Learning joint space–time–frequency features for EEG decoding on small labeled data
Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decodi...
Saved in:
Published in | Neural networks Vol. 114; pp. 67 - 77 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding methods separate feature extraction from classification and thus are not robust across different BCI users. In this paper, we propose to learn subject-specific features jointly with the classification rule. We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking time–frequency transformation, spatial filtering, and classification together. Our proposed ConvNet implements a joint space–time–frequency feature extraction scheme for EEG decoding. Morlet wavelet-like kernels used in our network significantly reduce the number of parameters compared with classical convolutional kernels and endow the features learned at the corresponding layer with a clear interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses parameters of the networks trained for existing subjects to initialize the network for a new subject, to solve the dilemma between a large number of demanded data for training deep ConvNets and small labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining superior classification performance compared with the state-of-the-art methods. |
---|---|
AbstractList | Brain-computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding methods separate feature extraction from classification and thus are not robust across different BCI users. In this paper, we propose to learn subject-specific features jointly with the classification rule. We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking time-frequency transformation, spatial filtering, and classification together. Our proposed ConvNet implements a joint space-time-frequency feature extraction scheme for EEG decoding. Morlet wavelet-like kernels used in our network significantly reduce the number of parameters compared with classical convolutional kernels and endow the features learned at the corresponding layer with a clear interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses parameters of the networks trained for existing subjects to initialize the network for a new subject, to solve the dilemma between a large number of demanded data for training deep ConvNets and small labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining superior classification performance compared with the state-of-the-art methods.Brain-computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding methods separate feature extraction from classification and thus are not robust across different BCI users. In this paper, we propose to learn subject-specific features jointly with the classification rule. We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking time-frequency transformation, spatial filtering, and classification together. Our proposed ConvNet implements a joint space-time-frequency feature extraction scheme for EEG decoding. Morlet wavelet-like kernels used in our network significantly reduce the number of parameters compared with classical convolutional kernels and endow the features learned at the corresponding layer with a clear interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses parameters of the networks trained for existing subjects to initialize the network for a new subject, to solve the dilemma between a large number of demanded data for training deep ConvNets and small labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining superior classification performance compared with the state-of-the-art methods. Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding methods separate feature extraction from classification and thus are not robust across different BCI users. In this paper, we propose to learn subject-specific features jointly with the classification rule. We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking time–frequency transformation, spatial filtering, and classification together. Our proposed ConvNet implements a joint space–time–frequency feature extraction scheme for EEG decoding. Morlet wavelet-like kernels used in our network significantly reduce the number of parameters compared with classical convolutional kernels and endow the features learned at the corresponding layer with a clear interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses parameters of the networks trained for existing subjects to initialize the network for a new subject, to solve the dilemma between a large number of demanded data for training deep ConvNets and small labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining superior classification performance compared with the state-of-the-art methods. |
Author | Zhao, Dongye Si, Bailu Tang, Fengzhen Feng, Xisheng |
Author_xml | – sequence: 1 givenname: Dongye surname: Zhao fullname: Zhao, Dongye email: zhaodongye@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 2 givenname: Fengzhen orcidid: 0000-0002-4654-9440 surname: Tang fullname: Tang, Fengzhen email: tangfengzhen@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 3 givenname: Bailu surname: Si fullname: Si, Bailu email: sibailu@sia.ac.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 4 givenname: Xisheng surname: Feng fullname: Feng, Xisheng email: fxs@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30897519$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFq3DAURUVISSbT_kEoWnZj90n22FIXhRKmSWCgm0CXQpaeggZbmkpyIbv8Q_-wX1IPk2y6aFd38e65PM4VOQ8xICHXDGoGrPu4rwPOAUvNgckaeA0gz8iKiV5WvBf8nKxAyKbqQMAlucp5DwCdaJsLctksl37D5Ip836FOwYdHuo8-FJoP2uDv51_FT8dwCX_MGMwTdajLnDBTFxPdbm-pRRPtEYyB5kmPIx31gCNaanXRb8kbp8eM715yTR6-bh9u7qrdt9v7my-7yjQdLxXnjvfoOuStGGzfuJ5bt2m0BKd77HFgLehBWzagdKIVWkAnu1a2DBwa0azJh9PsIcXl0VzU5LPBcdQB45wVZ7LbcNYsItbk_Ut1Hia06pD8pNOTenWxFD6dCibFnBM6ZXzRxcdQkvajYqCO4tVencSro3gFXC3iF7j9C37d_w_2-YTh4uinx6Sy8YtvtD6hKcpG_--BP4_moX0 |
CitedBy_id | crossref_primary_10_3389_fninf_2022_952474 crossref_primary_10_1007_s11571_024_10181_2 crossref_primary_10_1016_j_knosys_2023_110933 crossref_primary_10_1016_j_patcog_2023_110015 crossref_primary_10_1088_1741_2552_acd1b6 crossref_primary_10_1109_JBHI_2022_3146274 crossref_primary_10_3390_s20040969 crossref_primary_10_1007_s11760_021_01924_3 crossref_primary_10_1016_j_bspc_2022_103582 crossref_primary_10_1016_j_jneumeth_2020_109037 crossref_primary_10_1080_10255842_2024_2404541 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1016_j_bspc_2021_103021 crossref_primary_10_1109_TPAMI_2023_3299568 crossref_primary_10_1088_1741_2552_ad6593 crossref_primary_10_1109_TCYB_2022_3178412 crossref_primary_10_1088_2632_072X_ad1c68 crossref_primary_10_1016_j_bspc_2020_102172 crossref_primary_10_1016_j_patcog_2022_108932 crossref_primary_10_1016_j_compbiomed_2023_107323 crossref_primary_10_1016_j_neunet_2024_106497 crossref_primary_10_1038_s41746_024_01364_6 crossref_primary_10_1016_j_neunet_2024_106655 crossref_primary_10_3389_fnins_2024_1493264 crossref_primary_10_1038_s41598_024_58889_9 crossref_primary_10_3389_fnhum_2024_1334721 crossref_primary_10_3390_bioengineering10091054 crossref_primary_10_1088_1741_2552_ad8962 crossref_primary_10_1016_j_bspc_2023_104862 crossref_primary_10_3389_fnins_2020_568104 crossref_primary_10_1109_JBHI_2024_3411646 crossref_primary_10_1016_j_bspc_2023_105867 crossref_primary_10_1109_TNSRE_2023_3265304 crossref_primary_10_31083_j_jin2004083 crossref_primary_10_3389_fnhum_2024_1525139 crossref_primary_10_1038_s41598_024_79139_y crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1088_1741_2552_ad44d7 crossref_primary_10_1007_s11768_021_00062_y crossref_primary_10_3389_fnhum_2023_1033420 crossref_primary_10_1016_j_bspc_2022_104051 crossref_primary_10_1016_j_jneumeth_2020_108886 crossref_primary_10_3390_s21155105 crossref_primary_10_1038_s41598_024_68056_9 crossref_primary_10_1007_s11571_020_09626_1 crossref_primary_10_1016_j_brainresbull_2025_111206 crossref_primary_10_3389_fnbot_2021_692183 crossref_primary_10_3389_fnhum_2024_1421922 crossref_primary_10_1016_j_medengphy_2024_104154 crossref_primary_10_1088_1741_2552_abd82b crossref_primary_10_1016_j_cmpb_2023_107641 crossref_primary_10_1016_j_neunet_2021_04_024 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1016_j_neunet_2020_02_010 crossref_primary_10_1109_TNNLS_2020_2978514 crossref_primary_10_1016_j_bspc_2021_102747 crossref_primary_10_3389_fnhum_2023_1223307 crossref_primary_10_1016_j_neunet_2020_05_032 crossref_primary_10_1016_j_neunet_2021_05_032 crossref_primary_10_1016_j_bspc_2022_103718 crossref_primary_10_3390_electronics8111208 crossref_primary_10_3390_s20216321 crossref_primary_10_1016_j_neunet_2023_11_037 crossref_primary_10_1016_j_bspc_2023_104684 crossref_primary_10_3389_fnhum_2021_655840 crossref_primary_10_1007_s12264_024_01247_6 crossref_primary_10_1016_j_bspc_2022_104141 crossref_primary_10_1016_j_bspc_2023_105854 crossref_primary_10_1088_1741_2552_ac7908 crossref_primary_10_1109_TITS_2021_3098353 crossref_primary_10_1016_j_bspc_2023_105179 crossref_primary_10_1016_j_compeleceng_2023_108737 crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_1109_TCSS_2022_3202872 crossref_primary_10_1109_ACCESS_2023_3299497 crossref_primary_10_25130_tjes_30_3_14 crossref_primary_10_1016_j_compbiomed_2022_105871 crossref_primary_10_1109_ACCESS_2020_2992631 crossref_primary_10_1002_hbm_26767 crossref_primary_10_1016_j_bspc_2024_106081 crossref_primary_10_1088_1741_2552_acfe9c crossref_primary_10_3389_fnins_2022_988535 crossref_primary_10_3389_fnhum_2021_643386 |
Cites_doi | 10.1016/j.ijleo.2016.10.117 10.1109/ChiCC.2015.7260250 10.1109/TKDE.2009.191 10.1016/j.patcog.2011.04.018 10.1109/TBME.2011.2172210 10.1016/j.jneumeth.2016.11.002 10.1002/hbm.23730 10.1016/j.neucom.2011.10.024 10.1523/JNEUROSCI.4225-12.2013 10.1371/journal.pone.0182578 10.1155/S1110865703302082 10.1080/2326263X.2017.1297192 10.1109/41.847906 10.1109/MSP.2008.4408441 10.1109/NER.2015.7146782 10.3390/s120201211 10.1109/TNSRE.2016.2627016 10.1109/TBME.2013.2253608 10.1109/TBME.2015.2487738 10.1109/ICMA.2015.7237900 10.1016/S0165-0270(02)00340-0 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neunet.2019.02.009 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 77 |
ExternalDocumentID | 30897519 10_1016_j_neunet_2019_02_009 S0893608019300711 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c362t-22f27ef6e248bd73f72df53a90fa7e7eb140abad1be9f848a8069649410fec83 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Mon Jul 21 10:33:28 EDT 2025 Thu Apr 03 07:09:54 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 01:24:33 EDT 2025 Fri Feb 23 02:28:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Small labeled data Joint space–time–frequency feature learning Brain–computer interfaces Convolutional neural network Subject-to-subject weight transfer |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-22f27ef6e248bd73f72df53a90fa7e7eb140abad1be9f848a8069649410fec83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4654-9440 |
PMID | 30897519 |
PQID | 2196521389 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2196521389 pubmed_primary_30897519 crossref_citationtrail_10_1016_j_neunet_2019_02_009 crossref_primary_10_1016_j_neunet_2019_02_009 elsevier_sciencedirect_doi_10_1016_j_neunet_2019_02_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Clevert, D., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). In Yger, Berar, Lotte (b30) 2017; 25 Congedo, Barachant, Bhatia (b8) 2017; 4 Kingsbury (b12) 1998 (pp. 3964–3968). Brunner, Leeb, Muller-Putz, Schlogl, Pfurtscheller (b6) 2008 Kai, Zheng, Zhang, Guan (b11) 2008 Blankertz, Tomioka, Lemm, Kawanabe, Muller (b5) 2007; 25 (pp. 2621–2625). Lee, Kwon (b15) 2016 Adeli, Zhou, Dadmehr (b1) 2003; 123 Meng, M., Lu, S., Man, H., Ma, Y., & Gao, Y. (2015). Feature extraction method of motor imagery EEG based on DTCWT sample entropy. In Rotermund, Ernst, Mandon, Taylor, Smiyukha, Kreiter, Pawelzik (b23) 2013; 33 Tu, Sun (b28) 2012; 82 Yen, Lin (b29) 2000; 47 Barachant, Bonnet, Congedo, Jutten (b4) 2012; 59 Sanei, Chambers (b25) 2007 Aghaei, Mahanta, Plataniotis (b2) 2016; 63 Pan, Yang (b22) 2010; 22 (pp. 948–951). Kousarrizi, Ghanbari, Teshnehlab, Shorehdeli, Gharaviri (b13) 2009 Molina, Ebrahimi, Vesin (b19) 2003; 2003 Ofner, Schwarz, Pereira, Muller-Putz, Zhang (b21) 2017; 12 Hong, J., Qin, X., Bai, J., Zhang, P., & Cheng, Y. (2015). A combined feature extraction method for left-right hand motor imagery in BCI. In Samek, Meinecke, Muller (b24) 2013; 60 Nicolas-Alonso, Gomez-Gil (b20) 2012; 12 Leeb, Brunner, Muller-Putz, Schlogl, Pfurtscheller (b16) 2008 Tang, Li, Sun (b27) 2017; 130 Ma, Li, Yang, Lv, Li, Liu, Yao, Xu (b17) 2016; 275 . Kumar, Sharma, Mamun, Tsunoda (b14) 2017 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b26) 2017; 38 Ang, Chin, Zhang, Guan (b3) 2012; 45 Ferrante, A., Gavriel, C., & Faisal, A. (2015). Data-efficient hand motor imagery decoding in EEG-BCI by using morlet wavelets and common spatial pattern algorithms. In 10.1016/j.neunet.2019.02.009_b10 Adeli (10.1016/j.neunet.2019.02.009_b1) 2003; 123 Barachant (10.1016/j.neunet.2019.02.009_b4) 2012; 59 10.1016/j.neunet.2019.02.009_b7 Leeb (10.1016/j.neunet.2019.02.009_b16) 2008 Yger (10.1016/j.neunet.2019.02.009_b30) 2017; 25 Kingsbury (10.1016/j.neunet.2019.02.009_b12) 1998 Kousarrizi (10.1016/j.neunet.2019.02.009_b13) 2009 10.1016/j.neunet.2019.02.009_b9 Yen (10.1016/j.neunet.2019.02.009_b29) 2000; 47 Rotermund (10.1016/j.neunet.2019.02.009_b23) 2013; 33 Ma (10.1016/j.neunet.2019.02.009_b17) 2016; 275 Molina (10.1016/j.neunet.2019.02.009_b19) 2003; 2003 Tang (10.1016/j.neunet.2019.02.009_b27) 2017; 130 10.1016/j.neunet.2019.02.009_b18 Sanei (10.1016/j.neunet.2019.02.009_b25) 2007 Tu (10.1016/j.neunet.2019.02.009_b28) 2012; 82 Kumar (10.1016/j.neunet.2019.02.009_b14) 2017 Pan (10.1016/j.neunet.2019.02.009_b22) 2010; 22 Brunner (10.1016/j.neunet.2019.02.009_b6) 2008 Ang (10.1016/j.neunet.2019.02.009_b3) 2012; 45 Nicolas-Alonso (10.1016/j.neunet.2019.02.009_b20) 2012; 12 Lee (10.1016/j.neunet.2019.02.009_b15) 2016 Blankertz (10.1016/j.neunet.2019.02.009_b5) 2007; 25 Congedo (10.1016/j.neunet.2019.02.009_b8) 2017; 4 Ofner (10.1016/j.neunet.2019.02.009_b21) 2017; 12 Aghaei (10.1016/j.neunet.2019.02.009_b2) 2016; 63 Schirrmeister (10.1016/j.neunet.2019.02.009_b26) 2017; 38 Samek (10.1016/j.neunet.2019.02.009_b24) 2013; 60 Kai (10.1016/j.neunet.2019.02.009_b11) 2008 |
References_xml | – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b26 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping – start-page: 2390 year: 2008 end-page: 2397 ident: b11 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: IEEE international joint conference on neural networks – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: b22 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Hong, J., Qin, X., Bai, J., Zhang, P., & Cheng, Y. (2015). A combined feature extraction method for left-right hand motor imagery in BCI. In – volume: 82 start-page: 109 year: 2012 end-page: 116 ident: b28 article-title: A subject transfer framework for EEG classification publication-title: Neurocomputing – volume: 59 start-page: 920 year: 2012 end-page: 927 ident: b4 article-title: Multiclass brain-computer interface classification by Riemannian geometry publication-title: IEEE Transactions on Biomedical Engineering – start-page: 319 year: 1998 end-page: 322 ident: b12 article-title: The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters publication-title: Image Processing – volume: 2003 start-page: 713 year: 2003 end-page: 729 ident: b19 article-title: Joint time-frequency-space classification of EEG in a brain-computer interface application publication-title: Eurasip Journal on Advances in Signal Processing – reference: Meng, M., Lu, S., Man, H., Ma, Y., & Gao, Y. (2015). Feature extraction method of motor imagery EEG based on DTCWT sample entropy. In – reference: (pp. 2621–2625). – volume: 4 start-page: 155 year: 2017 end-page: 174 ident: b8 article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review publication-title: Brain-Computer Interfaces – start-page: 983622 year: 2016 ident: b15 article-title: Single-trial EEG RSVP classification using convolutional neural networks publication-title: SPIE Defense + Security – volume: 12 start-page: e0182578 year: 2017 ident: b21 article-title: Upper limb movements can be decoded from the time-domain of low-frequency EEG publication-title: PLoS One – volume: 130 start-page: 11 year: 2017 end-page: 18 ident: b27 article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks publication-title: Optik - International Journal for Light and Electron Optics – volume: 47 start-page: 650 year: 2000 end-page: 667 ident: b29 article-title: Wavelet packet feature extraction for vibration monitoring publication-title: IEEE Transactions on Industrial Electronics – start-page: 136 year: 2008 end-page: 142 ident: b6 article-title: BCI Competition 2008-Graz Data Set A – year: 2007 ident: b25 article-title: EEG signal processing – volume: 63 start-page: 15 year: 2016 end-page: 29 ident: b2 article-title: Separable common spatio-spectral patterns for motor imagery BCI systems publication-title: IEEE Transactions on Biomedical Engineering – reference: Clevert, D., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). In – reference: Ferrante, A., Gavriel, C., & Faisal, A. (2015). Data-efficient hand motor imagery decoding in EEG-BCI by using morlet wavelets and common spatial pattern algorithms. In – reference: . – start-page: 352 year: 2009 end-page: 355 ident: b13 article-title: Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces publication-title: International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing – volume: 45 start-page: 2137 year: 2012 end-page: 2144 ident: b3 article-title: Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs publication-title: Pattern Recognition – volume: 25 start-page: 41 year: 2007 end-page: 56 ident: b5 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Processing Magazine – volume: 123 start-page: 69 year: 2003 end-page: 87 ident: b1 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: Journal of Neuroscience Methods – volume: 25 start-page: 1753 year: 2017 end-page: 1762 ident: b30 article-title: Riemannian approaches in brain-computer interfaces: a review publication-title: IEEE Transactions on Neural Systems & Rehabilitation Engineering – volume: 60 start-page: 2289 year: 2013 end-page: 2298 ident: b24 article-title: Transferring subspaces between subjects in brain–computer interfacing publication-title: IEEE Transactions on Biomedical Engineering – reference: (pp. 948–951). – start-page: 34 year: 2017 end-page: 39 ident: b14 article-title: A deep learning approach for motor imagery EEG signal classification publication-title: 3rd Asia-Pacific world congress on computer science and engineering – volume: 12 start-page: 1211 year: 2012 end-page: 1279 ident: b20 article-title: Brain computer interfaces, a review publication-title: Sensors – volume: 275 start-page: 80 year: 2016 end-page: 92 ident: b17 article-title: The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing publication-title: Journal of Neuroscience Methods – volume: 33 start-page: 6001 year: 2013 end-page: 6011 ident: b23 article-title: Toward high performance, weakly invasive brain computer interfaces using selective visual attention publication-title: Journal of Neuroscience the Official Journal of the Society for Neuroscience – year: 2008 ident: b16 article-title: BCI Competition 2008-Graz data set B – reference: (pp. 3964–3968). – volume: 130 start-page: 11 year: 2017 ident: 10.1016/j.neunet.2019.02.009_b27 article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks publication-title: Optik - International Journal for Light and Electron Optics doi: 10.1016/j.ijleo.2016.10.117 – start-page: 136 year: 2008 ident: 10.1016/j.neunet.2019.02.009_b6 – ident: 10.1016/j.neunet.2019.02.009_b18 doi: 10.1109/ChiCC.2015.7260250 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.neunet.2019.02.009_b22 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.191 – volume: 45 start-page: 2137 issue: 6 year: 2012 ident: 10.1016/j.neunet.2019.02.009_b3 article-title: Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.04.018 – volume: 59 start-page: 920 issue: 4 year: 2012 ident: 10.1016/j.neunet.2019.02.009_b4 article-title: Multiclass brain-computer interface classification by Riemannian geometry publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2011.2172210 – volume: 275 start-page: 80 year: 2016 ident: 10.1016/j.neunet.2019.02.009_b17 article-title: The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2016.11.002 – volume: 38 start-page: 5391 year: 2017 ident: 10.1016/j.neunet.2019.02.009_b26 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping doi: 10.1002/hbm.23730 – volume: 82 start-page: 109 year: 2012 ident: 10.1016/j.neunet.2019.02.009_b28 article-title: A subject transfer framework for EEG classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.024 – start-page: 983622 year: 2016 ident: 10.1016/j.neunet.2019.02.009_b15 article-title: Single-trial EEG RSVP classification using convolutional neural networks – volume: 33 start-page: 6001 issue: 14 year: 2013 ident: 10.1016/j.neunet.2019.02.009_b23 article-title: Toward high performance, weakly invasive brain computer interfaces using selective visual attention publication-title: Journal of Neuroscience the Official Journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.4225-12.2013 – volume: 12 start-page: e0182578 issue: 8 year: 2017 ident: 10.1016/j.neunet.2019.02.009_b21 article-title: Upper limb movements can be decoded from the time-domain of low-frequency EEG publication-title: PLoS One doi: 10.1371/journal.pone.0182578 – start-page: 34 year: 2017 ident: 10.1016/j.neunet.2019.02.009_b14 article-title: A deep learning approach for motor imagery EEG signal classification – volume: 2003 start-page: 713 issue: 7 year: 2003 ident: 10.1016/j.neunet.2019.02.009_b19 article-title: Joint time-frequency-space classification of EEG in a brain-computer interface application publication-title: Eurasip Journal on Advances in Signal Processing doi: 10.1155/S1110865703302082 – volume: 4 start-page: 155 issue: 3 year: 2017 ident: 10.1016/j.neunet.2019.02.009_b8 article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review publication-title: Brain-Computer Interfaces doi: 10.1080/2326263X.2017.1297192 – ident: 10.1016/j.neunet.2019.02.009_b7 – year: 2008 ident: 10.1016/j.neunet.2019.02.009_b16 – start-page: 319 year: 1998 ident: 10.1016/j.neunet.2019.02.009_b12 article-title: The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters publication-title: Image Processing – volume: 47 start-page: 650 issue: 3 year: 2000 ident: 10.1016/j.neunet.2019.02.009_b29 article-title: Wavelet packet feature extraction for vibration monitoring publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/41.847906 – volume: 25 start-page: 41 issue: 1 year: 2007 ident: 10.1016/j.neunet.2019.02.009_b5 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2008.4408441 – ident: 10.1016/j.neunet.2019.02.009_b9 doi: 10.1109/NER.2015.7146782 – volume: 12 start-page: 1211 issue: 2 year: 2012 ident: 10.1016/j.neunet.2019.02.009_b20 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 25 start-page: 1753 issue: 10 year: 2017 ident: 10.1016/j.neunet.2019.02.009_b30 article-title: Riemannian approaches in brain-computer interfaces: a review publication-title: IEEE Transactions on Neural Systems & Rehabilitation Engineering doi: 10.1109/TNSRE.2016.2627016 – start-page: 2390 year: 2008 ident: 10.1016/j.neunet.2019.02.009_b11 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface – start-page: 352 year: 2009 ident: 10.1016/j.neunet.2019.02.009_b13 article-title: Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces – volume: 60 start-page: 2289 issue: 8 year: 2013 ident: 10.1016/j.neunet.2019.02.009_b24 article-title: Transferring subspaces between subjects in brain–computer interfacing publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2013.2253608 – volume: 63 start-page: 15 issue: 1 year: 2016 ident: 10.1016/j.neunet.2019.02.009_b2 article-title: Separable common spatio-spectral patterns for motor imagery BCI systems publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2015.2487738 – ident: 10.1016/j.neunet.2019.02.009_b10 doi: 10.1109/ICMA.2015.7237900 – year: 2007 ident: 10.1016/j.neunet.2019.02.009_b25 – volume: 123 start-page: 69 issue: 1 year: 2003 ident: 10.1016/j.neunet.2019.02.009_b1 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: Journal of Neuroscience Methods doi: 10.1016/S0165-0270(02)00340-0 |
SSID | ssj0006843 |
Score | 2.5555964 |
Snippet | Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain... Brain-computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 67 |
SubjectTerms | Brain–computer interfaces Convolutional neural network Joint space–time–frequency feature learning Small labeled data Subject-to-subject weight transfer |
Title | Learning joint space–time–frequency features for EEG decoding on small labeled data |
URI | https://dx.doi.org/10.1016/j.neunet.2019.02.009 https://www.ncbi.nlm.nih.gov/pubmed/30897519 https://www.proquest.com/docview/2196521389 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--H-uLCF7rpklN0qMsu66KXlT0FtJ2IitrV9zdgxfxP_gP_SVOmlbxIIKn0pLSMDOZ7yv5MkPIQRZLxaxmUS5ARojQmAeFcFHOXczjQuhQruniUvZvkrO7o7sZ0mnOwnhZZZ37Q06vsnX9pF1bs_00GLSvGEKtRMKDFMQDZXWCPVE-yg9fv2UeUgflHA6O_Ojm-Fyl8SphWoJXVMZpqNyZ_gZPv9HPCoZ6S2Sh5o_0OExxmcxAuUIWm94MtF6qq-S2Lpx6Tx9Gg3JCMXHk8PH27nvJ48U9Bwn1C3VQlfYcU2SvtNs9oQX-kHpAo6OSjh_tcEgxUBCcCurVpGvkute97vSjuokCWl_yScS54wqcBJ7orFDCKV64I2FT5qwChak6YTazRZxB6nSi0W8ylUmaxMxBrsU6mS1HJWwSKi1wzVzGLKQJpAynrXMOAtNUhrRBtIhoTGfyusC473MxNI2S7MEEgxtvcMO4QYO3SPT11lMosPHHeNV4xfwIFIMY8Meb-40TDa4hvzFiSxhNx4b7sorcb9m2yEbw7tdcBEaOQpq79e_vbpN5fxf0ZTtkdvI8hV1kMpNsrwrVPTJ3fHrev_wEaN_0nQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAXaPlpl5ZiJDiGdezUcQ4cEGy7pT8XFtGb5STjaqslW3V3hXpBfQfehEfiSRjHThGHqhJST5GSOJnMTL4Zy59nAF6Xqcq51TypJKqEIjThoJQuqYRLRVpLHco1HR2r4Zfs08nOyRL86vbCeFplxP6A6S1axzP9qM3--Xjc_8wp1CpKeCgF8YEyjczKA7z8TvO22bv9j2TkN0LsDkYfhklsLUAyKTFPhHAiR6dQZLqsc-lyUbsdaQvubI45AVjGbWnrtMTC6UzT16hCZUWWcoeVlvTYe7CSEVr4rglvf_yllSgdmHokXOKl67brtZyyBhcNegZnWoRKocVN4fCmdLcNe7ur8DDmq-x9UMkaLGHzGB51vSBYhIYn8DUWaj1lZ9NxM2cEVBX-vvrpe9fTwV0EyvYlc9iWEp0xypbZYLDHapoA-wDKpg2bfbOTCSPHpGBYM89efQqju9DsM1hupg1uAFMWheau5BaLDAtOYutKoCRYLClNkT2QnepMFQua-74aE9Mx185MULjxCjdcGFJ4D5LrUeehoMct9-edVcw_jmko5twy8lVnREP_rF-IsQ1OFzMjfBlH4ZeIe7AerHstiyTPySmtfv7f730J94ejo0NzuH98sAkP_JXAbduC5fnFAl9QFjUvt1u3ZWDu-Df5A2g4MIY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+joint+space%E2%80%93time%E2%80%93frequency+features+for+EEG+decoding+on+small+labeled+data&rft.jtitle=Neural+networks&rft.au=Zhao%2C+Dongye&rft.au=Tang%2C+Fengzhen&rft.au=Si%2C+Bailu&rft.au=Feng%2C+Xisheng&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=114&rft.spage=67&rft.epage=77&rft_id=info:doi/10.1016%2Fj.neunet.2019.02.009&rft.externalDocID=S0893608019300711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |