Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido[1,2-c][1,3]benzothiazin-6-imine

HDAC8 is an established target for T-cell lymphoma and childhood neuroblastoma. Benzothiazine-imines are promising HDAC8 inhibitors with unknown binding mechanism lacking a usual zinc binding group. In this study high-resolution and quantitative HPLC-coupled ESI-MS/MS techniques are combined with cr...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1863; no. 3; pp. 577 - 585
Main Authors Muth, Marius, Jänsch, Niklas, Kopranovic, Aleksandra, Krämer, Andreas, Wössner, Nathalie, Jung, Manfred, Kirschhöfer, Frank, Brenner-Weiß, Gerald, Meyer-Almes, Franz-Josef
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract HDAC8 is an established target for T-cell lymphoma and childhood neuroblastoma. Benzothiazine-imines are promising HDAC8 inhibitors with unknown binding mechanism lacking a usual zinc binding group. In this study high-resolution and quantitative HPLC-coupled ESI-MS/MS techniques are combined with crystal structure determination and a variety of biochemical and computational methods to elucidate the reaction mechanism between benzothiazine-imine 1 and HDAC8. 1) 1 is a covalent inhibitor of HDAC8; 2) inhibition is reversible in the presence of reducing agents; 3) C153 in the active site and C102 are involved in the inhibition mechanism; 4) 1 modifies various cysteines in HDAC8 forming either thiocyanates or mixed disulfides with 3; 5) 1 and 5 dock in close proximity to C153 within the active site. This is supposed to accelerate covalent inactivation particularly in HDAC8 and suggested as major determinant for the observed nanomolar potency and selectivity of 1. 1 and its analogs are interesting model compounds but unsuitable for therapeutic treatment due to their high unselective reactivity towards thiol groups. However, the postulated preceding non-covalent binding mode of 1 opens a door to optimized next generation compounds that combine potent and selective non-covalent recognition with low reactivity towards C153 at the active site of HDAC8. 1 represents a completely new class of inhibitors for HDAC8. Initial non-covalent interaction at the bottom of the active site is suggested to be the key for its selectivity. Further optimization of non-covalent interaction and thiol-reactivity provides opportunities to develop therapeutic useful covalent HDAC8 inhibitors. •PD 404,182 is a isoenzyme selective HDAC8 inhibitor.•PD 404,182 reacts chemically with thiols yielding a thiophenol.•The mechanism-based inhibition of HDAC8 involves transient formation of a mixed disulfide.•PD 404,182 eventually modifies Cys153 yielding the corresponding isothiocyanate.
AbstractList HDAC8 is an established target for T-cell lymphoma and childhood neuroblastoma. Benzothiazine-imines are promising HDAC8 inhibitors with unknown binding mechanism lacking a usual zinc binding group. In this study high-resolution and quantitative HPLC-coupled ESI-MS/MS techniques are combined with crystal structure determination and a variety of biochemical and computational methods to elucidate the reaction mechanism between benzothiazine-imine 1 and HDAC8. 1) 1 is a covalent inhibitor of HDAC8; 2) inhibition is reversible in the presence of reducing agents; 3) C153 in the active site and C102 are involved in the inhibition mechanism; 4) 1 modifies various cysteines in HDAC8 forming either thiocyanates or mixed disulfides with 3; 5) 1 and 5 dock in close proximity to C153 within the active site. This is supposed to accelerate covalent inactivation particularly in HDAC8 and suggested as major determinant for the observed nanomolar potency and selectivity of 1. 1 and its analogs are interesting model compounds but unsuitable for therapeutic treatment due to their high unselective reactivity towards thiol groups. However, the postulated preceding non-covalent binding mode of 1 opens a door to optimized next generation compounds that combine potent and selective non-covalent recognition with low reactivity towards C153 at the active site of HDAC8. 1 represents a completely new class of inhibitors for HDAC8. Initial non-covalent interaction at the bottom of the active site is suggested to be the key for its selectivity. Further optimization of non-covalent interaction and thiol-reactivity provides opportunities to develop therapeutic useful covalent HDAC8 inhibitors.
HDAC8 is an established target for T-cell lymphoma and childhood neuroblastoma. Benzothiazine-imines are promising HDAC8 inhibitors with unknown binding mechanism lacking a usual zinc binding group. In this study high-resolution and quantitative HPLC-coupled ESI-MS/MS techniques are combined with crystal structure determination and a variety of biochemical and computational methods to elucidate the reaction mechanism between benzothiazine-imine 1 and HDAC8. 1) 1 is a covalent inhibitor of HDAC8; 2) inhibition is reversible in the presence of reducing agents; 3) C153 in the active site and C102 are involved in the inhibition mechanism; 4) 1 modifies various cysteines in HDAC8 forming either thiocyanates or mixed disulfides with 3; 5) 1 and 5 dock in close proximity to C153 within the active site. This is supposed to accelerate covalent inactivation particularly in HDAC8 and suggested as major determinant for the observed nanomolar potency and selectivity of 1. 1 and its analogs are interesting model compounds but unsuitable for therapeutic treatment due to their high unselective reactivity towards thiol groups. However, the postulated preceding non-covalent binding mode of 1 opens a door to optimized next generation compounds that combine potent and selective non-covalent recognition with low reactivity towards C153 at the active site of HDAC8. 1 represents a completely new class of inhibitors for HDAC8. Initial non-covalent interaction at the bottom of the active site is suggested to be the key for its selectivity. Further optimization of non-covalent interaction and thiol-reactivity provides opportunities to develop therapeutic useful covalent HDAC8 inhibitors. •PD 404,182 is a isoenzyme selective HDAC8 inhibitor.•PD 404,182 reacts chemically with thiols yielding a thiophenol.•The mechanism-based inhibition of HDAC8 involves transient formation of a mixed disulfide.•PD 404,182 eventually modifies Cys153 yielding the corresponding isothiocyanate.
HDAC8 is an established target for T-cell lymphoma and childhood neuroblastoma. Benzothiazine-imines are promising HDAC8 inhibitors with unknown binding mechanism lacking a usual zinc binding group.In this study high-resolution and quantitative HPLC-coupled ESI-MS/MS techniques are combined with crystal structure determination and a variety of biochemical and computational methods to elucidate the reaction mechanism between benzothiazine-imine 1 and HDAC8.1) 1 is a covalent inhibitor of HDAC8; 2) inhibition is reversible in the presence of reducing agents; 3) C153 in the active site and C102 are involved in the inhibition mechanism; 4) 1 modifies various cysteines in HDAC8 forming either thiocyanates or mixed disulfides with 3; 5) 1 and 5 dock in close proximity to C153 within the active site. This is supposed to accelerate covalent inactivation particularly in HDAC8 and suggested as major determinant for the observed nanomolar potency and selectivity of 1.1 and its analogs are interesting model compounds but unsuitable for therapeutic treatment due to their high unselective reactivity towards thiol groups. However, the postulated preceding non-covalent binding mode of 1 opens a door to optimized next generation compounds that combine potent and selective non-covalent recognition with low reactivity towards C153 at the active site of HDAC8.1 represents a completely new class of inhibitors for HDAC8. Initial non-covalent interaction at the bottom of the active site is suggested to be the key for its selectivity. Further optimization of non-covalent interaction and thiol-reactivity provides opportunities to develop therapeutic useful covalent HDAC8 inhibitors.
Author Krämer, Andreas
Jung, Manfred
Meyer-Almes, Franz-Josef
Jänsch, Niklas
Brenner-Weiß, Gerald
Muth, Marius
Kirschhöfer, Frank
Kopranovic, Aleksandra
Wössner, Nathalie
Author_xml – sequence: 1
  givenname: Marius
  surname: Muth
  fullname: Muth, Marius
  organization: Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Germany
– sequence: 2
  givenname: Niklas
  surname: Jänsch
  fullname: Jänsch, Niklas
  organization: Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Germany
– sequence: 3
  givenname: Aleksandra
  surname: Kopranovic
  fullname: Kopranovic, Aleksandra
  organization: Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Germany
– sequence: 4
  givenname: Andreas
  surname: Krämer
  fullname: Krämer, Andreas
  organization: Institute of Pharmaceutical Chemistry, University Frankfurt, Germany
– sequence: 5
  givenname: Nathalie
  surname: Wössner
  fullname: Wössner, Nathalie
  organization: Institute of Pharmaceutical Sciences, University of Freiburg, Germany
– sequence: 6
  givenname: Manfred
  surname: Jung
  fullname: Jung, Manfred
  organization: Institute of Pharmaceutical Sciences, University of Freiburg, Germany
– sequence: 7
  givenname: Frank
  surname: Kirschhöfer
  fullname: Kirschhöfer, Frank
  organization: Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany
– sequence: 8
  givenname: Gerald
  surname: Brenner-Weiß
  fullname: Brenner-Weiß, Gerald
  organization: Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany
– sequence: 9
  givenname: Franz-Josef
  surname: Meyer-Almes
  fullname: Meyer-Almes, Franz-Josef
  email: franz-josef.meyer-almes@h-da.de
  organization: Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30611847$$D View this record in MEDLINE/PubMed
BookMark eNqFUctqHDEQFMHBXjv-gxDmmIM1bkmz88ghYJYkNhhySU7BCD16vFpmpY2kNYy_PlrWvuSQ9KUOXVVNV52TEx88EvKeQc2AtdebWmv1iL7mwIYaWA3A3pAF6ztOe4D2hCxAQEMb1i7PyHlKGyizHJan5ExAy1jfdAvyuApPakKfK-fXTrvsgq_CWK1dyuVeZVEZzPOkElZ9pedKXDXUuvVsY6D8lu7m6LbOhl_silPzUEA8aPTPIa-denaetrTsPb4jb0c1Jbx8wQvy8-uXH6tbev_9293q5p4a0fJM-dKoTmEDIx-00L1gaJvWWju2DVjRgeKoxqHnQmkxiHY0go-2s6bjCvsOxAX5ePTdxfB7jynLrUsGp0l5DPskOecMOPR8KNQPL9S93qKVu_KJirN8DacQPh0JJoaUIo7SuKwOCeWo3CQZyEMTciOPTchDExKYLE0UcfOX-NX_P7LPRxmWkJ4cRpmMQ2_QuogmSxvcvw3-AFzYo0U
CitedBy_id crossref_primary_10_1016_j_ejmcr_2025_100255
crossref_primary_10_1021_acs_jmedchem_0c00830
crossref_primary_10_1021_acs_orglett_9b02784
crossref_primary_10_3390_molecules25204666
crossref_primary_10_1007_s00253_023_12613_1
crossref_primary_10_1002_cbic_202000700
crossref_primary_10_1080_1062936X_2022_2155241
crossref_primary_10_1080_13543776_2024_2391289
crossref_primary_10_1021_jacsau_4c00828
crossref_primary_10_3390_molecules26175151
crossref_primary_10_1002_chem_202001712
crossref_primary_10_1021_acsmedchemlett_4c00460
crossref_primary_10_1002_cmdc_202000934
crossref_primary_10_1016_j_ejmech_2019_111756
crossref_primary_10_3390_ijms25115593
crossref_primary_10_1016_j_bioorg_2020_103934
crossref_primary_10_1016_j_ejmech_2023_115800
Cites_doi 10.1016/j.str.2004.04.012
10.1016/j.bmcl.2011.01.128
10.1128/AAC.05722-11
10.1016/j.ymeth.2005.03.003
10.4155/fmc-2016-0117
10.1016/j.drudis.2015.01.004
10.1093/bioinformatics/btl485
10.1021/acsinfecdis.6b00148
10.1039/C5CS00532A
10.1124/jpet.113.206847
10.1002/cmdc.201600528
10.1021/ja002142z
10.1002/cmdc.201500486
10.1007/s00894-011-1297-8
10.1016/j.bbagen.2017.04.001
10.1039/C5OB00301F
10.1021/bi801610c
10.1016/j.bmc.2011.06.030
10.1038/s41467-017-01657-3
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019. Published by Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7S9
L.6
DOI 10.1016/j.bbagen.2019.01.001
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 585
ExternalDocumentID 30611847
10_1016_j_bbagen_2019_01_001
S0304416519300017
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c362t-25ca7ae40f29b3b831ed46dddf640d370a2eaf9823ab3936fc32fd7dc72ae8703
IEDL.DBID .~1
ISSN 0304-4165
IngestDate Mon Aug 11 02:38:34 EDT 2025
Thu Apr 03 07:00:33 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Tue Jul 01 00:22:11 EDT 2025
Fri Feb 23 02:34:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Enzyme inhibition
Non-hydroxamate inhibitor
Selective inhibition
Covalent inhibitor
HDAC8
Binding mechanism
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-25ca7ae40f29b3b831ed46dddf640d370a2eaf9823ab3936fc32fd7dc72ae8703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30611847
PQID 2221020829
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2221020829
pubmed_primary_30611847
crossref_citationtrail_10_1016_j_bbagen_2019_01_001
crossref_primary_10_1016_j_bbagen_2019_01_001
elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shen, Kozikowski (bb0060) 2016; 11
Haider, Joseph, Neidle, Fierke, Fuchter (bb0095) 2011; 21
Kleinschek, Meyners, Digiorgio, Brancolini, Meyer-Almes (bb0025) 2016; 11
Okazaki, Oishi, Mizuhara, Shimura, Murayama, Ohno, Matsuoka, Fujii (bb0035) 2015; 13
Meyners, Kramer, Yildiz, Meyer-Almes (bb0045) 2017; 1861
Deschamps, Simões-Pires, Carrupt, Nurisso (bb0085) 2015; 20
Whitehead, Dobler, Radetich, Zhu, Atadja, Claiborne, Grob, McRiner, Pancost, Patnaik, Shao, Shultz, Tichkule, Tommasi, Vash, Wang, Stams (bb0090) 2011; 19
Brunsteiner, Petukhov (bb0075) 2012; 18
Castanheiro, Suffert, Donnard, Gulea (bb0100) 2016; 45
Hoops, Sahle, Gauges, Lee, Pahle, Simus, Singhal, Xu, Mendes, Kummer (bb0055) 2006; 22
Heltweg, Trapp, Jung (bb0040) 2005; 36
Chamoun, Chockalingam, Bobardt, Simeon, Chang, Gallay, Chen (bb0015) 2012; 56
Dowling, Gantt, Gattis, Fierke, Christianson (bb0080) 2008; 47
National Center for Biotechnology Information (bb0020) 2018
Birck, Holler, Woodard (bb0005) 2000; 122
Ghebremariam, Erlanson, Cooke (bb0010) 2014; 348
Dahlin, Nelson, Strasser, Barsyte-Lovejoy, Szewczyk, Organ, Cuellar, Singh, Shrimp, Nguyen, Meier, Arrowsmith, Brown, Baell, Walters (bb0065) 2017; 8
Somoza, Skene, Katz, Mol, Ho, Jennings, Luong, Arvai, Buggy, Chi, Tang, Sang, Verner, Wynands, Leahy, Dougan, Snell, Navre, Knuth, Swanson, McRee, Tari (bb0070) 2004; 12
Weston, Kramer, Colin, Yildiz, Baud, Meyer-Almes, Fuchter (bb0050) 2017; 3
Chakrabarti, Melesina, Kolbinger, Oehme, Senger, Witt, Sippl, Jung (bb0030) 2016; 8
Heltweg (10.1016/j.bbagen.2019.01.001_bb0040) 2005; 36
Whitehead (10.1016/j.bbagen.2019.01.001_bb0090) 2011; 19
Somoza (10.1016/j.bbagen.2019.01.001_bb0070) 2004; 12
Deschamps (10.1016/j.bbagen.2019.01.001_bb0085) 2015; 20
Meyners (10.1016/j.bbagen.2019.01.001_bb0045) 2017; 1861
Hoops (10.1016/j.bbagen.2019.01.001_bb0055) 2006; 22
Shen (10.1016/j.bbagen.2019.01.001_bb0060) 2016; 11
National Center for Biotechnology Information (10.1016/j.bbagen.2019.01.001_bb0020)
Chakrabarti (10.1016/j.bbagen.2019.01.001_bb0030) 2016; 8
Haider (10.1016/j.bbagen.2019.01.001_bb0095) 2011; 21
Dowling (10.1016/j.bbagen.2019.01.001_bb0080) 2008; 47
Weston (10.1016/j.bbagen.2019.01.001_bb0050) 2017; 3
Chamoun (10.1016/j.bbagen.2019.01.001_bb0015) 2012; 56
Brunsteiner (10.1016/j.bbagen.2019.01.001_bb0075) 2012; 18
Castanheiro (10.1016/j.bbagen.2019.01.001_bb0100) 2016; 45
Kleinschek (10.1016/j.bbagen.2019.01.001_bb0025) 2016; 11
Birck (10.1016/j.bbagen.2019.01.001_bb0005) 2000; 122
Dahlin (10.1016/j.bbagen.2019.01.001_bb0065) 2017; 8
Ghebremariam (10.1016/j.bbagen.2019.01.001_bb0010) 2014; 348
Okazaki (10.1016/j.bbagen.2019.01.001_bb0035) 2015; 13
References_xml – volume: 47
  start-page: 13554
  year: 2008
  end-page: 13563
  ident: bb0080
  article-title: Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors
  publication-title: Biochemistry
– volume: 45
  start-page: 494
  year: 2016
  end-page: 505
  ident: bb0100
  article-title: Recent advances in the chemistry of organic thiocyanates
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 4706
  year: 2015
  end-page: 4713
  ident: bb0035
  article-title: Investigations of possible prodrug structures for 2-(2-mercaptophenyl) tetrahydropyrimidines: reductive conversion from anti-HIV agents with pyrimidobenzothiazine and isothiazolopyrimidine scaffolds
  publication-title: Org. Biomol. Chem.
– volume: 8
  start-page: 1527
  year: 2017
  ident: bb0065
  article-title: Assay interference and off-target liabilities of reported histone acetyltransferase inhibitors
  publication-title: Nat. Commun.
– volume: 20
  start-page: 736
  year: 2015
  end-page: 742
  ident: bb0085
  article-title: How the flexibility of human histone deacetylases influences ligand binding: an overview
  publication-title: Drug Discov. Today
– volume: 19
  start-page: 4626
  year: 2011
  end-page: 4634
  ident: bb0090
  article-title: Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors
  publication-title: Bioorg. Med. Chem.
– year: 2018
  ident: bb0020
  article-title: PubChem Compound Database; CID=6603967
– volume: 11
  start-page: 15
  year: 2016
  end-page: 21
  ident: bb0060
  article-title: Why hydroxamates may not be the best histone deacetylase inhibitors-what some may have forgotten or would rather forget?
  publication-title: ChemMedChem
– volume: 12
  start-page: 1325
  year: 2004
  end-page: 1334
  ident: bb0070
  article-title: Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases
  publication-title: Structure
– volume: 18
  start-page: 3927
  year: 2012
  end-page: 3939
  ident: bb0075
  article-title: Insights from comprehensive multiple receptor docking to HDAC8
  publication-title: J. Mol. Model.
– volume: 8
  start-page: 1609
  year: 2016
  end-page: 1634
  ident: bb0030
  article-title: Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases
  publication-title: Future Med. Chem.
– volume: 56
  start-page: 672
  year: 2012
  end-page: 681
  ident: bb0015
  article-title: PD 404,182 is a virocidal small molecule that disrupts hepatitis C virus and human immunodeficiency virus
  publication-title: Antimicrob. Agents Chemother.
– volume: 22
  start-page: 3067
  year: 2006
  end-page: 3074
  ident: bb0055
  article-title: COPASI—a COmplex PAthway SImulator
  publication-title: Bioinformatics
– volume: 122
  start-page: 9334
  year: 2000
  end-page: 9335
  ident: bb0005
  article-title: Identification of a slow tight-binding inhibitor of 3-deoxy-d-m anno-octulosonic acid 8-phosphate synthase
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2598
  year: 2016
  end-page: 2606
  ident: bb0025
  article-title: Potent and selective non-hydroxamate histone deacetylase 8 inhibitors
  publication-title: ChemMedChem
– volume: 36
  start-page: 332
  year: 2005
  end-page: 337
  ident: bb0040
  article-title: In vitro assays for the determination of histone deacetylase activity
  publication-title: Methods
– volume: 3
  start-page: 152
  year: 2017
  end-page: 161
  ident: bb0050
  article-title: Toward photopharmacological antimicrobial chemotherapy using photoswitchable amidohydrolase inhibitors
  publication-title: ACS Infect. Dis.
– volume: 21
  start-page: 2129
  year: 2011
  end-page: 2132
  ident: bb0095
  article-title: On the function of the internal cavity of histone deacetylase protein 8: R37 is a crucial residue for catalysis
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 1861
  start-page: 1855
  year: 2017
  end-page: 1863
  ident: bb0045
  article-title: The thermodynamic signature of ligand binding to histone deacetylase-like amidohydrolases is most sensitive to the flexibility in the L2-loop lining the active site pocket
  publication-title: Biochim. Biophys. Acta
– volume: 348
  start-page: 69
  year: 2014
  end-page: 76
  ident: bb0010
  article-title: A novel and potent inhibitor of dimethylarginine dimethylaminohydrolase: a modulator of cardiovascular nitric oxide
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 12
  start-page: 1325
  year: 2004
  ident: 10.1016/j.bbagen.2019.01.001_bb0070
  article-title: Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases
  publication-title: Structure
  doi: 10.1016/j.str.2004.04.012
– volume: 21
  start-page: 2129
  year: 2011
  ident: 10.1016/j.bbagen.2019.01.001_bb0095
  article-title: On the function of the internal cavity of histone deacetylase protein 8: R37 is a crucial residue for catalysis
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2011.01.128
– volume: 56
  start-page: 672
  year: 2012
  ident: 10.1016/j.bbagen.2019.01.001_bb0015
  article-title: PD 404,182 is a virocidal small molecule that disrupts hepatitis C virus and human immunodeficiency virus
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.05722-11
– volume: 36
  start-page: 332
  year: 2005
  ident: 10.1016/j.bbagen.2019.01.001_bb0040
  article-title: In vitro assays for the determination of histone deacetylase activity
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.03.003
– volume: 8
  start-page: 1609
  year: 2016
  ident: 10.1016/j.bbagen.2019.01.001_bb0030
  article-title: Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc-2016-0117
– volume: 20
  start-page: 736
  year: 2015
  ident: 10.1016/j.bbagen.2019.01.001_bb0085
  article-title: How the flexibility of human histone deacetylases influences ligand binding: an overview
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2015.01.004
– volume: 22
  start-page: 3067
  year: 2006
  ident: 10.1016/j.bbagen.2019.01.001_bb0055
  article-title: COPASI—a COmplex PAthway SImulator
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl485
– volume: 3
  start-page: 152
  year: 2017
  ident: 10.1016/j.bbagen.2019.01.001_bb0050
  article-title: Toward photopharmacological antimicrobial chemotherapy using photoswitchable amidohydrolase inhibitors
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.6b00148
– volume: 45
  start-page: 494
  year: 2016
  ident: 10.1016/j.bbagen.2019.01.001_bb0100
  article-title: Recent advances in the chemistry of organic thiocyanates
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00532A
– volume: 348
  start-page: 69
  year: 2014
  ident: 10.1016/j.bbagen.2019.01.001_bb0010
  article-title: A novel and potent inhibitor of dimethylarginine dimethylaminohydrolase: a modulator of cardiovascular nitric oxide
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.113.206847
– volume: 11
  start-page: 2598
  year: 2016
  ident: 10.1016/j.bbagen.2019.01.001_bb0025
  article-title: Potent and selective non-hydroxamate histone deacetylase 8 inhibitors
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201600528
– volume: 122
  start-page: 9334
  year: 2000
  ident: 10.1016/j.bbagen.2019.01.001_bb0005
  article-title: Identification of a slow tight-binding inhibitor of 3-deoxy-d-m anno-octulosonic acid 8-phosphate synthase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002142z
– volume: 11
  start-page: 15
  year: 2016
  ident: 10.1016/j.bbagen.2019.01.001_bb0060
  article-title: Why hydroxamates may not be the best histone deacetylase inhibitors-what some may have forgotten or would rather forget?
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201500486
– volume: 18
  start-page: 3927
  year: 2012
  ident: 10.1016/j.bbagen.2019.01.001_bb0075
  article-title: Insights from comprehensive multiple receptor docking to HDAC8
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-011-1297-8
– volume: 1861
  start-page: 1855
  year: 2017
  ident: 10.1016/j.bbagen.2019.01.001_bb0045
  article-title: The thermodynamic signature of ligand binding to histone deacetylase-like amidohydrolases is most sensitive to the flexibility in the L2-loop lining the active site pocket
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2017.04.001
– ident: 10.1016/j.bbagen.2019.01.001_bb0020
– volume: 13
  start-page: 4706
  year: 2015
  ident: 10.1016/j.bbagen.2019.01.001_bb0035
  article-title: Investigations of possible prodrug structures for 2-(2-mercaptophenyl) tetrahydropyrimidines: reductive conversion from anti-HIV agents with pyrimidobenzothiazine and isothiazolopyrimidine scaffolds
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB00301F
– volume: 47
  start-page: 13554
  year: 2008
  ident: 10.1016/j.bbagen.2019.01.001_bb0080
  article-title: Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors
  publication-title: Biochemistry
  doi: 10.1021/bi801610c
– volume: 19
  start-page: 4626
  year: 2011
  ident: 10.1016/j.bbagen.2019.01.001_bb0090
  article-title: Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2011.06.030
– volume: 8
  start-page: 1527
  year: 2017
  ident: 10.1016/j.bbagen.2019.01.001_bb0065
  article-title: Assay interference and off-target liabilities of reported histone acetyltransferase inhibitors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01657-3
SSID ssj0000595
Score 2.369909
Snippet HDAC8 is an established target for T-cell lymphoma and childhood neuroblastoma. Benzothiazine-imines are promising HDAC8 inhibitors with unknown binding...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 577
SubjectTerms active sites
Binding mechanism
childhood
computational methodology
Covalent inhibitor
crystal structure
Enzyme inhibition
HDAC8
histone deacetylase
Non-hydroxamate inhibitor
reaction mechanisms
reducing agents
Selective inhibition
sulfides
T-cell lymphoma
tandem mass spectrometry
therapeutics
thiocyanates
thiols
zinc
Title Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido[1,2-c][1,3]benzothiazin-6-imine
URI https://dx.doi.org/10.1016/j.bbagen.2019.01.001
https://www.ncbi.nlm.nih.gov/pubmed/30611847
https://www.proquest.com/docview/2221020829
Volume 1863
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbSX0iZ9bB9BgRyjri3JtnwMS8O2Jbm0gUAIQrJGjUOxl3RzcA_97Z3xI6HQEMjJ2Ej2oBnNfLJG8zG2lwaMCRiYRJZBFNqZgH4wgJAOsXGscEEG9B_y6Dhfnugvp9npBltMZ2EorXL0_YNP7731-GQ-juZ8Vdfzb7Sph3CCIEhf9oVOsOuCrPzjn9s0D4QP2bCToAW1no7P9Tle3uOkpSqoadkX7xypYf4Tnu6Cn30YOnzOno34kR8MIr5gG9BssccDo2S3xZ4sJgK3bfZj0aIZYVDhdXNR-z43i7eR9yWGG-ABvSGsO4TPwA33HVf7WoT6ogtXrZBLseqI8iu0Z-m-FNU5XtS5h-Y36ramotQiF0QJBi_ZyeGn74ulGHkVRIXhai1kVrnCgU6iLL3yRqUQdB5CiLlOgioSJ8HF0kjlvCpVHislYyhCVUgHOL_VK7bZoJxvGFcxc1kaTARtNL7UgE-CN7mJATIPbsbUNJy2GouOE_fFTztll13aQQmWlGCTlJLsZkzc9FoNRTfuaV9MmrL_GI_FuHBPz91JsRa1Q5slroH2-pdF3JQSgaksZ-z1oPEbWXCZhesyXbx98Hffsad0NySzvWeb66tr-IDoZu13evPdYY8OPn9dHv8FXUT4FQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDSW5lDZ9ZPtUoceItSXLj2NYGpwm2UsTCJQgJGvUuBR7STcH99d35EdKoSXQk8GWbKGRZj5Zo-8D-BA7igkUmLhS6Hlickd-0CEXhrCxr2hBhuE_5NkqLS-ST5fqcguW01mYkFY5-v7Bp_feeryzGHtzsa7rxeewqUdwIkCQnvblAWwHdio1g-3D45Ny9dshq158JZTnocJ0gq5P87KW5m0gQo2Lnr9zVIf5S4T6FwLtI9HRY3g0Qkh2OLTyCWxhswcPB1HJbg92lpOG21P4umxpJFFcYXVzXds-PYu1nvUsww0yRw4RNx0haGQ5sx2TBwl39XXnblouSr7uguqXa7_EB4JXV3SRVxabn2TeOvBS85QHVTB8BhdHH8-XJR-lFXhFEWvDhapMZjCJvCistLmM0SWpc86nSeRkFhmBxhe5kMbKQqa-ksK7zFWZMEhTXD6HWUPt3AcmvTIqdrnHJE_opTnayNk8zb1DZdHMQU7dqauRdzzIX3zXU4LZNz0YQQcj6CgOeXZz4He11gPvxj3ls8lS-o_xoyk03FPz_WRYTdYJ-yWmwfb2hyboFAcNU1HM4cVg8bu20EqLlmZJ9vK_v_sOdsrzs1N9erw6eQW74cmQ2_YaZpubW3xDYGdj346D-RfehfrG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+inhibition+of+histone+deacetylase+8+by+3%2C4-dihydro-2H-pyrimido%5B1%2C2-c%5D%5B1%2C3%5Dbenzothiazin-6-imine&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Muth%2C+Marius&rft.au=J%C3%A4nsch%2C+Niklas&rft.au=Kopranovic%2C+Aleksandra&rft.au=Kramer%2C+Andreas&rft.date=2019-03-01&rft.issn=0304-4165&rft.volume=1863&rft.issue=3+p.577-585&rft.spage=577&rft.epage=585&rft_id=info:doi/10.1016%2Fj.bbagen.2019.01.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon