Robust nonlinear control of blood glucose in diabetic patients subject to model uncertainties
Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose–insulin modeling. Sorenson model involves the behavior of different organs and offers precise rep...
Saved in:
Published in | ISA transactions Vol. 133; pp. 353 - 368 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0019-0578 1879-2022 1879-2022 |
DOI | 10.1016/j.isatra.2022.07.009 |
Cover
Loading…
Abstract | Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose–insulin modeling. Sorenson model involves the behavior of different organs and offers precise representation. However, the high complexity of such a model makes the controller design procedure a hard task. Therefore, the high-order nonlinear Sorensen model as a popular high-fidelity physiological model is opted in this paper to analyze the glucose–insulin interactions in great detail, and a new robust nonlinear approach to regulate the blood glucose concentration (BGC) in Type-I diabetic patients is proposed. Inspiring the backstepping technique, for designing an acceptable controller, the model is divided into three main subsystems such that in each subsystem, the virtual control input laws are obtained using both Lyapunov stability and input-to-state theorems. Since the measurement of the parameters in the glucose–insulin system is not accurate, parametric uncertainties are defined in the investigated model. Furthermore, owing to the fact that the only measurable state variable is blood glucose, the estimation of inaccessible state variables is an important issue that is properly considered by the unscented Kalman filter (UKF) estimator. The suggested approach is compared to H∞, robust H∞, and linear parameter-varying control approaches. The comparison results on 500 simulated patients imply a remarkable superiority of the proposed controller approach to the compared methods in terms of the BGC tracking and the algorithm robustness in the presence of food intake disturbance patterns.
•A novel robust nonlinear controller for the 19-order uncertain nonlinear model of diabetic patients is designed.•The system is divided into three nonlinear subsystems and, virtual control inputs are designed.•The interactions between different subsystems are taken into account in the controller design procedure.•The controller designs the insulin injection plan to regulate the blood glucose level. |
---|---|
AbstractList | Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose–insulin modeling. Sorenson model involves the behavior of different organs and offers precise representation. However, the high complexity of such a model makes the controller design procedure a hard task. Therefore, the high-order nonlinear Sorensen model as a popular high-fidelity physiological model is opted in this paper to analyze the glucose–insulin interactions in great detail, and a new robust nonlinear approach to regulate the blood glucose concentration (BGC) in Type-I diabetic patients is proposed. Inspiring the backstepping technique, for designing an acceptable controller, the model is divided into three main subsystems such that in each subsystem, the virtual control input laws are obtained using both Lyapunov stability and input-to-state theorems. Since the measurement of the parameters in the glucose–insulin system is not accurate, parametric uncertainties are defined in the investigated model. Furthermore, owing to the fact that the only measurable state variable is blood glucose, the estimation of inaccessible state variables is an important issue that is properly considered by the unscented Kalman filter (UKF) estimator. The suggested approach is compared to H∞, robust H∞, and linear parameter-varying control approaches. The comparison results on 500 simulated patients imply a remarkable superiority of the proposed controller approach to the compared methods in terms of the BGC tracking and the algorithm robustness in the presence of food intake disturbance patterns.
•A novel robust nonlinear controller for the 19-order uncertain nonlinear model of diabetic patients is designed.•The system is divided into three nonlinear subsystems and, virtual control inputs are designed.•The interactions between different subsystems are taken into account in the controller design procedure.•The controller designs the insulin injection plan to regulate the blood glucose level. Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose-insulin modeling. Sorenson model involves the behavior of different organs and offers precise representation. However, the high complexity of such a model makes the controller design procedure a hard task. Therefore, the high-order nonlinear Sorensen model as a popular high-fidelity physiological model is opted in this paper to analyze the glucose-insulin interactions in great detail, and a new robust nonlinear approach to regulate the blood glucose concentration (BGC) in Type-I diabetic patients is proposed. Inspiring the backstepping technique, for designing an acceptable controller, the model is divided into three main subsystems such that in each subsystem, the virtual control input laws are obtained using both Lyapunov stability and input-to-state theorems. Since the measurement of the parameters in the glucose-insulin system is not accurate, parametric uncertainties are defined in the investigated model. Furthermore, owing to the fact that the only measurable state variable is blood glucose, the estimation of inaccessible state variables is an important issue that is properly considered by the unscented Kalman filter (UKF) estimator. The suggested approach is compared to H , robust H , and linear parameter-varying control approaches. The comparison results on 500 simulated patients imply a remarkable superiority of the proposed controller approach to the compared methods in terms of the BGC tracking and the algorithm robustness in the presence of food intake disturbance patterns. Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose-insulin modeling. Sorenson model involves the behavior of different organs and offers precise representation. However, the high complexity of such a model makes the controller design procedure a hard task. Therefore, the high-order nonlinear Sorensen model as a popular high-fidelity physiological model is opted in this paper to analyze the glucose-insulin interactions in great detail, and a new robust nonlinear approach to regulate the blood glucose concentration (BGC) in Type-I diabetic patients is proposed. Inspiring the backstepping technique, for designing an acceptable controller, the model is divided into three main subsystems such that in each subsystem, the virtual control input laws are obtained using both Lyapunov stability and input-to-state theorems. Since the measurement of the parameters in the glucose-insulin system is not accurate, parametric uncertainties are defined in the investigated model. Furthermore, owing to the fact that the only measurable state variable is blood glucose, the estimation of inaccessible state variables is an important issue that is properly considered by the unscented Kalman filter (UKF) estimator. The suggested approach is compared to H∞, robust H∞, and linear parameter-varying control approaches. The comparison results on 500 simulated patients imply a remarkable superiority of the proposed controller approach to the compared methods in terms of the BGC tracking and the algorithm robustness in the presence of food intake disturbance patterns.Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation directly relies on the accuracy of the glucose-insulin modeling. Sorenson model involves the behavior of different organs and offers precise representation. However, the high complexity of such a model makes the controller design procedure a hard task. Therefore, the high-order nonlinear Sorensen model as a popular high-fidelity physiological model is opted in this paper to analyze the glucose-insulin interactions in great detail, and a new robust nonlinear approach to regulate the blood glucose concentration (BGC) in Type-I diabetic patients is proposed. Inspiring the backstepping technique, for designing an acceptable controller, the model is divided into three main subsystems such that in each subsystem, the virtual control input laws are obtained using both Lyapunov stability and input-to-state theorems. Since the measurement of the parameters in the glucose-insulin system is not accurate, parametric uncertainties are defined in the investigated model. Furthermore, owing to the fact that the only measurable state variable is blood glucose, the estimation of inaccessible state variables is an important issue that is properly considered by the unscented Kalman filter (UKF) estimator. The suggested approach is compared to H∞, robust H∞, and linear parameter-varying control approaches. The comparison results on 500 simulated patients imply a remarkable superiority of the proposed controller approach to the compared methods in terms of the BGC tracking and the algorithm robustness in the presence of food intake disturbance patterns. |
Author | Vafamand, Navid Mirzaee, Alireza Farahmand, Bahareh Boostani, Reza Pieper, Jeffrey Kurt Dehghani, Maryam |
Author_xml | – sequence: 1 givenname: Bahareh surname: Farahmand fullname: Farahmand, Bahareh organization: School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 2 givenname: Maryam orcidid: 0000-0002-8628-2699 surname: Dehghani fullname: Dehghani, Maryam email: mdehghani@shirazu.ac.ir organization: School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 3 givenname: Navid surname: Vafamand fullname: Vafamand, Navid organization: School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 4 givenname: Alireza surname: Mirzaee fullname: Mirzaee, Alireza organization: School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 5 givenname: Reza orcidid: 0000-0003-0055-4452 surname: Boostani fullname: Boostani, Reza organization: School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 6 givenname: Jeffrey Kurt surname: Pieper fullname: Pieper, Jeffrey Kurt organization: Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35927074$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1rFTEUhoO0tLe1_0AkSzczPcl8JS4EKf2CglB0KSGTnJFccpNrkhH89-Zy240LXR04PO8L73NBTkIMSMg7Bi0DNl5vW5d1SbrlwHkLUwsg35ANE5NsDq8TsgFgsoFhEufkIuctAPBBijNy3g2STzD1G_L9Oc5rLrSWexdQJ2piKCl6Ghc6-xgt_eFXEzNSF6h1esbiDN3r4jCUTPM6b9EUWiLdRYuersFgKtqFCuS35HTRPuPVy70k3-5uv948NE9f7h9vPj81pht5afg49dbohZm-Q2YRkE3MdosEI0YNoOVscR7E0HNc-DAg72ch0QyLsVaIrrskH469-xR_rpiL2rls0HsdMK5Z8VHKulcKqOj7F3Sdd2jVPrmdTr_Vq5IKfDwCJsWcEy7KuFLnHrRo5xUDdfCvturoXx1kK5hU9V_D_V_h1_7_xD4dY1gl_XKYVDbVr0HrUrWrbHT_LvgD5HijJw |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108373 crossref_primary_10_1016_j_robot_2024_104713 crossref_primary_10_1016_j_arcontrol_2024_100937 crossref_primary_10_1016_j_ifacol_2024_08_174 crossref_primary_10_1016_j_bbe_2024_03_003 crossref_primary_10_1093_comjnl_bxad104 crossref_primary_10_1016_j_cmpb_2024_108420 |
Cites_doi | 10.1016/j.cmpb.2010.06.019 10.1016/j.bspc.2014.04.003 10.1016/0167-6911(94)00050-6 10.1177/193229681300700316 10.1016/j.knosys.2017.02.008 10.2337/diab.27.10.1027 10.1088/0967-3334/25/4/010 10.1016/j.bspc.2012.09.003 10.4015/S101623722150040X 10.1007/s40815-017-0318-x 10.1021/ie049546a 10.1016/j.bspc.2017.06.009 10.1109/TBME.2006.872818 10.4236/jbise.2011.44040 10.1016/j.conengprac.2003.12.004 10.1002/tee.20326 10.1109/JBHI.2018.2869365 10.1109/TBME.2007.893506 10.1016/0141-5425(92)90058-S 10.1002/aic.690461220 10.1016/j.bspc.2019.101627 10.1016/j.conengprac.2016.01.003 10.1172/JCI110398 10.1371/journal.pone.0237215 10.1109/51.897829 10.1016/j.bspc.2019.101830 10.1016/0167-6911(92)90097-C 10.1109/TBME.2006.878075 10.3390/app10155294 10.4236/ajcm.2018.83019 |
ContentType | Journal Article |
Copyright | 2022 ISA Copyright © 2022 ISA. All rights reserved. |
Copyright_xml | – notice: 2022 ISA – notice: Copyright © 2022 ISA. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.isatra.2022.07.009 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1879-2022 |
EndPage | 368 |
ExternalDocumentID | 35927074 10_1016_j_isatra_2022_07_009 S0019057822003640 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABWVN ABXDB ACDAQ ACFVG ACGFO ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSH SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION NPM 7X8 EFKBS EFLBG |
ID | FETCH-LOGICAL-c362t-2674dcaf1c43e1de0e171d3f90c86a00a9bdeb58542ef255e24b89ec5fcdd8833 |
IEDL.DBID | .~1 |
ISSN | 0019-0578 1879-2022 |
IngestDate | Fri Sep 05 14:48:34 EDT 2025 Thu Apr 03 07:01:55 EDT 2025 Tue Jul 01 04:36:09 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Sun Apr 06 06:53:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Robust control Backstepping control Glucose–insulin model UKF estimator Multi-compartment model Parametric uncertainties Type 1 diabetes mellitus |
Language | English |
License | Copyright © 2022 ISA. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-2674dcaf1c43e1de0e171d3f90c86a00a9bdeb58542ef255e24b89ec5fcdd8833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8628-2699 0000-0003-0055-4452 |
PMID | 35927074 |
PQID | 2699707980 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2699707980 pubmed_primary_35927074 crossref_citationtrail_10_1016_j_isatra_2022_07_009 crossref_primary_10_1016_j_isatra_2022_07_009 elsevier_sciencedirect_doi_10_1016_j_isatra_2022_07_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 2023-Feb 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ISA transactions |
PublicationTitleAlternate | ISA Trans |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nandi, Singh (b20) 2018; 23 Khalil (b41) 2009 Hariri (b22) 2011; 4 Ruiz-Velázquez, Femat, Campos-Delgado (b35) 2004; 12 Bergman, Phillips, Cobelli (b2) 1981; 68 Parker, Doyle, Peppas (b7) 2001; 20 Su, Wang, Tsai, Tsou, Tran (b21) 2017; 19 Kovács, Szalay, Almássy, Barkai (b12) 2013; 7 Yasuda, Iwasaki, Ueno, Aiyoshi (b42) 2008; 3 Mirzaee, Dehghani, Mohammadi (b23) 2020; 57 Sontag, Wang (b38) 1995; 24 Wang, Xie, De Souza (b36) 1992; 19 Mirzaee, Dehghani, Mohammadi (b19) 2021 Owens, Zisser, Jovanovic, Srinivasan, Bonvin, Doyle (b8) 2006; 53 Ntaganda (b30) 2018; 8 Kovács, Benyó, Bokor, Benyó (b9) 2011; 102 Panunzi, Pompa, Borri, Piemonte, De Gaetano (b14) 2020; 15 Farahmand, Dehghani (b34) 2016 Dua, Doyle, Pistikopoulos (b45) 2006; 53 Saleem, Farman, Meraj (b27) 2017; 54 Boiroux others (b26) 2017; 58 Farahmand, Dehghani, Vafamand (b16) 2019; 54 Kovács, Kulcsár, Bokor, Benyó (b11) 2008 Kaçar, Özer, Tasçıoğlu (b29) 2020; 10 Kovács, Kulcsár (b31) 2007 Rios, García-Rodríguez, Sanchez, Alanis, Ruiz-Velázquez, Garcia (b18) 2021 Ramprasad, Rangaiah, Lakshminarayanan (b10) 2004; 43 Kovács (b25) 2017; 122 Parker, Doyle III, Ward, Peppas (b6) 2000; 46 Ahmad, Ahmed, Ilyas, Khan (b24) 2017; 38 Lakshmikantham, Matrosov, Sivasundaram (b40) 2013 Saiti, Macaš, Štechová, Pithová, Lhotská (b1) 2017 Liberzon (b39) 2016 Simon (b44) 2006 Lunze (b15) 2014; 13 Taghizadeh-Behbahani, Boostani, Yazdi (b43) 2021 Lunze, Singh, Walter, Brendel, Leonhardt (b17) 2013; 8 Hovorka (b3) 2004; 25 Lehmann, Deutsch (b13) 1992; 14 Tanaka, Wang (b37) 2004 Dalla Man, Rizza, Cobelli (b4) 2007; 54 Guyton others (b33) 1978; 27 Sorensen (b5) 1985 Ruiz Velázquez, Sánchez, Quiroz, Pulido (b28) 2018; 54 Joukov, Kulic (b32) 2017 Dalla Man (10.1016/j.isatra.2022.07.009_b4) 2007; 54 Kaçar (10.1016/j.isatra.2022.07.009_b29) 2020; 10 Parker (10.1016/j.isatra.2022.07.009_b7) 2001; 20 Liberzon (10.1016/j.isatra.2022.07.009_b39) 2016 Parker (10.1016/j.isatra.2022.07.009_b6) 2000; 46 Hariri (10.1016/j.isatra.2022.07.009_b22) 2011; 4 Farahmand (10.1016/j.isatra.2022.07.009_b34) 2016 Hovorka (10.1016/j.isatra.2022.07.009_b3) 2004; 25 Mirzaee (10.1016/j.isatra.2022.07.009_b19) 2021 Ntaganda (10.1016/j.isatra.2022.07.009_b30) 2018; 8 Su (10.1016/j.isatra.2022.07.009_b21) 2017; 19 Boiroux others (10.1016/j.isatra.2022.07.009_b26) 2017; 58 Lunze (10.1016/j.isatra.2022.07.009_b15) 2014; 13 Kovács (10.1016/j.isatra.2022.07.009_b31) 2007 Tanaka (10.1016/j.isatra.2022.07.009_b37) 2004 Saiti (10.1016/j.isatra.2022.07.009_b1) 2017 Ahmad (10.1016/j.isatra.2022.07.009_b24) 2017; 38 Ruiz Velázquez (10.1016/j.isatra.2022.07.009_b28) 2018; 54 Khalil (10.1016/j.isatra.2022.07.009_b41) 2009 Kovács (10.1016/j.isatra.2022.07.009_b11) 2008 Kovács (10.1016/j.isatra.2022.07.009_b25) 2017; 122 Rios (10.1016/j.isatra.2022.07.009_b18) 2021 Taghizadeh-Behbahani (10.1016/j.isatra.2022.07.009_b43) 2021 Kovács (10.1016/j.isatra.2022.07.009_b9) 2011; 102 Guyton others (10.1016/j.isatra.2022.07.009_b33) 1978; 27 Panunzi (10.1016/j.isatra.2022.07.009_b14) 2020; 15 Simon (10.1016/j.isatra.2022.07.009_b44) 2006 Lehmann (10.1016/j.isatra.2022.07.009_b13) 1992; 14 Ruiz-Velázquez (10.1016/j.isatra.2022.07.009_b35) 2004; 12 Bergman (10.1016/j.isatra.2022.07.009_b2) 1981; 68 Kovács (10.1016/j.isatra.2022.07.009_b12) 2013; 7 Wang (10.1016/j.isatra.2022.07.009_b36) 1992; 19 Farahmand (10.1016/j.isatra.2022.07.009_b16) 2019; 54 Lunze (10.1016/j.isatra.2022.07.009_b17) 2013; 8 Joukov (10.1016/j.isatra.2022.07.009_b32) 2017 Yasuda (10.1016/j.isatra.2022.07.009_b42) 2008; 3 Dua (10.1016/j.isatra.2022.07.009_b45) 2006; 53 Lakshmikantham (10.1016/j.isatra.2022.07.009_b40) 2013 Saleem (10.1016/j.isatra.2022.07.009_b27) 2017; 54 Sorensen (10.1016/j.isatra.2022.07.009_b5) 1985 Owens (10.1016/j.isatra.2022.07.009_b8) 2006; 53 Nandi (10.1016/j.isatra.2022.07.009_b20) 2018; 23 Sontag (10.1016/j.isatra.2022.07.009_b38) 1995; 24 Mirzaee (10.1016/j.isatra.2022.07.009_b23) 2020; 57 Ramprasad (10.1016/j.isatra.2022.07.009_b10) 2004; 43 |
References_xml | – volume: 23 start-page: 1773 year: 2018 end-page: 1783 ident: b20 article-title: Glycemic control of people with type 1 diabetes based on probabilistic constraints publication-title: IEEE J Biomed Health Inf – year: 2004 ident: b37 article-title: Fuzzy control systems design and analysis: A linear matrix inequality approach – start-page: 850 year: 2017 end-page: 855 ident: b32 article-title: Gaussian process based model predictive controller for imitation learning publication-title: 2017 IEEE-RAS 17th international conference on humanoid robotics (Humanoids) – volume: 10 start-page: 5294 year: 2020 ident: b29 article-title: A novel artificial pancreas: Energy efficient valveless piezoelectric actuated closed-loop insulin pump for T1DM publication-title: Appl Sci – year: 2021 ident: b43 article-title: A practical noninvasive blood glucose measurement system using near-infrared sensors publication-title: Biomed Eng - Appl Basis Commun – volume: 15 year: 2020 ident: b14 article-title: A revised Sorensen model: Simulating glycemic and insulinemic response to oral and intra-venous glucose load publication-title: Plos One – volume: 54 start-page: 133 year: 2017 end-page: 145 ident: b27 article-title: Stability analysis of sorensen’s model for controllability and observability: Stability analysis of sorensen’s model publication-title: Proc Pak Acad Sci B – volume: 54 start-page: 110 year: 2018 end-page: 134 ident: b28 article-title: Parametric identification of sorensen model for glucose-insulin-carbohydrates dynamics using evolutive algorithms publication-title: Kybernetika – year: 2013 ident: b40 article-title: Vector lyapunov functions and stability analysis of nonlinear systems – volume: 57 year: 2020 ident: b23 article-title: Robust LPV control design for blood glucose regulation considering daily life factors publication-title: Biomed Signal Process Control – volume: 25 start-page: 905 year: 2004 ident: b3 article-title: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes publication-title: Physiol Meas – volume: 122 start-page: 199 year: 2017 end-page: 213 ident: b25 article-title: Linear parameter varying (LPV) based robust control of type-I diabetes driven for real patient data publication-title: Knowl-Based Syst – start-page: 1607 year: 2008 end-page: 1610 ident: b11 article-title: Model-based nonlinear optimal blood glucose control of type I diabetes patients publication-title: 2008 30th Annual international conference of the IEEE engineering in medicine and biology society – volume: 7 start-page: 708 year: 2013 end-page: 716 ident: b12 article-title: Applicability results of a nonlinear model-based robust blood glucose control algorithm publication-title: J Diabetes Sci Technol – volume: 19 start-page: 139 year: 1992 end-page: 149 ident: b36 article-title: Robust control of a class of uncertain nonlinear systems publication-title: Systems Control Lett – volume: 14 start-page: 235 year: 1992 end-page: 242 ident: b13 article-title: A physiological model of glucose-insulin interaction in type 1 diabetes mellitus publication-title: J Biomed Eng – volume: 19 start-page: 1966 year: 2017 end-page: 1977 ident: b21 article-title: Design of fuzzy and linear active disturbance rejection control for insulin infusion in type 1 diabetic patients publication-title: Int J Fuzzy Syst – start-page: 115 year: 2009 ident: b41 article-title: Lyapunov stability publication-title: Control systems robotics and automation–volume XII: nonlinear, distributed, and time delay systems-I – volume: 8 start-page: 233 year: 2018 end-page: 244 ident: b30 article-title: Simplified mathematical model of glucose-insulin system publication-title: Am J Comput Math – year: 2021 ident: b18 article-title: Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction publication-title: ISA Trans – volume: 68 start-page: 1456 year: 1981 end-page: 1467 ident: b2 article-title: Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose publication-title: J Clin Investig – volume: 20 start-page: 65 year: 2001 end-page: 73 ident: b7 article-title: The intravenous route to blood glucose control publication-title: IEEE Eng Med Biol Mag – volume: 38 start-page: 200 year: 2017 end-page: 211 ident: b24 article-title: Super twisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients publication-title: Biomed Signal Process Control – start-page: 1300 year: 2016 end-page: 1305 ident: b34 article-title: A backstepping approach for blood glucose control of parker system publication-title: 2016 24th Iranian conference on electrical engineering (ICEE) – year: 1985 ident: b5 article-title: A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes – volume: 13 start-page: 132 year: 2014 end-page: 141 ident: b15 article-title: Analysis and modelling of glucose metabolism in diabetic Göttingen Minipigs publication-title: Biomed Signal Process Control – volume: 102 start-page: 105 year: 2011 end-page: 118 ident: b9 article-title: Induced L2-norm minimization of glucose–insulin system for type I diabetic patients publication-title: Comput Methods Programs Biomed – volume: 53 start-page: 996 year: 2006 end-page: 1005 ident: b8 article-title: Run-to-run control of blood glucose concentrations for people with type 1 diabetes mellitus publication-title: IEEE Trans Biomed Eng – volume: 46 start-page: 2537 year: 2000 end-page: 2549 ident: b6 article-title: Robust H publication-title: AIChE J – year: 2006 ident: b44 article-title: Optimal state estimation: Kalman, H infinity, and nonlinear approaches – volume: 58 start-page: 332 year: 2017 end-page: 342 ident: b26 article-title: Adaptive control in an artificial pancreas for people with type 1 diabetes publication-title: Control Eng Pract – year: 2016 ident: b39 article-title: Nonlinear and adaptive control lecture notes – volume: 54 year: 2019 ident: b16 article-title: Fuzzy model-based controller for blood glucose control in type 1 diabetes: An LMI approach publication-title: Biomed Signal Process Control – volume: 27 start-page: 1027 year: 1978 end-page: 1042 ident: b33 article-title: A model of glucose-insulin homeostasis in man that incorporates the heterogeneous fast pool theory of pancreatic insulin release publication-title: Diabetes – volume: 8 start-page: 107 year: 2013 end-page: 119 ident: b17 article-title: Blood glucose control algorithms for type 1 diabetic patients: A methodological review publication-title: Biomed Signal Process Control – volume: 54 start-page: 1740 year: 2007 end-page: 1749 ident: b4 article-title: Meal simulation model of the glucose-insulin system publication-title: IEEE Trans Biomed Eng – start-page: 163 year: 2007 end-page: 173 ident: b31 article-title: LPV modeling of type I diabetes mellitus publication-title: 8th International symposium of hungarian researchers – volume: 3 start-page: 642 year: 2008 end-page: 659 ident: b42 article-title: Particle swarm optimization: a numerical stability analysis and parameter adjustment based on swarm activity publication-title: IEEJ Trans Electr Electron Eng – volume: 53 start-page: 1478 year: 2006 end-page: 1491 ident: b45 article-title: Model-based blood glucose control for type 1 diabetes via parametric programming publication-title: IEEE Trans Biomed Eng – volume: 43 start-page: 8257 year: 2004 end-page: 8268 ident: b10 article-title: Robust PID controller for blood glucose regulation in type I diabetics publication-title: Ind Eng Chem Res – volume: 4 start-page: 297 year: 2011 ident: b22 article-title: Identification and low-complexity regime-switching insulin control of type I diabetic patients publication-title: J Biomed Sci Eng – volume: 24 start-page: 351 year: 1995 end-page: 359 ident: b38 article-title: On characterizations of the input-to-state stability property publication-title: Systems Control Lett – start-page: 1 year: 2021 end-page: 5 ident: b19 article-title: A nonlinear MPC approach for blood glucose regulation in diabetic patients publication-title: 2021 7th International conference on control, instrumentation and automation (ICCIA) – volume: 12 start-page: 1179 year: 2004 end-page: 1195 ident: b35 article-title: Blood glucose control for type I diabetes mellitus: A robust tracking H publication-title: Control Eng Pract – start-page: 66 year: 2017 end-page: 81 ident: b1 article-title: A review of model prediction in diabetes and of designing glucose regulators based on model predictive control for the artificial pancreas publication-title: International conference on information technology in bio-and medical informatics – volume: 102 start-page: 105 issue: 2 year: 2011 ident: 10.1016/j.isatra.2022.07.009_b9 article-title: Induced L2-norm minimization of glucose–insulin system for type I diabetic patients publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2010.06.019 – volume: 13 start-page: 132 year: 2014 ident: 10.1016/j.isatra.2022.07.009_b15 article-title: Analysis and modelling of glucose metabolism in diabetic Göttingen Minipigs publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.04.003 – volume: 24 start-page: 351 issue: 5 year: 1995 ident: 10.1016/j.isatra.2022.07.009_b38 article-title: On characterizations of the input-to-state stability property publication-title: Systems Control Lett doi: 10.1016/0167-6911(94)00050-6 – volume: 7 start-page: 708 issue: 3 year: 2013 ident: 10.1016/j.isatra.2022.07.009_b12 article-title: Applicability results of a nonlinear model-based robust blood glucose control algorithm publication-title: J Diabetes Sci Technol doi: 10.1177/193229681300700316 – volume: 122 start-page: 199 year: 2017 ident: 10.1016/j.isatra.2022.07.009_b25 article-title: Linear parameter varying (LPV) based robust control of type-I diabetes driven for real patient data publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.02.008 – volume: 27 start-page: 1027 issue: 10 year: 1978 ident: 10.1016/j.isatra.2022.07.009_b33 article-title: A model of glucose-insulin homeostasis in man that incorporates the heterogeneous fast pool theory of pancreatic insulin release publication-title: Diabetes doi: 10.2337/diab.27.10.1027 – volume: 25 start-page: 905 issue: 4 year: 2004 ident: 10.1016/j.isatra.2022.07.009_b3 article-title: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes publication-title: Physiol Meas doi: 10.1088/0967-3334/25/4/010 – year: 1985 ident: 10.1016/j.isatra.2022.07.009_b5 – volume: 8 start-page: 107 issue: 2 year: 2013 ident: 10.1016/j.isatra.2022.07.009_b17 article-title: Blood glucose control algorithms for type 1 diabetic patients: A methodological review publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2012.09.003 – start-page: 850 year: 2017 ident: 10.1016/j.isatra.2022.07.009_b32 article-title: Gaussian process based model predictive controller for imitation learning – year: 2021 ident: 10.1016/j.isatra.2022.07.009_b43 article-title: A practical noninvasive blood glucose measurement system using near-infrared sensors publication-title: Biomed Eng - Appl Basis Commun doi: 10.4015/S101623722150040X – volume: 19 start-page: 1966 issue: 6 year: 2017 ident: 10.1016/j.isatra.2022.07.009_b21 article-title: Design of fuzzy and linear active disturbance rejection control for insulin infusion in type 1 diabetic patients publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-017-0318-x – start-page: 1607 year: 2008 ident: 10.1016/j.isatra.2022.07.009_b11 article-title: Model-based nonlinear optimal blood glucose control of type I diabetes patients – volume: 43 start-page: 8257 issue: 26 year: 2004 ident: 10.1016/j.isatra.2022.07.009_b10 article-title: Robust PID controller for blood glucose regulation in type I diabetics publication-title: Ind Eng Chem Res doi: 10.1021/ie049546a – volume: 38 start-page: 200 year: 2017 ident: 10.1016/j.isatra.2022.07.009_b24 article-title: Super twisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.06.009 – year: 2016 ident: 10.1016/j.isatra.2022.07.009_b39 – volume: 53 start-page: 996 issue: 6 year: 2006 ident: 10.1016/j.isatra.2022.07.009_b8 article-title: Run-to-run control of blood glucose concentrations for people with type 1 diabetes mellitus publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.872818 – year: 2013 ident: 10.1016/j.isatra.2022.07.009_b40 – volume: 4 start-page: 297 issue: 04 year: 2011 ident: 10.1016/j.isatra.2022.07.009_b22 article-title: Identification and low-complexity regime-switching insulin control of type I diabetic patients publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2011.44040 – volume: 12 start-page: 1179 issue: 9 year: 2004 ident: 10.1016/j.isatra.2022.07.009_b35 article-title: Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2003.12.004 – year: 2004 ident: 10.1016/j.isatra.2022.07.009_b37 – volume: 3 start-page: 642 issue: 6 year: 2008 ident: 10.1016/j.isatra.2022.07.009_b42 article-title: Particle swarm optimization: a numerical stability analysis and parameter adjustment based on swarm activity publication-title: IEEJ Trans Electr Electron Eng doi: 10.1002/tee.20326 – volume: 23 start-page: 1773 issue: 4 year: 2018 ident: 10.1016/j.isatra.2022.07.009_b20 article-title: Glycemic control of people with type 1 diabetes based on probabilistic constraints publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2018.2869365 – volume: 54 start-page: 1740 issue: 10 year: 2007 ident: 10.1016/j.isatra.2022.07.009_b4 article-title: Meal simulation model of the glucose-insulin system publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.893506 – volume: 14 start-page: 235 issue: 3 year: 1992 ident: 10.1016/j.isatra.2022.07.009_b13 article-title: A physiological model of glucose-insulin interaction in type 1 diabetes mellitus publication-title: J Biomed Eng doi: 10.1016/0141-5425(92)90058-S – volume: 46 start-page: 2537 issue: 12 year: 2000 ident: 10.1016/j.isatra.2022.07.009_b6 article-title: Robust H∞ glucose control in diabetes using a physiological model publication-title: AIChE J doi: 10.1002/aic.690461220 – volume: 54 year: 2019 ident: 10.1016/j.isatra.2022.07.009_b16 article-title: Fuzzy model-based controller for blood glucose control in type 1 diabetes: An LMI approach publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101627 – year: 2021 ident: 10.1016/j.isatra.2022.07.009_b18 article-title: Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction publication-title: ISA Trans – volume: 58 start-page: 332 year: 2017 ident: 10.1016/j.isatra.2022.07.009_b26 article-title: Adaptive control in an artificial pancreas for people with type 1 diabetes publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2016.01.003 – volume: 68 start-page: 1456 issue: 6 year: 1981 ident: 10.1016/j.isatra.2022.07.009_b2 article-title: Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose publication-title: J Clin Investig doi: 10.1172/JCI110398 – start-page: 66 year: 2017 ident: 10.1016/j.isatra.2022.07.009_b1 article-title: A review of model prediction in diabetes and of designing glucose regulators based on model predictive control for the artificial pancreas – volume: 15 issue: 8 year: 2020 ident: 10.1016/j.isatra.2022.07.009_b14 article-title: A revised Sorensen model: Simulating glycemic and insulinemic response to oral and intra-venous glucose load publication-title: Plos One doi: 10.1371/journal.pone.0237215 – volume: 54 start-page: 110 issue: 1 year: 2018 ident: 10.1016/j.isatra.2022.07.009_b28 article-title: Parametric identification of sorensen model for glucose-insulin-carbohydrates dynamics using evolutive algorithms publication-title: Kybernetika – volume: 20 start-page: 65 issue: 1 year: 2001 ident: 10.1016/j.isatra.2022.07.009_b7 article-title: The intravenous route to blood glucose control publication-title: IEEE Eng Med Biol Mag doi: 10.1109/51.897829 – volume: 57 year: 2020 ident: 10.1016/j.isatra.2022.07.009_b23 article-title: Robust LPV control design for blood glucose regulation considering daily life factors publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101830 – start-page: 1300 year: 2016 ident: 10.1016/j.isatra.2022.07.009_b34 article-title: A backstepping approach for blood glucose control of parker system – volume: 19 start-page: 139 issue: 2 year: 1992 ident: 10.1016/j.isatra.2022.07.009_b36 article-title: Robust control of a class of uncertain nonlinear systems publication-title: Systems Control Lett doi: 10.1016/0167-6911(92)90097-C – volume: 54 start-page: 133 issue: 2 year: 2017 ident: 10.1016/j.isatra.2022.07.009_b27 article-title: Stability analysis of sorensen’s model for controllability and observability: Stability analysis of sorensen’s model publication-title: Proc Pak Acad Sci B – start-page: 115 year: 2009 ident: 10.1016/j.isatra.2022.07.009_b41 article-title: Lyapunov stability – volume: 53 start-page: 1478 issue: 8 year: 2006 ident: 10.1016/j.isatra.2022.07.009_b45 article-title: Model-based blood glucose control for type 1 diabetes via parametric programming publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.878075 – volume: 10 start-page: 5294 issue: 15 year: 2020 ident: 10.1016/j.isatra.2022.07.009_b29 article-title: A novel artificial pancreas: Energy efficient valveless piezoelectric actuated closed-loop insulin pump for T1DM publication-title: Appl Sci doi: 10.3390/app10155294 – volume: 8 start-page: 233 issue: 3 year: 2018 ident: 10.1016/j.isatra.2022.07.009_b30 article-title: Simplified mathematical model of glucose-insulin system publication-title: Am J Comput Math doi: 10.4236/ajcm.2018.83019 – start-page: 163 year: 2007 ident: 10.1016/j.isatra.2022.07.009_b31 article-title: LPV modeling of type I diabetes mellitus – year: 2006 ident: 10.1016/j.isatra.2022.07.009_b44 – start-page: 1 year: 2021 ident: 10.1016/j.isatra.2022.07.009_b19 article-title: A nonlinear MPC approach for blood glucose regulation in diabetic patients |
SSID | ssj0002598 |
Score | 2.371083 |
Snippet | Recent advances in the artificial pancreas system provide an emerging treatment option for type 1 diabetes. The performance of the blood glucose regulation... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 353 |
SubjectTerms | Backstepping control Glucose–insulin model Multi-compartment model Parametric uncertainties Robust control Type 1 diabetes mellitus UKF estimator |
Title | Robust nonlinear control of blood glucose in diabetic patients subject to model uncertainties |
URI | https://dx.doi.org/10.1016/j.isatra.2022.07.009 https://www.ncbi.nlm.nih.gov/pubmed/35927074 https://www.proquest.com/docview/2699707980 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFH-IvbQHqdbWta1E8KCHqTNJ5usoi8u2ioi4sBcJ-YQV2ZWd2Wv_9uZNMlpBWfA0MJMwIS95H8nv_R7AEUudLHKpk8xVLuEFV0lltI9SaGHyUiuW6w5tcVWMJ_zPNJ9uwLDPhUFYZdT9Qad32jq-OY2zefo4m2GOrzdmyMaO-KqCY9zOeYn8-b_-PsM8vHsftXGdYOs-fa7DeCFiZonsQ5R2FJ4IS3zdPL3lfnZmaPQZtqL_SM7CELdhw8534NN_rII7sB33a0OOI6n0yRe4u1moVdOSeaDGkEsSQepk4UiHXicRvU5mcxJOZGeaRNrVhjQrhSc2pF2QrngO8fYwoAmQkXUXJqPz2-E4iaUVEu0tVpvQouRGS5dpzmxmbGqzMjPM1amuCpmmslbGKh9KcGqdjzos5aqqrc6dNgbrE3-FTT9guwckMz4k8mEWl4xxl7pKMcmUlpaa0kjDBsD6GRU68o5j-YsH0QPM7kWQg0A5iBQvxOsBJE-9HgPvxpr2ZS8s8WL9CG8a1vQ87GUr_NbC-xI5t4tVI2hR10ggWKUD-BaE_jQWltfUf-P77_7vd_iIpesDAvwHbLbLlf3pHZxWHXQr-AA-nA1vLq_x-ftifPUP4I_9oA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFH-IHqwH0W3V9TOFHtrD6EyS-TqKKOvnoSh4KSGfsKXsLjuzV_928yaZbQstgteZhIS8l_eR_PJ7AF9Y6mSRS51krnIJL7hKKqN9lkILk5dasVx3aIuHYvTEb57z5xW46N_CIKwy2v5g0ztrHb-cxdU8m43H-MbXOzNkY0d8VcF93r7Gc1aiap--_MZ5-Pg-muM6web9-7kO5IWQmTnSD1HacXgiLvHf_ul_8Wfnh662YDMGkOQ8zHEbVuxkABt_0AoOYDtu2IZ8jazS3z7Cj-9TtWhaMgncGHJOIkqdTB3p4OskwtfJeELCkexYk8i72pBmofDIhrRT0lXPId4hBjgBUrJ-gqery8eLURJrKyTau6w2oUXJjZYu05zZzNjUZmVmmKtTXRUyTWWtjFU-l-DUOp92WMpVVVudO20MFijegVU_YbsHJDM-J_J5FpeMcZe6SjHJlJaWmtJIw4bA-hUVOhKPY_2LX6JHmP0UQQ4C5SBSvBGvh5Ase80C8cYb7cteWOIvBRLeN7zR83MvW-H3Fl6YyImdLhpBi7pGBsEqHcJuEPpyLiyvqf_H99897gmsjx7v78Td9cPtAXzAOvYBDn4Iq-18YY98tNOq406bXwHIw_2h |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+nonlinear+control+of+blood+glucose+in+diabetic+patients+subject+to+model+uncertainties&rft.jtitle=ISA+transactions&rft.au=Farahmand%2C+Bahareh&rft.au=Dehghani%2C+Maryam&rft.au=Vafamand%2C+Navid&rft.au=Mirzaee%2C+Alireza&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.volume=133&rft.spage=353&rft.epage=368&rft_id=info:doi/10.1016%2Fj.isatra.2022.07.009&rft.externalDocID=S0019057822003640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |