Doping of ultra-thin Si films: Combined first-principles calculations and experimental study

This paper presents comprehensive density functional theory-based simulations to understand the characteristics of dopant atoms in the core and on the surface of ultra-thin sub-5 nm Si films. Quantum confinement-induced bandgap widening has been investigated for doped Si films considering two differ...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 129; no. 1
Main Authors Gity, Farzan, Meaney, Fintan, Curran, Anya, Hurley, Paul K., Fahy, Stephen, Duffy, Ray, Ansari, Lida
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents comprehensive density functional theory-based simulations to understand the characteristics of dopant atoms in the core and on the surface of ultra-thin sub-5 nm Si films. Quantum confinement-induced bandgap widening has been investigated for doped Si films considering two different doping concentrations. Thickness-dependent evolution of dopant formation energy is also extracted for the thin films. It is evident from the results that doping thinner films is more difficult and that dopant location at the surface is energetically more favorable compared to core dopants. However, the core dopant generates a higher density of states than the surface dopant. Projecting the carrier states in the doped Si film onto those of a reference intrinsic film reveals dopant-induced states above the conduction band edge, as well as perturbations of the intrinsic film states. Furthermore, to experimentally evaluate the ab initio predictions, we have produced ex situ phosphorus-doped ultra-thin-Si-on-oxide with a thickness of 4.5 nm by the beam-line ion implantation technique. High-resolution transmission electron microscopy has confirmed the thickness of the Si film on oxide. Transfer length method test structures are fabricated, and the temperature-dependent electrical characterization has revealed the effective dopant activation energy of the ion-implanted phosphorus dopant to be ≤ 13.5 meV, which is consistent with our theoretical predictions for comparable film thickness. Ultra-thin Si films are essential in the next generation of Si-based electronic devices, and this study paves the way toward achieving that technology.
AbstractList This paper presents comprehensive density functional theory-based simulations to understand the characteristics of dopant atoms in the core and on the surface of ultra-thin sub-5 nm Si films. Quantum confinement-induced bandgap widening has been investigated for doped Si films considering two different doping concentrations. Thickness-dependent evolution of dopant formation energy is also extracted for the thin films. It is evident from the results that doping thinner films is more difficult and that dopant location at the surface is energetically more favorable compared to core dopants. However, the core dopant generates a higher density of states than the surface dopant. Projecting the carrier states in the doped Si film onto those of a reference intrinsic film reveals dopant-induced states above the conduction band edge, as well as perturbations of the intrinsic film states. Furthermore, to experimentally evaluate the ab initio predictions, we have produced ex situ phosphorus-doped ultra-thin-Si-on-oxide with a thickness of 4.5 nm by the beam-line ion implantation technique. High-resolution transmission electron microscopy has confirmed the thickness of the Si film on oxide. Transfer length method test structures are fabricated, and the temperature-dependent electrical characterization has revealed the effective dopant activation energy of the ion-implanted phosphorus dopant to be ≤ 13.5 meV, which is consistent with our theoretical predictions for comparable film thickness. Ultra-thin Si films are essential in the next generation of Si-based electronic devices, and this study paves the way toward achieving that technology.
Author Curran, Anya
Fahy, Stephen
Meaney, Fintan
Gity, Farzan
Duffy, Ray
Ansari, Lida
Hurley, Paul K.
Author_xml – sequence: 1
  givenname: Farzan
  surname: Gity
  fullname: Gity, Farzan
  organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
– sequence: 2
  givenname: Fintan
  surname: Meaney
  fullname: Meaney, Fintan
  organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
– sequence: 3
  givenname: Anya
  surname: Curran
  fullname: Curran, Anya
  organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
– sequence: 4
  givenname: Paul K.
  surname: Hurley
  fullname: Hurley, Paul K.
  organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
– sequence: 5
  givenname: Stephen
  surname: Fahy
  fullname: Fahy, Stephen
  organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
– sequence: 6
  givenname: Ray
  surname: Duffy
  fullname: Duffy, Ray
  organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
– sequence: 7
  givenname: Lida
  surname: Ansari
  fullname: Ansari, Lida
  organization: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
BookMark eNp9kE1LAzEQhoMo2FYP_oOAJ4Vtk81u0vUm9RMKHtSbELL50JRtsiZZsf_e1VYFFU_DDM_7zrwzBNvOOw3AAUZjjCiZlGOESEkrsgUGGE2rjJUl2gYDhHKcTStW7YJhjAuEMJ6SagAeznxr3SP0BnZNCiJLT9bBWwuNbZbxBM78srZOq74PMWVtsE7attERStHIrhHJehehcArq11YHu9QuiQbG1KnVHtgxool6f1NH4P7i_G52lc1vLq9np_NMEpqnLDemZrkkdVEhxrSWpZJCGlpgbYzpR4phlWuECUUloSWrjWSUUKwoK2pFyQgcrn3b4J87HRNf-C64fiXPC1ZUlLAq76nJmpLBxxi04dKmj_v73LbhGPH3F_KSb17YK45-KPr8SxFWf7LHazZ-un7BLz58g7xV5j_4t_MbukWPfw
CODEN JAPIAU
CitedBy_id crossref_primary_10_1016_j_physe_2022_115522
crossref_primary_10_1016_j_apmt_2021_101163
crossref_primary_10_1063_5_0176463
crossref_primary_10_1002_adfm_202105722
Cites_doi 10.1063/1.4896293
10.7567/JJAP.52.04CA01
10.1088/0953-8984/25/34/345501
10.1021/ja5002357
10.1002/admi.201400359
10.1021/acs.nanolett.8b04083
10.1088/1361-648X/aa4e63
10.1088/0034-4885/37/9/001
10.1038/s41586-020-2170-7
10.1063/1.4813743
10.1007/978-3-319-48933-9
10.1038/s41586-019-1901-0
10.1016/j.sse.2003.12.020
10.1002/adma.201305929
10.1038/s41565-019-0587-7
10.1109/IEDM.2017.8268427
10.1038/s41598-017-01001-1
10.1103/PhysRevLett.102.226401
10.1063/1.2785957
10.1038/nnano.2010.236
10.1021/nl061811p
10.1038/nphys475
10.1109/TNANO.2013.2279424
10.1103/RevModPhys.82.427
10.1126/science.1143802
10.1109/16.974714
10.1109/TED.2018.2870115
10.1021/nl2026212
10.1016/j.sse.2009.09.007
10.1063/1.5098307
10.1103/PhysRevB.82.153413
10.1016/j.sse.2011.10.021
10.1038/nphoton.2010.167
10.1038/s41586-019-1573-9
10.1038/srep09702
10.1103/PhysRevLett.104.216401
10.1109/IEDM.2018.8614675
10.1038/s41928-019-0343-x
10.1002/pssa.201200149
10.1103/PhysRevB.23.5048
10.1063/1.3478012
10.1039/C5NR02584B
10.1103/PhysRevB.69.195113
10.1103/PhysRevB.13.5188
10.1021/nl072997a
10.1039/C7TC04732K
10.1103/PhysRevB.75.045301
10.1038/s41928-019-0278-2
10.1038/s41586-019-1381-2
10.1038/nnano.2012.21
10.1021/nl2040817
10.1063/1.4807578
10.1103/PhysRevB.89.035312
10.1016/j.mee.2018.03.022
10.1063/1.4977431
ContentType Journal Article
Copyright Author(s)
2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0035693
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_5_0035693
jap
GrantInformation_xml – fundername: Irish Research Council
  grantid: EPSPG/2017/356
  funderid: https://doi.org/10.13039/501100002081
– fundername: EU H2020 - ASCENT Access Network
  grantid: 654384
– fundername: SFI/HEA Irish Centre for High-End Computing
– fundername: Irish Research Council
  grantid: GOIPD/2018/653
  funderid: https://doi.org/10.13039/501100002081
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c362t-2ffb72c3b49077eec5dcacf641efff077d71d2e0136053657bfc76361d674bd63
IEDL.DBID AJDQP
ISSN 0021-8979
IngestDate Sun Jun 29 15:43:53 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Sun Jul 06 05:08:29 EDT 2025
Fri Jun 21 00:13:57 EDT 2024
Thu Jun 23 13:36:24 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0021-8979/2021/128(24)/015701/9
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-2ffb72c3b49077eec5dcacf641efff077d71d2e0136053657bfc76361d674bd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9284-2832
0000-0002-6362-3489
0000-0003-2987-0280
0000-0003-3128-1426
0000-0001-5137-721X
OpenAccessLink http://dx.doi.org/10.1063/5.0035693
PQID 2474963792
PQPubID 2050677
PageCount 9
ParticipantIDs proquest_journals_2474963792
scitation_primary_10_1063_5_0035693
crossref_citationtrail_10_1063_5_0035693
crossref_primary_10_1063_5_0035693
PublicationCentury 2000
PublicationDate 20210107
2021-01-07
PublicationDateYYYYMMDD 2021-01-07
PublicationDate_xml – month: 01
  year: 2021
  text: 20210107
  day: 07
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Ansari, Feldman, Fagas, Colinge, Greer (c9) 2010
Ansari, Feldman, Fagas, Lacambra, Haverty, Kuhn, Shankar, Greer (c33) 2013
Chan, Tiago, Kaxiras, Chelikowsky (c40) 2008
Uchida, Koga, Takagi (c64) 2007
Guerra, Ossicini (c42) 2014
Hensen, Wei Huang, Yang, Wai Chan, Yoneda, Tanttu, Hudson, Laucht, Itoh, Ladd, Morello, Dzurak (c12) 2020
Carvalho, Öberg, Barroso, Rayson, Briddon (c41) 2012
Hiller, López-Vidrier, Gutsch, Zacharias, Nomoto, König (c25) 2017
Diarra, Niquet, Delerue, Allan (c51) 2007
Dasgupta, Sun, Liu, Brittman, Andrews, Lim, Gao, Yan, Yang (c57) 2014
Colinge (c3) 2004
Bourdet, Hutin, Bertrand, Corna, Bohuslavskyi, Amisse, Crippa, Maurand, Barraud, Urdampilleta, Bäuerle, Meunier, Sanquer, Jehl, Franceschi, Niquet, Vinet (c16) 2018
Rurali (c27) 2010
Ansari, Gity, Greer (c36) 2017
Fuechsle, Miwa, Mahapatra, Ryu, Lee, Warschkow, Hollenberg, Klimeck, Simmons (c46) 2012
Ng, Sullivan, Tong, Wu (c52) 2011
Gity, Ansari, Lanius, Schüffelgen, Mussler, Grützmacher, Greer (c39) 2017
Ozaki, Kino (c31) 2004
Liang, Bowers (c45) 2010
Ansari, Feldman, Fagas, Colinge, Greer (c49) 2012
Seguini, Castro, Schamm-Chardon, BenAssayag, Pellegrino, Perego (c21) 2013
Migita, Morita, Masahara, Ota (c10) 2013
Norris, Efros, Erwin (c47) 2008
Dzurak (c15) 2019
Moore (c1) 1965
Perdew, Zunger (c30) 1981
Lee, Yamada-Takamura, Ozaki (c59) 2013
König, Gutsch, Gnaser, Wahl, Kopnarski, Göttlicher, Steininger, Zacharias, Hiller (c24) 2015
Ni, Pi, Yang (c43) 2014
Arduca, Seguini, Martella, Lamperti, Napolitani, De Salvador, Nicotra, Scuderi, Spinella, Perego (c26) 2018
de Boer, Timmerman, Dohnalová, Yassievich, Zhang, Buma, Gregorkiewicz (c44) 2010
He, Gorman, Keith, Kranz, Keizer, Simmons (c48) 2019
Akinwande, Huyghebaert, Wang, Serna, Goossens, Li, Wong, Koppens (c6) 2019
Goswami, Slinker, Friesen, McGuire, Truitt, Tahan, Klein, Chu, Mooney, van der Weide, Joynt, Coppersmith, Eriksson (c11) 2007
Ansari, Fagas, Colinge, Greer (c37) 2012
Bassani, Iadonisi, Preziosi (c56) 1974
Amato, Ossicini, Canadell, Rurali (c54) 2019
Ku, Berlijn, Lee (c58) 2010
König, Hiller, Gutsch, Zacharias (c22) 2014
Tran, Blaha (c35) 2009
Chen, van Gelder, van de Ven, Amitonov, de Wilde, Ruiz Euler, Broersma, Bobbert, Zwanenburg, van der Wiel (c18) 2020
Monkhorst, Pack (c34) 1976
Gity, Ansari, König, Verni, Holmes, Long, Lanius, Schüffelgen, Mussler, Grützmacher, Greer (c38) 2018
Esseni, Mastrapasqua, Celler, Fiegna, Selmi, Sangiorgi (c63) 2001
Hiramoto (c20) 2019
Perego, Seguini, Arduca, Frascaroli, De Salvador, Mastromatteo, Carnera, Nicotra, Scuderi, Spinella, Impellizzeri, Lenardi, Napolitani (c23) 2015
Duffy, Heringa, Venezia, Loo, Verheijen, Hopstaken, van der Tak, de Potter, Hooker, Meunier-Beillard, Delhougne (c60) 2010
Ansari, Fagas, Greer (c2) 2014
Petit, Eenink, Russ, Lawrie, Hendrickx, Philips, Clarke, Vandersypen, Veldhorst (c13) 2020
Sharma, Ansari, Feldman, Iakovidis, Greer, Fagas (c32) 2013
MacHale, Meaney, Kennedy, Eaton, Mirabelli, White, Thomas, Pelucchi, Petersen, Lin, Petkov, Connolly, Hatem, Gity, Ansari, Long, Duffy (c50) 2019
Peelaers, Partoens, Peeters (c53) 2006
Han, Chan, Chelikowsky (c55) 2010
(2023062519304838100_c30) 1981; 23
(2023062519304838100_c51) 2007; 75
(2023062519304838100_c27) 2010; 82
(2023062519304838100_c18) 2020; 577
(2023062519304838100_c39) 2017; 110
(2023062519304838100_c11) 2007; 3
(2023062519304838100_c22) 2014; 1
(2023062519304838100_c44) 2010; 5
(2023062519304838100_c28) 2006
(2023062519304838100_c64) 2007; 102
(2023062519304838100_c24) 2015; 5
(2023062519304838100_c56) 1974; 37
(2023062519304838100_c46) 2012; 7
(2023062519304838100_c15) 2019; 2
(2023062519304838100_c35) 2009; 102
(2023062519304838100_c62) 2007
(2023062519304838100_c49) 2012; 71
ITRS (2023062519304838100_c4)
(2023062519304838100_c41) 2012; 209
(2023062519304838100_c63) 2001; 48
(2023062519304838100_c59) 2013; 25
(2023062519304838100_c31) 2004; 69
(2023062519304838100_c25) 2017; 7
(2023062519304838100_c21) 2013; 103
2023062519304838100_c7
2023062519304838100_c5
(2023062519304838100_c47) 2008; 319
(2023062519304838100_c60) 2010; 54
(2023062519304838100_c23) 2015; 7
(2023062519304838100_c55) 2010; 82
(2023062519304838100_c58) 2010; 104
(2023062519304838100_c33) 2013; 12
(2023062519304838100_c42) 2014; 136
(2023062519304838100_c43) 2014; 89
(2023062519304838100_c13) 2020; 580
(2023062519304838100_c1) 1965; 38
(2023062519304838100_c10) 2013; 52
(2023062519304838100_c38) 2018; 195
(2023062519304838100_c37) 2012; 12
2023062519304838100_c29
(2023062519304838100_c54) 2019; 19
(2023062519304838100_c6) 2019; 573
(2023062519304838100_c40) 2008; 8
(2023062519304838100_c16) 2018; 65
Kasap (2023062519304838100_c65) 2017
(2023062519304838100_c9) 2010; 97
(2023062519304838100_c17) 2018
(2023062519304838100_c26) 2018; 6
(2023062519304838100_c57) 2014; 26
(2023062519304838100_c12) 2020; 15
(2023062519304838100_c48) 2019; 571
(2023062519304838100_c34) 1976; 13
(2023062519304838100_c50) 2019; 125
(2023062519304838100_c2) 2014; 105
(2023062519304838100_c19) 2004
(2023062519304838100_c32) 2013; 113
2023062519304838100_c61
(2023062519304838100_c3) 2004; 48
Samsung Newsroom (2023062519304838100_c8)
2023062519304838100_c14
(2023062519304838100_c45) 2010; 4
(2023062519304838100_c52) 2011; 11
(2023062519304838100_c53) 2006; 6
(2023062519304838100_c20) 2019; 2
(2023062519304838100_c36) 2017; 29
References_xml – start-page: 355
  year: 2020
  ident: c13
  publication-title: Nature
– start-page: 243
  year: 2010
  ident: c60
  publication-title: Solid-State Electron.
– start-page: 341
  year: 2020
  ident: c18
  publication-title: Nature
– start-page: 2842
  year: 2001
  ident: c63
  publication-title: IEEE Trans. Electron Devices
– start-page: 1075
  year: 2013
  ident: c33
  publication-title: IEEE Trans. Nanotechnol.
– start-page: 216401
  year: 2010
  ident: c58
  publication-title: Phys. Rev. Lett.
– start-page: 9702
  year: 2015
  ident: c24
  publication-title: Sci. Rep.
– start-page: 1099
  year: 1974
  ident: c56
  publication-title: Rep. Prog. Phys.
– start-page: 266
  year: 2019
  ident: c15
  publication-title: Nat. Electron.
– start-page: 14469
  year: 2015
  ident: c23
  publication-title: Nanoscale
– start-page: 225709
  year: 2019
  ident: c50
  publication-title: J. Appl. Phys.
– start-page: 863
  year: 2017
  ident: c25
  publication-title: Sci. Rep.
– start-page: 035312
  year: 2014
  ident: c43
  publication-title: Phys. Rev. B
– start-page: 242
  year: 2012
  ident: c46
  publication-title: Nat. Nanotechnol.
– start-page: 123105
  year: 2014
  ident: c2
  publication-title: Appl. Phys. Lett.
– start-page: 13
  year: 2020
  ident: c12
  publication-title: Nat. Nanotechnol.
– start-page: 5048
  year: 1981
  ident: c30
  publication-title: Phys. Rev. B
– start-page: 045301
  year: 2007
  ident: c51
  publication-title: Phys. Rev. B
– start-page: 4404
  year: 2014
  ident: c42
  publication-title: J. Am. Chem. Soc.
– start-page: 4794
  year: 2011
  ident: c52
  publication-title: Nano Lett.
– start-page: 1400359
  year: 2014
  ident: c22
  publication-title: Adv. Mater. Interfaces
– start-page: 5151
  year: 2018
  ident: c16
  publication-title: IEEE Trans. Electron Devices
– start-page: 074510
  year: 2007
  ident: c64
  publication-title: J. Appl. Phys.
– start-page: 04CA01
  year: 2013
  ident: c10
  publication-title: Jpn. J. Appl. Phys.
– start-page: 21
  year: 2018
  ident: c38
  publication-title: Microelectron. Eng.
– start-page: 596
  year: 2008
  ident: c40
  publication-title: Nano Lett.
– start-page: 557
  year: 2019
  ident: c20
  publication-title: Nat. Electron.
– start-page: 065301
  year: 2017
  ident: c36
  publication-title: J. Phys.: Condens. Matter
– start-page: 093111
  year: 2017
  ident: c39
  publication-title: Appl. Phys. Lett.
– start-page: 2137
  year: 2014
  ident: c57
  publication-title: Adv. Mater.
– start-page: 2781
  year: 2006
  ident: c53
  publication-title: Nano Lett.
– start-page: 023103
  year: 2013
  ident: c21
  publication-title: Appl. Phys. Lett.
– start-page: 119
  year: 2018
  ident: c26
  publication-title: J. Mater. Chem. C
– start-page: 345501
  year: 2013
  ident: c59
  publication-title: J. Phys.: Condens. Matter
– start-page: 507
  year: 2019
  ident: c6
  publication-title: Nature
– start-page: 1847
  year: 2012
  ident: c41
  publication-title: Phys. Status Solidi A
– start-page: 153413
  year: 2010
  ident: c55
  publication-title: Phys. Rev. B
– start-page: 2222
  year: 2012
  ident: c37
  publication-title: Nano Lett.
– start-page: 866
  year: 2019
  ident: c54
  publication-title: Nano Lett.
– start-page: 878
  year: 2010
  ident: c44
  publication-title: Nat. Nanotechnol.
– start-page: 226401
  year: 2009
  ident: c35
  publication-title: Phys. Rev. Lett.
– start-page: 203708
  year: 2013
  ident: c32
  publication-title: J. Appl. Phys.
– start-page: 371
  year: 2019
  ident: c48
  publication-title: Nature
– start-page: 114
  year: 1965
  ident: c1
  publication-title: Electronics
– start-page: 58
  year: 2012
  ident: c49
  publication-title: Solid-State Electron.
– start-page: 1776
  year: 2008
  ident: c47
  publication-title: Science
– start-page: 511
  year: 2010
  ident: c45
  publication-title: Nat. Photonics
– start-page: 062105
  year: 2010
  ident: c9
  publication-title: Appl. Phys. Lett.
– start-page: 427
  year: 2010
  ident: c27
  publication-title: Rev. Mod. Phys.
– start-page: 897
  year: 2004
  ident: c3
  publication-title: Solid-State Electron.
– start-page: 5188
  year: 1976
  ident: c34
  publication-title: Phys. Rev. B
– start-page: 41
  year: 2007
  ident: c11
  publication-title: Nat. Phys.
– start-page: 195113
  year: 2004
  ident: c31
  publication-title: Phys. Rev. B
– volume: 105
  start-page: 123105
  year: 2014
  ident: 2023062519304838100_c2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4896293
– volume: 52
  start-page: 04CA01
  year: 2013
  ident: 2023062519304838100_c10
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.04CA01
– volume: 25
  start-page: 345501
  year: 2013
  ident: 2023062519304838100_c59
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/25/34/345501
– volume: 136
  start-page: 4404
  year: 2014
  ident: 2023062519304838100_c42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5002357
– volume: 1
  start-page: 1400359
  year: 2014
  ident: 2023062519304838100_c22
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400359
– volume: 19
  start-page: 866
  year: 2019
  ident: 2023062519304838100_c54
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04083
– year: 2007
  ident: 2023062519304838100_c62
– volume: 29
  start-page: 065301
  year: 2017
  ident: 2023062519304838100_c36
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/1361-648X/aa4e63
– volume: 37
  start-page: 1099
  year: 1974
  ident: 2023062519304838100_c56
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/37/9/001
– volume: 580
  start-page: 355
  year: 2020
  ident: 2023062519304838100_c13
  publication-title: Nature
  doi: 10.1038/s41586-020-2170-7
– volume: 103
  start-page: 023103
  year: 2013
  ident: 2023062519304838100_c21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4813743
– ident: 2023062519304838100_c8
– volume-title: Springer Handbook of Electronic and Photonic Materials
  year: 2017
  ident: 2023062519304838100_c65
  doi: 10.1007/978-3-319-48933-9
– volume: 577
  start-page: 341
  year: 2020
  ident: 2023062519304838100_c18
  publication-title: Nature
  doi: 10.1038/s41586-019-1901-0
– volume: 38
  start-page: 114
  year: 1965
  ident: 2023062519304838100_c1
  publication-title: Electronics
– volume: 48
  start-page: 897
  year: 2004
  ident: 2023062519304838100_c3
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2003.12.020
– ident: 2023062519304838100_c14
– volume: 26
  start-page: 2137
  year: 2014
  ident: 2023062519304838100_c57
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305929
– volume: 15
  start-page: 13
  year: 2020
  ident: 2023062519304838100_c12
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0587-7
– volume-title: 2017 IEEE International Electron Devices Meeting
  ident: 2023062519304838100_c61
  doi: 10.1109/IEDM.2017.8268427
– volume: 7
  start-page: 863
  year: 2017
  ident: 2023062519304838100_c25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01001-1
– volume: 102
  start-page: 226401
  year: 2009
  ident: 2023062519304838100_c35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.226401
– volume: 102
  start-page: 074510
  year: 2007
  ident: 2023062519304838100_c64
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2785957
– volume: 5
  start-page: 878
  year: 2010
  ident: 2023062519304838100_c44
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.236
– volume: 6
  start-page: 2781
  year: 2006
  ident: 2023062519304838100_c53
  publication-title: Nano Lett.
  doi: 10.1021/nl061811p
– ident: 2023062519304838100_c29
– ident: 2023062519304838100_c5
– volume: 3
  start-page: 41
  year: 2007
  ident: 2023062519304838100_c11
  publication-title: Nat. Phys.
  doi: 10.1038/nphys475
– volume: 12
  start-page: 1075
  year: 2013
  ident: 2023062519304838100_c33
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2013.2279424
– volume: 82
  start-page: 427
  year: 2010
  ident: 2023062519304838100_c27
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.427
– volume: 319
  start-page: 1776
  year: 2008
  ident: 2023062519304838100_c47
  publication-title: Science
  doi: 10.1126/science.1143802
– volume: 48
  start-page: 2842
  year: 2001
  ident: 2023062519304838100_c63
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.974714
– volume: 65
  start-page: 5151
  year: 2018
  ident: 2023062519304838100_c16
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2870115
– volume: 11
  start-page: 4794
  year: 2011
  ident: 2023062519304838100_c52
  publication-title: Nano Lett.
  doi: 10.1021/nl2026212
– volume: 54
  start-page: 243
  year: 2010
  ident: 2023062519304838100_c60
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2009.09.007
– volume: 125
  start-page: 225709
  year: 2019
  ident: 2023062519304838100_c50
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5098307
– volume: 82
  start-page: 153413
  year: 2010
  ident: 2023062519304838100_c55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.153413
– volume: 71
  start-page: 58
  year: 2012
  ident: 2023062519304838100_c49
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2011.10.021
– start-page: 127
  volume-title: Semiconductor Material and Device Characterization
  year: 2006
  ident: 2023062519304838100_c28
– volume: 4
  start-page: 511
  year: 2010
  ident: 2023062519304838100_c45
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.167
– volume: 573
  start-page: 507
  year: 2019
  ident: 2023062519304838100_c6
  publication-title: Nature
  doi: 10.1038/s41586-019-1573-9
– volume: 5
  start-page: 9702
  year: 2015
  ident: 2023062519304838100_c24
  publication-title: Sci. Rep.
  doi: 10.1038/srep09702
– volume: 104
  start-page: 216401
  year: 2010
  ident: 2023062519304838100_c58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.216401
– ident: 2023062519304838100_c4
– start-page: 6.5.1
  volume-title: Towards Scalable Silicon Quantum Computing
  year: 2018
  ident: 2023062519304838100_c17
  doi: 10.1109/IEDM.2018.8614675
– volume: 2
  start-page: 557
  year: 2019
  ident: 2023062519304838100_c20
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0343-x
– volume: 209
  start-page: 1847
  year: 2012
  ident: 2023062519304838100_c41
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201200149
– volume: 23
  start-page: 5048
  year: 1981
  ident: 2023062519304838100_c30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
– volume: 97
  start-page: 062105
  year: 2010
  ident: 2023062519304838100_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3478012
– volume: 7
  start-page: 14469
  year: 2015
  ident: 2023062519304838100_c23
  publication-title: Nanoscale
  doi: 10.1039/C5NR02584B
– volume-title: Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon
  year: 2004
  ident: 2023062519304838100_c19
– volume: 69
  start-page: 195113
  year: 2004
  ident: 2023062519304838100_c31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.195113
– volume: 13
  start-page: 5188
  year: 1976
  ident: 2023062519304838100_c34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 8
  start-page: 596
  year: 2008
  ident: 2023062519304838100_c40
  publication-title: Nano Lett.
  doi: 10.1021/nl072997a
– volume: 6
  start-page: 119
  year: 2018
  ident: 2023062519304838100_c26
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC04732K
– volume: 75
  start-page: 045301
  year: 2007
  ident: 2023062519304838100_c51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.045301
– ident: 2023062519304838100_c7
– volume: 2
  start-page: 266
  year: 2019
  ident: 2023062519304838100_c15
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0278-2
– volume: 571
  start-page: 371
  year: 2019
  ident: 2023062519304838100_c48
  publication-title: Nature
  doi: 10.1038/s41586-019-1381-2
– volume: 7
  start-page: 242
  year: 2012
  ident: 2023062519304838100_c46
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.21
– volume: 12
  start-page: 2222
  year: 2012
  ident: 2023062519304838100_c37
  publication-title: Nano Lett.
  doi: 10.1021/nl2040817
– volume: 113
  start-page: 203708
  year: 2013
  ident: 2023062519304838100_c32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4807578
– volume: 89
  start-page: 035312
  year: 2014
  ident: 2023062519304838100_c43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.035312
– volume: 195
  start-page: 21
  year: 2018
  ident: 2023062519304838100_c38
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2018.03.022
– volume: 110
  start-page: 093111
  year: 2017
  ident: 2023062519304838100_c39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4977431
SSID ssj0011839
Score 2.3937948
Snippet This paper presents comprehensive density functional theory-based simulations to understand the characteristics of dopant atoms in the core and on the surface...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Conduction bands
Density functional theory
Dopants
Doping
Electrical properties
Electronic devices
Film thickness
First principles
Free energy
Heat of formation
High resolution electron microscopy
Ion implantation
Phosphorus
Quantum confinement
Silicon films
Temperature dependence
Thin films
Title Doping of ultra-thin Si films: Combined first-principles calculations and experimental study
URI http://dx.doi.org/10.1063/5.0035693
https://www.proquest.com/docview/2474963792
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qIupBtCpWqyzWg5fFJtnsdr0VaxGxolTBgxC6LyzUtDTR3--kTdoKVTwmTDYwj_3msTsDcG6dVspYSb2GFZQhxlAljU9Ng_lCIWAKL7vv3Hngty_s7jV8LUHtlwo-Dy6znEcQchmswJqPzjGq7lrzrvX0OCsWZCA_Pcnh0YYUsmggtPjxT9iZ-5IbCDTTmvcCrLR3YDv3B0lzKsBdKNm4DFsLXQLLsD45pamTPXhrTa43kaEjn4N03KPpez8m3T5x_cFHckXQuDHQtQaf0amjoyKRnhCUhM4HdSWkFxuy2NmfTHrM7sNL--b5-pbm4xGoRtRJqe8cMlMHimGAK6zVodE97TjzrHMOXxnks2-zpmxoaTwUymncTbhnuGDK8OAAVuNhbA-BcF0PZE8ai9EHE7LecFoHrs618hnKy6vARcG9qOBXNsJiEE1q2DyIwihndAXOZqSjacOMZUTVQgRRbjNJhL9iuB0I6VegNhPLX4ssofoajucU0ci4o3-tdQybfqY-WW5FVGE1HX_aE_Q2UnWK2tbq3HdPc637BsSK0K0
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dS9xAcLBK0T6Uaiteq-1iW-jL1stms3sr-CBe5fykpQo-FGL2C0-uuXDJKf1R_Y-d5JK7K0jpi48Jw-wwMzsfO7szAB-cN1pbp2jQcZJy9DFUK8uo7XAmNTpMGZTvnc_ORe-SH19FVwvwu3kLg0Tkn5N-VhXxb5Nsp2YgHWDMOc5mDQdEuFOehoSRUM3s6hP36x4ztnzvqIvi_cjY4ZeLgx6thwpQg7a6oMx7JMGEmmNaKJ0zkTWJ8YIHznuPvyxSx1zZygz1U0RSe4N7UARWSK6tCBHvE1jC7F_gJlraP-5--zotW5ThxuROSUA7SqqmldE8sX87wFlUu4wub1J9n3Nwhy_geR2Zkv0JJ1ZhwaVr8GyuX-EaPK3ui5r8JfzoVg-tyNCT8aAYJbS46afke5_4_uBnvkvQzGDK7Sx-Y3hJs-ZIPyeoE6YeGZaTJLVkfsYAqbrdvoLLR-HpOiymw9RtABGmHapEWYd5EJeq3fHGhL4tjGYcNSdowaeGe3HDr3KYxiCuqukijKO4ZnQLtqeg2aR1x0NAm40I4nr35jEuxdEwScVa8H4qln8heQDqbjiaQcSZ9a__C9c7WO5dnJ3Gp0fnJ29ghZWqVJ74yE1YLEZjt4UxUKHf1ppH4Pqxlf0PDKUWzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doping+of+ultra-thin+Si+films%3A+Combined+first-principles+calculations+and+experimental+study&rft.jtitle=Journal+of+applied+physics&rft.au=Gity%2C+Farzan&rft.au=Meaney%2C+Fintan&rft.au=Curran%2C+Anya&rft.au=Hurley%2C+Paul+K.&rft.date=2021-01-07&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=129&rft.issue=1&rft_id=info:doi/10.1063%2F5.0035693&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon