Doping of ultra-thin Si films: Combined first-principles calculations and experimental study
This paper presents comprehensive density functional theory-based simulations to understand the characteristics of dopant atoms in the core and on the surface of ultra-thin sub-5 nm Si films. Quantum confinement-induced bandgap widening has been investigated for doped Si films considering two differ...
Saved in:
Published in | Journal of applied physics Vol. 129; no. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
07.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents comprehensive density functional theory-based simulations to understand the characteristics of dopant atoms in the core and on the surface of ultra-thin sub-5 nm Si films. Quantum confinement-induced bandgap widening has been investigated for doped Si films considering two different doping concentrations. Thickness-dependent evolution of dopant formation energy is also extracted for the thin films. It is evident from the results that doping thinner films is more difficult and that dopant location at the surface is energetically more favorable compared to core dopants. However, the core dopant generates a higher density of states than the surface dopant. Projecting the carrier states in the doped Si film onto those of a reference intrinsic film reveals dopant-induced states above the conduction band edge, as well as perturbations of the intrinsic film states. Furthermore, to experimentally evaluate the ab initio predictions, we have produced ex situ phosphorus-doped ultra-thin-Si-on-oxide with a thickness of 4.5 nm by the beam-line ion implantation technique. High-resolution transmission electron microscopy has confirmed the thickness of the Si film on oxide. Transfer length method test structures are fabricated, and the temperature-dependent electrical characterization has revealed the effective dopant activation energy of the ion-implanted phosphorus dopant to be ≤ 13.5 meV, which is consistent with our theoretical predictions for comparable film thickness. Ultra-thin Si films are essential in the next generation of Si-based electronic devices, and this study paves the way toward achieving that technology. |
---|---|
AbstractList | This paper presents comprehensive density functional theory-based simulations to understand the characteristics of dopant atoms in the core and on the surface of ultra-thin sub-5 nm Si films. Quantum confinement-induced bandgap widening has been investigated for doped Si films considering two different doping concentrations. Thickness-dependent evolution of dopant formation energy is also extracted for the thin films. It is evident from the results that doping thinner films is more difficult and that dopant location at the surface is energetically more favorable compared to core dopants. However, the core dopant generates a higher density of states than the surface dopant. Projecting the carrier states in the doped Si film onto those of a reference intrinsic film reveals dopant-induced states above the conduction band edge, as well as perturbations of the intrinsic film states. Furthermore, to experimentally evaluate the ab initio predictions, we have produced ex situ phosphorus-doped ultra-thin-Si-on-oxide with a thickness of 4.5 nm by the beam-line ion implantation technique. High-resolution transmission electron microscopy has confirmed the thickness of the Si film on oxide. Transfer length method test structures are fabricated, and the temperature-dependent electrical characterization has revealed the effective dopant activation energy of the ion-implanted phosphorus dopant to be ≤ 13.5 meV, which is consistent with our theoretical predictions for comparable film thickness. Ultra-thin Si films are essential in the next generation of Si-based electronic devices, and this study paves the way toward achieving that technology. |
Author | Curran, Anya Fahy, Stephen Meaney, Fintan Gity, Farzan Duffy, Ray Ansari, Lida Hurley, Paul K. |
Author_xml | – sequence: 1 givenname: Farzan surname: Gity fullname: Gity, Farzan organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland – sequence: 2 givenname: Fintan surname: Meaney fullname: Meaney, Fintan organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland – sequence: 3 givenname: Anya surname: Curran fullname: Curran, Anya organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland – sequence: 4 givenname: Paul K. surname: Hurley fullname: Hurley, Paul K. organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland – sequence: 5 givenname: Stephen surname: Fahy fullname: Fahy, Stephen organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland – sequence: 6 givenname: Ray surname: Duffy fullname: Duffy, Ray organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland – sequence: 7 givenname: Lida surname: Ansari fullname: Ansari, Lida organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland |
BookMark | eNp9kE1LAzEQhoMo2FYP_oOAJ4Vtk81u0vUm9RMKHtSbELL50JRtsiZZsf_e1VYFFU_DDM_7zrwzBNvOOw3AAUZjjCiZlGOESEkrsgUGGE2rjJUl2gYDhHKcTStW7YJhjAuEMJ6SagAeznxr3SP0BnZNCiJLT9bBWwuNbZbxBM78srZOq74PMWVtsE7attERStHIrhHJehehcArq11YHu9QuiQbG1KnVHtgxool6f1NH4P7i_G52lc1vLq9np_NMEpqnLDemZrkkdVEhxrSWpZJCGlpgbYzpR4phlWuECUUloSWrjWSUUKwoK2pFyQgcrn3b4J87HRNf-C64fiXPC1ZUlLAq76nJmpLBxxi04dKmj_v73LbhGPH3F_KSb17YK45-KPr8SxFWf7LHazZ-un7BLz58g7xV5j_4t_MbukWPfw |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1016_j_physe_2022_115522 crossref_primary_10_1016_j_apmt_2021_101163 crossref_primary_10_1063_5_0176463 crossref_primary_10_1002_adfm_202105722 |
Cites_doi | 10.1063/1.4896293 10.7567/JJAP.52.04CA01 10.1088/0953-8984/25/34/345501 10.1021/ja5002357 10.1002/admi.201400359 10.1021/acs.nanolett.8b04083 10.1088/1361-648X/aa4e63 10.1088/0034-4885/37/9/001 10.1038/s41586-020-2170-7 10.1063/1.4813743 10.1007/978-3-319-48933-9 10.1038/s41586-019-1901-0 10.1016/j.sse.2003.12.020 10.1002/adma.201305929 10.1038/s41565-019-0587-7 10.1109/IEDM.2017.8268427 10.1038/s41598-017-01001-1 10.1103/PhysRevLett.102.226401 10.1063/1.2785957 10.1038/nnano.2010.236 10.1021/nl061811p 10.1038/nphys475 10.1109/TNANO.2013.2279424 10.1103/RevModPhys.82.427 10.1126/science.1143802 10.1109/16.974714 10.1109/TED.2018.2870115 10.1021/nl2026212 10.1016/j.sse.2009.09.007 10.1063/1.5098307 10.1103/PhysRevB.82.153413 10.1016/j.sse.2011.10.021 10.1038/nphoton.2010.167 10.1038/s41586-019-1573-9 10.1038/srep09702 10.1103/PhysRevLett.104.216401 10.1109/IEDM.2018.8614675 10.1038/s41928-019-0343-x 10.1002/pssa.201200149 10.1103/PhysRevB.23.5048 10.1063/1.3478012 10.1039/C5NR02584B 10.1103/PhysRevB.69.195113 10.1103/PhysRevB.13.5188 10.1021/nl072997a 10.1039/C7TC04732K 10.1103/PhysRevB.75.045301 10.1038/s41928-019-0278-2 10.1038/s41586-019-1381-2 10.1038/nnano.2012.21 10.1021/nl2040817 10.1063/1.4807578 10.1103/PhysRevB.89.035312 10.1016/j.mee.2018.03.022 10.1063/1.4977431 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0035693 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_5_0035693 jap |
GrantInformation_xml | – fundername: Irish Research Council grantid: EPSPG/2017/356 funderid: https://doi.org/10.13039/501100002081 – fundername: EU H2020 - ASCENT Access Network grantid: 654384 – fundername: SFI/HEA Irish Centre for High-End Computing – fundername: Irish Research Council grantid: GOIPD/2018/653 funderid: https://doi.org/10.13039/501100002081 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c362t-2ffb72c3b49077eec5dcacf641efff077d71d2e0136053657bfc76361d674bd63 |
IEDL.DBID | AJDQP |
ISSN | 0021-8979 |
IngestDate | Sun Jun 29 15:43:53 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Sun Jul 06 05:08:29 EDT 2025 Fri Jun 21 00:13:57 EDT 2024 Thu Jun 23 13:36:24 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 0021-8979/2021/128(24)/015701/9 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-2ffb72c3b49077eec5dcacf641efff077d71d2e0136053657bfc76361d674bd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9284-2832 0000-0002-6362-3489 0000-0003-2987-0280 0000-0003-3128-1426 0000-0001-5137-721X |
OpenAccessLink | http://dx.doi.org/10.1063/5.0035693 |
PQID | 2474963792 |
PQPubID | 2050677 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2474963792 scitation_primary_10_1063_5_0035693 crossref_citationtrail_10_1063_5_0035693 crossref_primary_10_1063_5_0035693 |
PublicationCentury | 2000 |
PublicationDate | 20210107 2021-01-07 |
PublicationDateYYYYMMDD | 2021-01-07 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210107 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Ansari, Feldman, Fagas, Colinge, Greer (c9) 2010 Ansari, Feldman, Fagas, Lacambra, Haverty, Kuhn, Shankar, Greer (c33) 2013 Chan, Tiago, Kaxiras, Chelikowsky (c40) 2008 Uchida, Koga, Takagi (c64) 2007 Guerra, Ossicini (c42) 2014 Hensen, Wei Huang, Yang, Wai Chan, Yoneda, Tanttu, Hudson, Laucht, Itoh, Ladd, Morello, Dzurak (c12) 2020 Carvalho, Öberg, Barroso, Rayson, Briddon (c41) 2012 Hiller, López-Vidrier, Gutsch, Zacharias, Nomoto, König (c25) 2017 Diarra, Niquet, Delerue, Allan (c51) 2007 Dasgupta, Sun, Liu, Brittman, Andrews, Lim, Gao, Yan, Yang (c57) 2014 Colinge (c3) 2004 Bourdet, Hutin, Bertrand, Corna, Bohuslavskyi, Amisse, Crippa, Maurand, Barraud, Urdampilleta, Bäuerle, Meunier, Sanquer, Jehl, Franceschi, Niquet, Vinet (c16) 2018 Rurali (c27) 2010 Ansari, Gity, Greer (c36) 2017 Fuechsle, Miwa, Mahapatra, Ryu, Lee, Warschkow, Hollenberg, Klimeck, Simmons (c46) 2012 Ng, Sullivan, Tong, Wu (c52) 2011 Gity, Ansari, Lanius, Schüffelgen, Mussler, Grützmacher, Greer (c39) 2017 Ozaki, Kino (c31) 2004 Liang, Bowers (c45) 2010 Ansari, Feldman, Fagas, Colinge, Greer (c49) 2012 Seguini, Castro, Schamm-Chardon, BenAssayag, Pellegrino, Perego (c21) 2013 Migita, Morita, Masahara, Ota (c10) 2013 Norris, Efros, Erwin (c47) 2008 Dzurak (c15) 2019 Moore (c1) 1965 Perdew, Zunger (c30) 1981 Lee, Yamada-Takamura, Ozaki (c59) 2013 König, Gutsch, Gnaser, Wahl, Kopnarski, Göttlicher, Steininger, Zacharias, Hiller (c24) 2015 Ni, Pi, Yang (c43) 2014 Arduca, Seguini, Martella, Lamperti, Napolitani, De Salvador, Nicotra, Scuderi, Spinella, Perego (c26) 2018 de Boer, Timmerman, Dohnalová, Yassievich, Zhang, Buma, Gregorkiewicz (c44) 2010 He, Gorman, Keith, Kranz, Keizer, Simmons (c48) 2019 Akinwande, Huyghebaert, Wang, Serna, Goossens, Li, Wong, Koppens (c6) 2019 Goswami, Slinker, Friesen, McGuire, Truitt, Tahan, Klein, Chu, Mooney, van der Weide, Joynt, Coppersmith, Eriksson (c11) 2007 Ansari, Fagas, Colinge, Greer (c37) 2012 Bassani, Iadonisi, Preziosi (c56) 1974 Amato, Ossicini, Canadell, Rurali (c54) 2019 Ku, Berlijn, Lee (c58) 2010 König, Hiller, Gutsch, Zacharias (c22) 2014 Tran, Blaha (c35) 2009 Chen, van Gelder, van de Ven, Amitonov, de Wilde, Ruiz Euler, Broersma, Bobbert, Zwanenburg, van der Wiel (c18) 2020 Monkhorst, Pack (c34) 1976 Gity, Ansari, König, Verni, Holmes, Long, Lanius, Schüffelgen, Mussler, Grützmacher, Greer (c38) 2018 Esseni, Mastrapasqua, Celler, Fiegna, Selmi, Sangiorgi (c63) 2001 Hiramoto (c20) 2019 Perego, Seguini, Arduca, Frascaroli, De Salvador, Mastromatteo, Carnera, Nicotra, Scuderi, Spinella, Impellizzeri, Lenardi, Napolitani (c23) 2015 Duffy, Heringa, Venezia, Loo, Verheijen, Hopstaken, van der Tak, de Potter, Hooker, Meunier-Beillard, Delhougne (c60) 2010 Ansari, Fagas, Greer (c2) 2014 Petit, Eenink, Russ, Lawrie, Hendrickx, Philips, Clarke, Vandersypen, Veldhorst (c13) 2020 Sharma, Ansari, Feldman, Iakovidis, Greer, Fagas (c32) 2013 MacHale, Meaney, Kennedy, Eaton, Mirabelli, White, Thomas, Pelucchi, Petersen, Lin, Petkov, Connolly, Hatem, Gity, Ansari, Long, Duffy (c50) 2019 Peelaers, Partoens, Peeters (c53) 2006 Han, Chan, Chelikowsky (c55) 2010 (2023062519304838100_c30) 1981; 23 (2023062519304838100_c51) 2007; 75 (2023062519304838100_c27) 2010; 82 (2023062519304838100_c18) 2020; 577 (2023062519304838100_c39) 2017; 110 (2023062519304838100_c11) 2007; 3 (2023062519304838100_c22) 2014; 1 (2023062519304838100_c44) 2010; 5 (2023062519304838100_c28) 2006 (2023062519304838100_c64) 2007; 102 (2023062519304838100_c24) 2015; 5 (2023062519304838100_c56) 1974; 37 (2023062519304838100_c46) 2012; 7 (2023062519304838100_c15) 2019; 2 (2023062519304838100_c35) 2009; 102 (2023062519304838100_c62) 2007 (2023062519304838100_c49) 2012; 71 ITRS (2023062519304838100_c4) (2023062519304838100_c41) 2012; 209 (2023062519304838100_c63) 2001; 48 (2023062519304838100_c59) 2013; 25 (2023062519304838100_c31) 2004; 69 (2023062519304838100_c25) 2017; 7 (2023062519304838100_c21) 2013; 103 2023062519304838100_c7 2023062519304838100_c5 (2023062519304838100_c47) 2008; 319 (2023062519304838100_c60) 2010; 54 (2023062519304838100_c23) 2015; 7 (2023062519304838100_c55) 2010; 82 (2023062519304838100_c58) 2010; 104 (2023062519304838100_c33) 2013; 12 (2023062519304838100_c42) 2014; 136 (2023062519304838100_c43) 2014; 89 (2023062519304838100_c13) 2020; 580 (2023062519304838100_c1) 1965; 38 (2023062519304838100_c10) 2013; 52 (2023062519304838100_c38) 2018; 195 (2023062519304838100_c37) 2012; 12 2023062519304838100_c29 (2023062519304838100_c54) 2019; 19 (2023062519304838100_c6) 2019; 573 (2023062519304838100_c40) 2008; 8 (2023062519304838100_c16) 2018; 65 Kasap (2023062519304838100_c65) 2017 (2023062519304838100_c9) 2010; 97 (2023062519304838100_c17) 2018 (2023062519304838100_c26) 2018; 6 (2023062519304838100_c57) 2014; 26 (2023062519304838100_c12) 2020; 15 (2023062519304838100_c48) 2019; 571 (2023062519304838100_c34) 1976; 13 (2023062519304838100_c50) 2019; 125 (2023062519304838100_c2) 2014; 105 (2023062519304838100_c19) 2004 (2023062519304838100_c32) 2013; 113 2023062519304838100_c61 (2023062519304838100_c3) 2004; 48 Samsung Newsroom (2023062519304838100_c8) 2023062519304838100_c14 (2023062519304838100_c45) 2010; 4 (2023062519304838100_c52) 2011; 11 (2023062519304838100_c53) 2006; 6 (2023062519304838100_c20) 2019; 2 (2023062519304838100_c36) 2017; 29 |
References_xml | – start-page: 355 year: 2020 ident: c13 publication-title: Nature – start-page: 243 year: 2010 ident: c60 publication-title: Solid-State Electron. – start-page: 341 year: 2020 ident: c18 publication-title: Nature – start-page: 2842 year: 2001 ident: c63 publication-title: IEEE Trans. Electron Devices – start-page: 1075 year: 2013 ident: c33 publication-title: IEEE Trans. Nanotechnol. – start-page: 216401 year: 2010 ident: c58 publication-title: Phys. Rev. Lett. – start-page: 9702 year: 2015 ident: c24 publication-title: Sci. Rep. – start-page: 1099 year: 1974 ident: c56 publication-title: Rep. Prog. Phys. – start-page: 266 year: 2019 ident: c15 publication-title: Nat. Electron. – start-page: 14469 year: 2015 ident: c23 publication-title: Nanoscale – start-page: 225709 year: 2019 ident: c50 publication-title: J. Appl. Phys. – start-page: 863 year: 2017 ident: c25 publication-title: Sci. Rep. – start-page: 035312 year: 2014 ident: c43 publication-title: Phys. Rev. B – start-page: 242 year: 2012 ident: c46 publication-title: Nat. Nanotechnol. – start-page: 123105 year: 2014 ident: c2 publication-title: Appl. Phys. Lett. – start-page: 13 year: 2020 ident: c12 publication-title: Nat. Nanotechnol. – start-page: 5048 year: 1981 ident: c30 publication-title: Phys. Rev. B – start-page: 045301 year: 2007 ident: c51 publication-title: Phys. Rev. B – start-page: 4404 year: 2014 ident: c42 publication-title: J. Am. Chem. Soc. – start-page: 4794 year: 2011 ident: c52 publication-title: Nano Lett. – start-page: 1400359 year: 2014 ident: c22 publication-title: Adv. Mater. Interfaces – start-page: 5151 year: 2018 ident: c16 publication-title: IEEE Trans. Electron Devices – start-page: 074510 year: 2007 ident: c64 publication-title: J. Appl. Phys. – start-page: 04CA01 year: 2013 ident: c10 publication-title: Jpn. J. Appl. Phys. – start-page: 21 year: 2018 ident: c38 publication-title: Microelectron. Eng. – start-page: 596 year: 2008 ident: c40 publication-title: Nano Lett. – start-page: 557 year: 2019 ident: c20 publication-title: Nat. Electron. – start-page: 065301 year: 2017 ident: c36 publication-title: J. Phys.: Condens. Matter – start-page: 093111 year: 2017 ident: c39 publication-title: Appl. Phys. Lett. – start-page: 2137 year: 2014 ident: c57 publication-title: Adv. Mater. – start-page: 2781 year: 2006 ident: c53 publication-title: Nano Lett. – start-page: 023103 year: 2013 ident: c21 publication-title: Appl. Phys. Lett. – start-page: 119 year: 2018 ident: c26 publication-title: J. Mater. Chem. C – start-page: 345501 year: 2013 ident: c59 publication-title: J. Phys.: Condens. Matter – start-page: 507 year: 2019 ident: c6 publication-title: Nature – start-page: 1847 year: 2012 ident: c41 publication-title: Phys. Status Solidi A – start-page: 153413 year: 2010 ident: c55 publication-title: Phys. Rev. B – start-page: 2222 year: 2012 ident: c37 publication-title: Nano Lett. – start-page: 866 year: 2019 ident: c54 publication-title: Nano Lett. – start-page: 878 year: 2010 ident: c44 publication-title: Nat. Nanotechnol. – start-page: 226401 year: 2009 ident: c35 publication-title: Phys. Rev. Lett. – start-page: 203708 year: 2013 ident: c32 publication-title: J. Appl. Phys. – start-page: 371 year: 2019 ident: c48 publication-title: Nature – start-page: 114 year: 1965 ident: c1 publication-title: Electronics – start-page: 58 year: 2012 ident: c49 publication-title: Solid-State Electron. – start-page: 1776 year: 2008 ident: c47 publication-title: Science – start-page: 511 year: 2010 ident: c45 publication-title: Nat. Photonics – start-page: 062105 year: 2010 ident: c9 publication-title: Appl. Phys. Lett. – start-page: 427 year: 2010 ident: c27 publication-title: Rev. Mod. Phys. – start-page: 897 year: 2004 ident: c3 publication-title: Solid-State Electron. – start-page: 5188 year: 1976 ident: c34 publication-title: Phys. Rev. B – start-page: 41 year: 2007 ident: c11 publication-title: Nat. Phys. – start-page: 195113 year: 2004 ident: c31 publication-title: Phys. Rev. B – volume: 105 start-page: 123105 year: 2014 ident: 2023062519304838100_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896293 – volume: 52 start-page: 04CA01 year: 2013 ident: 2023062519304838100_c10 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.04CA01 – volume: 25 start-page: 345501 year: 2013 ident: 2023062519304838100_c59 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/25/34/345501 – volume: 136 start-page: 4404 year: 2014 ident: 2023062519304838100_c42 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5002357 – volume: 1 start-page: 1400359 year: 2014 ident: 2023062519304838100_c22 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400359 – volume: 19 start-page: 866 year: 2019 ident: 2023062519304838100_c54 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04083 – year: 2007 ident: 2023062519304838100_c62 – volume: 29 start-page: 065301 year: 2017 ident: 2023062519304838100_c36 publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/aa4e63 – volume: 37 start-page: 1099 year: 1974 ident: 2023062519304838100_c56 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/37/9/001 – volume: 580 start-page: 355 year: 2020 ident: 2023062519304838100_c13 publication-title: Nature doi: 10.1038/s41586-020-2170-7 – volume: 103 start-page: 023103 year: 2013 ident: 2023062519304838100_c21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4813743 – ident: 2023062519304838100_c8 – volume-title: Springer Handbook of Electronic and Photonic Materials year: 2017 ident: 2023062519304838100_c65 doi: 10.1007/978-3-319-48933-9 – volume: 577 start-page: 341 year: 2020 ident: 2023062519304838100_c18 publication-title: Nature doi: 10.1038/s41586-019-1901-0 – volume: 38 start-page: 114 year: 1965 ident: 2023062519304838100_c1 publication-title: Electronics – volume: 48 start-page: 897 year: 2004 ident: 2023062519304838100_c3 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2003.12.020 – ident: 2023062519304838100_c14 – volume: 26 start-page: 2137 year: 2014 ident: 2023062519304838100_c57 publication-title: Adv. Mater. doi: 10.1002/adma.201305929 – volume: 15 start-page: 13 year: 2020 ident: 2023062519304838100_c12 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0587-7 – volume-title: 2017 IEEE International Electron Devices Meeting ident: 2023062519304838100_c61 doi: 10.1109/IEDM.2017.8268427 – volume: 7 start-page: 863 year: 2017 ident: 2023062519304838100_c25 publication-title: Sci. Rep. doi: 10.1038/s41598-017-01001-1 – volume: 102 start-page: 226401 year: 2009 ident: 2023062519304838100_c35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume: 102 start-page: 074510 year: 2007 ident: 2023062519304838100_c64 publication-title: J. Appl. Phys. doi: 10.1063/1.2785957 – volume: 5 start-page: 878 year: 2010 ident: 2023062519304838100_c44 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.236 – volume: 6 start-page: 2781 year: 2006 ident: 2023062519304838100_c53 publication-title: Nano Lett. doi: 10.1021/nl061811p – ident: 2023062519304838100_c29 – ident: 2023062519304838100_c5 – volume: 3 start-page: 41 year: 2007 ident: 2023062519304838100_c11 publication-title: Nat. Phys. doi: 10.1038/nphys475 – volume: 12 start-page: 1075 year: 2013 ident: 2023062519304838100_c33 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2013.2279424 – volume: 82 start-page: 427 year: 2010 ident: 2023062519304838100_c27 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.427 – volume: 319 start-page: 1776 year: 2008 ident: 2023062519304838100_c47 publication-title: Science doi: 10.1126/science.1143802 – volume: 48 start-page: 2842 year: 2001 ident: 2023062519304838100_c63 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.974714 – volume: 65 start-page: 5151 year: 2018 ident: 2023062519304838100_c16 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2018.2870115 – volume: 11 start-page: 4794 year: 2011 ident: 2023062519304838100_c52 publication-title: Nano Lett. doi: 10.1021/nl2026212 – volume: 54 start-page: 243 year: 2010 ident: 2023062519304838100_c60 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2009.09.007 – volume: 125 start-page: 225709 year: 2019 ident: 2023062519304838100_c50 publication-title: J. Appl. Phys. doi: 10.1063/1.5098307 – volume: 82 start-page: 153413 year: 2010 ident: 2023062519304838100_c55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.153413 – volume: 71 start-page: 58 year: 2012 ident: 2023062519304838100_c49 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2011.10.021 – start-page: 127 volume-title: Semiconductor Material and Device Characterization year: 2006 ident: 2023062519304838100_c28 – volume: 4 start-page: 511 year: 2010 ident: 2023062519304838100_c45 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.167 – volume: 573 start-page: 507 year: 2019 ident: 2023062519304838100_c6 publication-title: Nature doi: 10.1038/s41586-019-1573-9 – volume: 5 start-page: 9702 year: 2015 ident: 2023062519304838100_c24 publication-title: Sci. Rep. doi: 10.1038/srep09702 – volume: 104 start-page: 216401 year: 2010 ident: 2023062519304838100_c58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.216401 – ident: 2023062519304838100_c4 – start-page: 6.5.1 volume-title: Towards Scalable Silicon Quantum Computing year: 2018 ident: 2023062519304838100_c17 doi: 10.1109/IEDM.2018.8614675 – volume: 2 start-page: 557 year: 2019 ident: 2023062519304838100_c20 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0343-x – volume: 209 start-page: 1847 year: 2012 ident: 2023062519304838100_c41 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201200149 – volume: 23 start-page: 5048 year: 1981 ident: 2023062519304838100_c30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5048 – volume: 97 start-page: 062105 year: 2010 ident: 2023062519304838100_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3478012 – volume: 7 start-page: 14469 year: 2015 ident: 2023062519304838100_c23 publication-title: Nanoscale doi: 10.1039/C5NR02584B – volume-title: Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon year: 2004 ident: 2023062519304838100_c19 – volume: 69 start-page: 195113 year: 2004 ident: 2023062519304838100_c31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.195113 – volume: 13 start-page: 5188 year: 1976 ident: 2023062519304838100_c34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 8 start-page: 596 year: 2008 ident: 2023062519304838100_c40 publication-title: Nano Lett. doi: 10.1021/nl072997a – volume: 6 start-page: 119 year: 2018 ident: 2023062519304838100_c26 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04732K – volume: 75 start-page: 045301 year: 2007 ident: 2023062519304838100_c51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.045301 – ident: 2023062519304838100_c7 – volume: 2 start-page: 266 year: 2019 ident: 2023062519304838100_c15 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0278-2 – volume: 571 start-page: 371 year: 2019 ident: 2023062519304838100_c48 publication-title: Nature doi: 10.1038/s41586-019-1381-2 – volume: 7 start-page: 242 year: 2012 ident: 2023062519304838100_c46 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.21 – volume: 12 start-page: 2222 year: 2012 ident: 2023062519304838100_c37 publication-title: Nano Lett. doi: 10.1021/nl2040817 – volume: 113 start-page: 203708 year: 2013 ident: 2023062519304838100_c32 publication-title: J. Appl. Phys. doi: 10.1063/1.4807578 – volume: 89 start-page: 035312 year: 2014 ident: 2023062519304838100_c43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.035312 – volume: 195 start-page: 21 year: 2018 ident: 2023062519304838100_c38 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2018.03.022 – volume: 110 start-page: 093111 year: 2017 ident: 2023062519304838100_c39 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4977431 |
SSID | ssj0011839 |
Score | 2.3937948 |
Snippet | This paper presents comprehensive density functional theory-based simulations to understand the characteristics of dopant atoms in the core and on the surface... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Conduction bands Density functional theory Dopants Doping Electrical properties Electronic devices Film thickness First principles Free energy Heat of formation High resolution electron microscopy Ion implantation Phosphorus Quantum confinement Silicon films Temperature dependence Thin films |
Title | Doping of ultra-thin Si films: Combined first-principles calculations and experimental study |
URI | http://dx.doi.org/10.1063/5.0035693 https://www.proquest.com/docview/2474963792 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qIupBtCpWqyzWg5fFJtnsdr0VaxGxolTBgxC6LyzUtDTR3--kTdoKVTwmTDYwj_3msTsDcG6dVspYSb2GFZQhxlAljU9Ng_lCIWAKL7vv3Hngty_s7jV8LUHtlwo-Dy6znEcQchmswJqPzjGq7lrzrvX0OCsWZCA_Pcnh0YYUsmggtPjxT9iZ-5IbCDTTmvcCrLR3YDv3B0lzKsBdKNm4DFsLXQLLsD45pamTPXhrTa43kaEjn4N03KPpez8m3T5x_cFHckXQuDHQtQaf0amjoyKRnhCUhM4HdSWkFxuy2NmfTHrM7sNL--b5-pbm4xGoRtRJqe8cMlMHimGAK6zVodE97TjzrHMOXxnks2-zpmxoaTwUymncTbhnuGDK8OAAVuNhbA-BcF0PZE8ai9EHE7LecFoHrs618hnKy6vARcG9qOBXNsJiEE1q2DyIwihndAXOZqSjacOMZUTVQgRRbjNJhL9iuB0I6VegNhPLX4ssofoajucU0ci4o3-tdQybfqY-WW5FVGE1HX_aE_Q2UnWK2tbq3HdPc637BsSK0K0 |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dS9xAcLBK0T6Uaiteq-1iW-jL1stms3sr-CBe5fykpQo-FGL2C0-uuXDJKf1R_Y-d5JK7K0jpi48Jw-wwMzsfO7szAB-cN1pbp2jQcZJy9DFUK8uo7XAmNTpMGZTvnc_ORe-SH19FVwvwu3kLg0Tkn5N-VhXxb5Nsp2YgHWDMOc5mDQdEuFOehoSRUM3s6hP36x4ztnzvqIvi_cjY4ZeLgx6thwpQg7a6oMx7JMGEmmNaKJ0zkTWJ8YIHznuPvyxSx1zZygz1U0RSe4N7UARWSK6tCBHvE1jC7F_gJlraP-5--zotW5ThxuROSUA7SqqmldE8sX87wFlUu4wub1J9n3Nwhy_geR2Zkv0JJ1ZhwaVr8GyuX-EaPK3ui5r8JfzoVg-tyNCT8aAYJbS46afke5_4_uBnvkvQzGDK7Sx-Y3hJs-ZIPyeoE6YeGZaTJLVkfsYAqbrdvoLLR-HpOiymw9RtABGmHapEWYd5EJeq3fHGhL4tjGYcNSdowaeGe3HDr3KYxiCuqukijKO4ZnQLtqeg2aR1x0NAm40I4nr35jEuxdEwScVa8H4qln8heQDqbjiaQcSZ9a__C9c7WO5dnJ3Gp0fnJ29ghZWqVJ74yE1YLEZjt4UxUKHf1ppH4Pqxlf0PDKUWzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doping+of+ultra-thin+Si+films%3A+Combined+first-principles+calculations+and+experimental+study&rft.jtitle=Journal+of+applied+physics&rft.au=Gity%2C+Farzan&rft.au=Meaney%2C+Fintan&rft.au=Curran%2C+Anya&rft.au=Hurley%2C+Paul+K.&rft.date=2021-01-07&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=129&rft.issue=1&rft_id=info:doi/10.1063%2F5.0035693&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |