossref_primary_10_1039_c3cp52421c
crossref_primary_10_1016_j_jelechem_2014_06_010
crossref_primary_10_1021_acs_jpclett_0c03212
crossref_primary_10_1021_acsnano_0c03841
crossref_primary_10_1002_celc_202100094
crossref_primary_10_1021_acs_jpcc_5b11590
crossref_primary_10_1021_acs_langmuir_3c00710
crossref_primary_10_1039_C4NR01219D
crossref_primary_10_7567_JJAP_53_05FY01
crossref_primary_10_1016_j_coelec_2017_01_005
crossref_primary_10_1002_celc_201801404
crossref_primary_10_1016_j_elecom_2015_04_012
crossref_primary_10_1016_j_electacta_2021_138859
crossref_primary_10_1002_celc_202001264
crossref_primary_10_1016_j_cplett_2021_138882
Cites_doi 10.1021/ja1021816
10.1016/S0013-4686(98)00022-X
10.1039/b409861g
10.1016/S0022-0728(79)80022-4
10.1039/c0cp00170h
10.1002/1521-3773(20010401)40:7<1162::AID-ANIE1162>3.0.CO;2-F
10.1103/PhysRevLett.106.046102
10.1039/b921469k
10.1021/ja8055276
10.1016/S0013-4686(00)00328-5
10.1039/c1cc15463j
10.1021/jp0737202
10.1039/b923527m
10.1016/j.electacta.2011.11.088
10.1021/cr000069p
10.1016/j.elecom.2003.09.013
10.1016/j.electacta.2006.03.016
10.1016/j.cplett.2006.05.114
10.1021/jp067857o
10.1002/cphc.200301017
10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
10.1039/c39920000965
10.1016/j.elecom.2006.10.038
10.1039/b607329h
10.1007/s10008-011-1372-1
10.1002/cphc.201000278
10.1039/c2cp40288b
10.1021/ja902373q
10.1021/jp105317e
10.1016/j.electacta.2009.08.031
10.1126/science.1164502
10.1016/S0039-6028(01)01583-7
10.1016/S0079-6816(98)00022-7
10.1002/anie.200900300
10.1039/c1cc11322d
10.1021/cr0680686
10.1021/jp200544b
10.1021/jp903292n
10.1039/b703574h
10.1039/c1cp20562e
10.1524/zpch.2006.220.10.1377
10.1016/j.electacta.2011.09.069
10.1021/jp071162l
10.1021/cr9600363
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1524/zpch.2012.0255
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-7156
EndPage 994
ExternalDocumentID 10_1524_zpch_2012_0255
10_1524_zpch_2012_02552269_10979
GroupedDBID -~X
0R~
123
4.4
6FP
9-L
AAAEU
AAEMA
AAFPC
AAGVJ
AAKRG
AALGR
AAONY
AAOWA
AAPBV
AAPJK
AASQH
AASQN
AAWFC
AAXCG
AAXMT
ABABW
ABAQN
ABFKT
ABFLS
ABLVI
ABMIY
ABPLS
ABRDF
ABRQL
ABUVI
ABXMZ
ABYBW
ACEFL
ACGFS
ACIWK
ACMKP
ACNCT
ACTFP
ACXLN
ADALX
ADEQT
ADGQD
ADGYE
ADOZN
AEDGQ
AEGVQ
AEICA
AEKEB
AEQDQ
AERZL
AEXIE
AFAUI
AFBAA
AFBQV
AFGNR
AFYRI
AGWTP
AHVWV
AHXUK
AIERV
AIGSN
AIKXB
AJPIC
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMAVY
ASYPN
AZMOX
BAKPI
BBCWN
BBDJO
BCIFA
BDLBQ
DBYYV
EBS
FSTRU
IY9
P2P
QD8
WTRAM
AAILP
AAYXX
ABVMU
ABWLS
ACPMA
AGBEV
AKXKS
CITATION
IPNFZ
P0W
SLJYH
UK5
ID FETCH-LOGICAL-c362t-320ca6f4f4b85db8e735392992ffec564fdfb3da46d103c6067eede7d72ddd113
ISSN 0942-9352
IngestDate Thu Sep 12 17:24:45 EDT 2024
Fri Nov 25 00:38:42 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-320ca6f4f4b85db8e735392992ffec564fdfb3da46d103c6067eede7d72ddd113
PageCount 16
ParticipantIDs crossref_primary_10_1524_zpch_2012_0255
walterdegruyter_journals_10_1524_zpch_2012_02552269_10979
PublicationCentury 2000
PublicationDate 2012-10-1
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-1
  day: 01
PublicationDecade 2010
PublicationTitle Zeitschrift für physikalische Chemie (Neue Folge)
PublicationYear 2012
Publisher De Gruyter Oldenbourg
Publisher_xml – name: De Gruyter Oldenbourg
References p_27
p_28
p_29
p_23
p_45
p_24
p_46
p_25
p_47
p_26
p_41
p_20
p_42
p_21
p_22
p_44
p_40
p_16
p_38
p_17
p_2
p_18
p_1
p_19
p_4
p_12
p_34
p_3
p_13
p_35
p_6
p_14
p_36
p_5
p_15
p_37
p_8
p_7
p_30
p_31
p_10
p_32
p_11
p_33
References_xml – ident: p_18
  doi: 10.1021/ja1021816
– ident: p_3
  doi: 10.1016/S0013-4686(98)00022-X
– ident: p_14
  doi: 10.1039/b409861g
– ident: p_45
  doi: 10.1016/S0022-0728(79)80022-4
– ident: p_37
  doi: 10.1039/c0cp00170h
– ident: p_1
  doi: 10.1002/1521-3773(20010401)40:7<1162::AID-ANIE1162>3.0.CO;2-F
– ident: p_32
  doi: 10.1103/PhysRevLett.106.046102
– ident: p_22
  doi: 10.1039/b921469k
– ident: p_16
  doi: 10.1021/ja8055276
– ident: p_4
  doi: 10.1016/S0013-4686(00)00328-5
– ident: p_29
  doi: 10.1039/c1cc15463j
– ident: p_8
  doi: 10.1021/jp0737202
– ident: p_40
  doi: 10.1039/b923527m
– ident: p_20
  doi: 10.1016/j.electacta.2011.11.088
– ident: p_10
  doi: 10.1021/cr000069p
– ident: p_41
  doi: 10.1016/j.elecom.2003.09.013
– ident: p_12
  doi: 10.1016/j.electacta.2006.03.016
– ident: p_26
  doi: 10.1016/j.cplett.2006.05.114
– ident: p_31
  doi: 10.1021/jp067857o
– ident: p_11
  doi: 10.1002/cphc.200301017
– ident: p_13
  doi: 10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
– ident: p_38
  doi: 10.1039/c39920000965
– ident: p_46
  doi: 10.1016/j.elecom.2006.10.038
– ident: p_15
  doi: 10.1039/b607329h
– ident: p_6
  doi: 10.1007/s10008-011-1372-1
– ident: p_23
  doi: 10.1002/cphc.201000278
– ident: p_24
  doi: 10.1039/c2cp40288b
– ident: p_17
  doi: 10.1021/ja902373q
– ident: p_33
  doi: 10.1021/jp105317e
– ident: p_35
  doi: 10.1016/j.electacta.2009.08.031
– ident: p_30
  doi: 10.1126/science.1164502
– ident: p_2
  doi: 10.1016/S0039-6028(01)01583-7
– ident: p_7
  doi: 10.1016/S0079-6816(98)00022-7
– ident: p_25
  doi: 10.1002/anie.200900300
– ident: p_27
  doi: 10.1039/c1cc11322d
– ident: p_21
  doi: 10.1021/cr0680686
– ident: p_28
  doi: 10.1021/jp200544b
– ident: p_44
  doi: 10.1021/jp903292n
– ident: p_34
  doi: 10.1039/b703574h
– ident: p_36
  doi: 10.1039/c1cp20562e
– ident: p_47
  doi: 10.1524/zpch.2006.220.10.1377
– ident: p_19
  doi: 10.1016/j.electacta.2011.09.069
– ident: p_42
  doi: 10.1021/jp071162l
– ident: p_5
  doi: 10.1021/cr9600363
SSID ssj0026373
Score 2.2260513
Snippet By employing high resolution in-situ STM, the adsorption of alkylimidazolium-based cations of EMI , PMI , BMI and OMI on Au(111) and Au(100) surfaces are...
Abstract By employing high resolution in-situ STM, the adsorption of alkylimidazolium-based cations of EMI + , PMI + , BMI + and OMI + on Au(111) and Au(100)...
SourceID crossref
walterdegruyter
SourceType Aggregation Database
Publisher
StartPage 979
SubjectTerms Gold
In-situ STM
Ionic Liquid
Single Crystal
Solvent Adsorption
Title Adsorption of Solvent Cations on Au(111) and Au(100) in Alkylimidazolium-Based Ionic Liquids – Worm-Like versus Micelle-Like Structures
URI http://www.degruyter.com/doi/10.1524/zpch.2012.0255
Volume 226
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9ACXiqdoeWgPSFBFW2J7bWePSdQHVeGSFkIvke1dp1YeDokt1Jy4cuYfcuB3MONdO0kJUuFiOSOt4-x82Zmd_WaGkFeRZynlyJgFkSsZD6XDRJNzZgUCLQL3PYkJzu8_eCcX_LTn9ra2fq2wlvIsPIgWG_NK_kerIAO9YpbsP2i2eigI4B70C1fQMFxvpeOWnKezaenzddMRkhcxqU-z2zCSgXWYcLUSxSmB_oyNmUUR6BgNr0fJOJHBIh0l-Zi1wabJ-ruiK85Z8iVP5Lxe0iEcDKyP2VkyVHXkcuRz5Nxj3F_LukUl2nxmSInG4b1USQYb6FkSZ_UYT-XbnZkOpwyx9GKEbfOwZoHSbYFyVT9KRwO1EqDo5oWZyNnlVb6E8mcduD1NAvZJJRWtKNGpAMGEHQfGJoO4Zw5hroKU9WBuBquxDsuuWHNV0JLbTDi65u2BKmSw5HrMt3R58nJNt3UavgGvYIY6qxdpodvXGHsvdJPlP0yJa3PQ_2JaHFlhxNjW9YTXa3bfsKUVwxH3VvCEPo7v4_g-jr9Dtm1fuH6NbLeO24cfq9CA52guRPn7THlReMLb9TdYc592vhaUCqkGs_w6K4_wC8_o_D7ZMVsa2tL4fEC21OQhudspOwk-It-XOKVpTA1OqcEpBWkrfwMo3aeA0eK-0dinCYg34pMW-KQGn_Tntx-0QibVyKSryKRLZD4mF0eH550TZlqAsAg8q4w5diMKvJjHPGy6Mmwq33HRoxc2sp1cj8cyDh0ZcE9aDSeC3bgPTp_ypW9LKS3LeUJqk3SinhKKOxfLjSJuyQZXsdWMLS9UPjio0go9T-2S1-XM9qe60kt_sxZ3ibgx8X2zKMz_MgLgKAquh9i79bc8I_eWf4HnpAZTpV6AA5yFLw16fgO4K643
link.rule.ids 315,786,790,27957,27958
linkProvider Walter de Gruyter
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+Solvent+Cations+on+Au%28111%29+and+Au%28100%29+in+Alkylimidazolium-Based+Ionic+Liquids+%E2%80%93+Worm-Like+versus+Micelle-Like+Structures&rft.jtitle=Zeitschrift+f%C3%BCr+physikalische+Chemie+%28Neue+Folge%29&rft.au=Su%2C+Yu-Zhuan&rft.au=Yan%2C+Jia-Wei&rft.au=Li%2C+Mian-Gang&rft.au=Xie%2C+Zhao-Xiong&rft.date=2012-10-01&rft.issn=0942-9352&rft.eissn=2196-7156&rft.volume=226&rft.issue=9-10&rft.spage=979&rft.epage=994&rft_id=info:doi/10.1524%2Fzpch.2012.0255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1524_zpch_2012_0255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-9352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-9352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-9352&client=summon