Learning joint space–time–frequency features for EEG decoding on small labeled data

Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decodi...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 114; pp. 67 - 77
Main Authors Zhao, Dongye, Tang, Fengzhen, Si, Bailu, Feng, Xisheng
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding methods separate feature extraction from classification and thus are not robust across different BCI users. In this paper, we propose to learn subject-specific features jointly with the classification rule. We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking time–frequency transformation, spatial filtering, and classification together. Our proposed ConvNet implements a joint space–time–frequency feature extraction scheme for EEG decoding. Morlet wavelet-like kernels used in our network significantly reduce the number of parameters compared with classical convolutional kernels and endow the features learned at the corresponding layer with a clear interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses parameters of the networks trained for existing subjects to initialize the network for a new subject, to solve the dilemma between a large number of demanded data for training deep ConvNets and small labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining superior classification performance compared with the state-of-the-art methods.
AbstractList Brain-computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding methods separate feature extraction from classification and thus are not robust across different BCI users. In this paper, we propose to learn subject-specific features jointly with the classification rule. We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking time-frequency transformation, spatial filtering, and classification together. Our proposed ConvNet implements a joint space-time-frequency feature extraction scheme for EEG decoding. Morlet wavelet-like kernels used in our network significantly reduce the number of parameters compared with classical convolutional kernels and endow the features learned at the corresponding layer with a clear interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses parameters of the networks trained for existing subjects to initialize the network for a new subject, to solve the dilemma between a large number of demanded data for training deep ConvNets and small labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining superior classification performance compared with the state-of-the-art methods.Brain-computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding methods separate feature extraction from classification and thus are not robust across different BCI users. In this paper, we propose to learn subject-specific features jointly with the classification rule. We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking time-frequency transformation, spatial filtering, and classification together. Our proposed ConvNet implements a joint space-time-frequency feature extraction scheme for EEG decoding. Morlet wavelet-like kernels used in our network significantly reduce the number of parameters compared with classical convolutional kernels and endow the features learned at the corresponding layer with a clear interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses parameters of the networks trained for existing subjects to initialize the network for a new subject, to solve the dilemma between a large number of demanded data for training deep ConvNets and small labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining superior classification performance compared with the state-of-the-art methods.
Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain activities measured by electroencephalography (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding methods separate feature extraction from classification and thus are not robust across different BCI users. In this paper, we propose to learn subject-specific features jointly with the classification rule. We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking time–frequency transformation, spatial filtering, and classification together. Our proposed ConvNet implements a joint space–time–frequency feature extraction scheme for EEG decoding. Morlet wavelet-like kernels used in our network significantly reduce the number of parameters compared with classical convolutional kernels and endow the features learned at the corresponding layer with a clear interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses parameters of the networks trained for existing subjects to initialize the network for a new subject, to solve the dilemma between a large number of demanded data for training deep ConvNets and small labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining superior classification performance compared with the state-of-the-art methods.
Author Zhao, Dongye
Si, Bailu
Tang, Fengzhen
Feng, Xisheng
Author_xml – sequence: 1
  givenname: Dongye
  surname: Zhao
  fullname: Zhao, Dongye
  email: zhaodongye@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 2
  givenname: Fengzhen
  orcidid: 0000-0002-4654-9440
  surname: Tang
  fullname: Tang, Fengzhen
  email: tangfengzhen@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 3
  givenname: Bailu
  surname: Si
  fullname: Si, Bailu
  email: sibailu@sia.ac.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 4
  givenname: Xisheng
  surname: Feng
  fullname: Feng, Xisheng
  email: fxs@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30897519$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFq3DAURUVISSbT_kEoWnZj90n22FIXhRKmSWCgm0CXQpaeggZbmkpyIbv8Q_-wX1IPk2y6aFd38e65PM4VOQ8xICHXDGoGrPu4rwPOAUvNgckaeA0gz8iKiV5WvBf8nKxAyKbqQMAlucp5DwCdaJsLctksl37D5Ip836FOwYdHuo8-FJoP2uDv51_FT8dwCX_MGMwTdajLnDBTFxPdbm-pRRPtEYyB5kmPIx31gCNaanXRb8kbp8eM715yTR6-bh9u7qrdt9v7my-7yjQdLxXnjvfoOuStGGzfuJ5bt2m0BKd77HFgLehBWzagdKIVWkAnu1a2DBwa0azJh9PsIcXl0VzU5LPBcdQB45wVZ7LbcNYsItbk_Ut1Hia06pD8pNOTenWxFD6dCibFnBM6ZXzRxcdQkvajYqCO4tVencSro3gFXC3iF7j9C37d_w_2-YTh4uinx6Sy8YtvtD6hKcpG_--BP4_moX0
CitedBy_id crossref_primary_10_3389_fninf_2022_952474
crossref_primary_10_1007_s11571_024_10181_2
crossref_primary_10_1016_j_knosys_2023_110933
crossref_primary_10_1016_j_patcog_2023_110015
crossref_primary_10_1088_1741_2552_acd1b6
crossref_primary_10_1109_JBHI_2022_3146274
crossref_primary_10_3390_s20040969
crossref_primary_10_1007_s11760_021_01924_3
crossref_primary_10_1016_j_bspc_2022_103582
crossref_primary_10_1016_j_jneumeth_2020_109037
crossref_primary_10_1080_10255842_2024_2404541
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1016_j_bspc_2021_103021
crossref_primary_10_1109_TPAMI_2023_3299568
crossref_primary_10_1088_1741_2552_ad6593
crossref_primary_10_1109_TCYB_2022_3178412
crossref_primary_10_1088_2632_072X_ad1c68
crossref_primary_10_1016_j_bspc_2020_102172
crossref_primary_10_1016_j_patcog_2022_108932
crossref_primary_10_1016_j_compbiomed_2023_107323
crossref_primary_10_1016_j_neunet_2024_106497
crossref_primary_10_1038_s41746_024_01364_6
crossref_primary_10_1016_j_neunet_2024_106655
crossref_primary_10_3389_fnins_2024_1493264
crossref_primary_10_1038_s41598_024_58889_9
crossref_primary_10_3389_fnhum_2024_1334721
crossref_primary_10_3390_bioengineering10091054
crossref_primary_10_1088_1741_2552_ad8962
crossref_primary_10_1016_j_bspc_2023_104862
crossref_primary_10_3389_fnins_2020_568104
crossref_primary_10_1109_JBHI_2024_3411646
crossref_primary_10_1016_j_bspc_2023_105867
crossref_primary_10_1109_TNSRE_2023_3265304
crossref_primary_10_31083_j_jin2004083
crossref_primary_10_3389_fnhum_2024_1525139
crossref_primary_10_1038_s41598_024_79139_y
crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1088_1741_2552_ad44d7
crossref_primary_10_1007_s11768_021_00062_y
crossref_primary_10_3389_fnhum_2023_1033420
crossref_primary_10_1016_j_bspc_2022_104051
crossref_primary_10_1016_j_jneumeth_2020_108886
crossref_primary_10_3390_s21155105
crossref_primary_10_1038_s41598_024_68056_9
crossref_primary_10_1007_s11571_020_09626_1
crossref_primary_10_1016_j_brainresbull_2025_111206
crossref_primary_10_3389_fnbot_2021_692183
crossref_primary_10_3389_fnhum_2024_1421922
crossref_primary_10_1016_j_medengphy_2024_104154
crossref_primary_10_1088_1741_2552_abd82b
crossref_primary_10_1016_j_cmpb_2023_107641
crossref_primary_10_1016_j_neunet_2021_04_024
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1016_j_neunet_2020_02_010
crossref_primary_10_1109_TNNLS_2020_2978514
crossref_primary_10_1016_j_bspc_2021_102747
crossref_primary_10_3389_fnhum_2023_1223307
crossref_primary_10_1016_j_neunet_2020_05_032
crossref_primary_10_1016_j_neunet_2021_05_032
crossref_primary_10_1016_j_bspc_2022_103718
crossref_primary_10_3390_electronics8111208
crossref_primary_10_3390_s20216321
crossref_primary_10_1016_j_neunet_2023_11_037
crossref_primary_10_1016_j_bspc_2023_104684
crossref_primary_10_3389_fnhum_2021_655840
crossref_primary_10_1007_s12264_024_01247_6
crossref_primary_10_1016_j_bspc_2022_104141
crossref_primary_10_1016_j_bspc_2023_105854
crossref_primary_10_1088_1741_2552_ac7908
crossref_primary_10_1109_TITS_2021_3098353
crossref_primary_10_1016_j_bspc_2023_105179
crossref_primary_10_1016_j_compeleceng_2023_108737
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_1109_TCSS_2022_3202872
crossref_primary_10_1109_ACCESS_2023_3299497
crossref_primary_10_25130_tjes_30_3_14
crossref_primary_10_1016_j_compbiomed_2022_105871
crossref_primary_10_1109_ACCESS_2020_2992631
crossref_primary_10_1002_hbm_26767
crossref_primary_10_1016_j_bspc_2024_106081
crossref_primary_10_1088_1741_2552_acfe9c
crossref_primary_10_3389_fnins_2022_988535
crossref_primary_10_3389_fnhum_2021_643386
Cites_doi 10.1016/j.ijleo.2016.10.117
10.1109/ChiCC.2015.7260250
10.1109/TKDE.2009.191
10.1016/j.patcog.2011.04.018
10.1109/TBME.2011.2172210
10.1016/j.jneumeth.2016.11.002
10.1002/hbm.23730
10.1016/j.neucom.2011.10.024
10.1523/JNEUROSCI.4225-12.2013
10.1371/journal.pone.0182578
10.1155/S1110865703302082
10.1080/2326263X.2017.1297192
10.1109/41.847906
10.1109/MSP.2008.4408441
10.1109/NER.2015.7146782
10.3390/s120201211
10.1109/TNSRE.2016.2627016
10.1109/TBME.2013.2253608
10.1109/TBME.2015.2487738
10.1109/ICMA.2015.7237900
10.1016/S0165-0270(02)00340-0
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2019.02.009
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 77
ExternalDocumentID 30897519
10_1016_j_neunet_2019_02_009
S0893608019300711
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c362t-22f27ef6e248bd73f72df53a90fa7e7eb140abad1be9f848a8069649410fec83
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Mon Jul 21 10:33:28 EDT 2025
Thu Apr 03 07:09:54 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 01:24:33 EDT 2025
Fri Feb 23 02:28:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Small labeled data
Joint space–time–frequency feature learning
Brain–computer interfaces
Convolutional neural network
Subject-to-subject weight transfer
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-22f27ef6e248bd73f72df53a90fa7e7eb140abad1be9f848a8069649410fec83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4654-9440
PMID 30897519
PQID 2196521389
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2196521389
pubmed_primary_30897519
crossref_citationtrail_10_1016_j_neunet_2019_02_009
crossref_primary_10_1016_j_neunet_2019_02_009
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_02_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Clevert, D., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). In
Yger, Berar, Lotte (b30) 2017; 25
Congedo, Barachant, Bhatia (b8) 2017; 4
Kingsbury (b12) 1998
(pp. 3964–3968).
Brunner, Leeb, Muller-Putz, Schlogl, Pfurtscheller (b6) 2008
Kai, Zheng, Zhang, Guan (b11) 2008
Blankertz, Tomioka, Lemm, Kawanabe, Muller (b5) 2007; 25
(pp. 2621–2625).
Lee, Kwon (b15) 2016
Adeli, Zhou, Dadmehr (b1) 2003; 123
Meng, M., Lu, S., Man, H., Ma, Y., & Gao, Y. (2015). Feature extraction method of motor imagery EEG based on DTCWT sample entropy. In
Rotermund, Ernst, Mandon, Taylor, Smiyukha, Kreiter, Pawelzik (b23) 2013; 33
Tu, Sun (b28) 2012; 82
Yen, Lin (b29) 2000; 47
Barachant, Bonnet, Congedo, Jutten (b4) 2012; 59
Sanei, Chambers (b25) 2007
Aghaei, Mahanta, Plataniotis (b2) 2016; 63
Pan, Yang (b22) 2010; 22
(pp. 948–951).
Kousarrizi, Ghanbari, Teshnehlab, Shorehdeli, Gharaviri (b13) 2009
Molina, Ebrahimi, Vesin (b19) 2003; 2003
Ofner, Schwarz, Pereira, Muller-Putz, Zhang (b21) 2017; 12
Hong, J., Qin, X., Bai, J., Zhang, P., & Cheng, Y. (2015). A combined feature extraction method for left-right hand motor imagery in BCI. In
Samek, Meinecke, Muller (b24) 2013; 60
Nicolas-Alonso, Gomez-Gil (b20) 2012; 12
Leeb, Brunner, Muller-Putz, Schlogl, Pfurtscheller (b16) 2008
Tang, Li, Sun (b27) 2017; 130
Ma, Li, Yang, Lv, Li, Liu, Yao, Xu (b17) 2016; 275
.
Kumar, Sharma, Mamun, Tsunoda (b14) 2017
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b26) 2017; 38
Ang, Chin, Zhang, Guan (b3) 2012; 45
Ferrante, A., Gavriel, C., & Faisal, A. (2015). Data-efficient hand motor imagery decoding in EEG-BCI by using morlet wavelets and common spatial pattern algorithms. In
10.1016/j.neunet.2019.02.009_b10
Adeli (10.1016/j.neunet.2019.02.009_b1) 2003; 123
Barachant (10.1016/j.neunet.2019.02.009_b4) 2012; 59
10.1016/j.neunet.2019.02.009_b7
Leeb (10.1016/j.neunet.2019.02.009_b16) 2008
Yger (10.1016/j.neunet.2019.02.009_b30) 2017; 25
Kingsbury (10.1016/j.neunet.2019.02.009_b12) 1998
Kousarrizi (10.1016/j.neunet.2019.02.009_b13) 2009
10.1016/j.neunet.2019.02.009_b9
Yen (10.1016/j.neunet.2019.02.009_b29) 2000; 47
Rotermund (10.1016/j.neunet.2019.02.009_b23) 2013; 33
Ma (10.1016/j.neunet.2019.02.009_b17) 2016; 275
Molina (10.1016/j.neunet.2019.02.009_b19) 2003; 2003
Tang (10.1016/j.neunet.2019.02.009_b27) 2017; 130
10.1016/j.neunet.2019.02.009_b18
Sanei (10.1016/j.neunet.2019.02.009_b25) 2007
Tu (10.1016/j.neunet.2019.02.009_b28) 2012; 82
Kumar (10.1016/j.neunet.2019.02.009_b14) 2017
Pan (10.1016/j.neunet.2019.02.009_b22) 2010; 22
Brunner (10.1016/j.neunet.2019.02.009_b6) 2008
Ang (10.1016/j.neunet.2019.02.009_b3) 2012; 45
Nicolas-Alonso (10.1016/j.neunet.2019.02.009_b20) 2012; 12
Lee (10.1016/j.neunet.2019.02.009_b15) 2016
Blankertz (10.1016/j.neunet.2019.02.009_b5) 2007; 25
Congedo (10.1016/j.neunet.2019.02.009_b8) 2017; 4
Ofner (10.1016/j.neunet.2019.02.009_b21) 2017; 12
Aghaei (10.1016/j.neunet.2019.02.009_b2) 2016; 63
Schirrmeister (10.1016/j.neunet.2019.02.009_b26) 2017; 38
Samek (10.1016/j.neunet.2019.02.009_b24) 2013; 60
Kai (10.1016/j.neunet.2019.02.009_b11) 2008
References_xml – volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b26
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: b11
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: IEEE international joint conference on neural networks
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b22
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Hong, J., Qin, X., Bai, J., Zhang, P., & Cheng, Y. (2015). A combined feature extraction method for left-right hand motor imagery in BCI. In
– volume: 82
  start-page: 109
  year: 2012
  end-page: 116
  ident: b28
  article-title: A subject transfer framework for EEG classification
  publication-title: Neurocomputing
– volume: 59
  start-page: 920
  year: 2012
  end-page: 927
  ident: b4
  article-title: Multiclass brain-computer interface classification by Riemannian geometry
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 319
  year: 1998
  end-page: 322
  ident: b12
  article-title: The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters
  publication-title: Image Processing
– volume: 2003
  start-page: 713
  year: 2003
  end-page: 729
  ident: b19
  article-title: Joint time-frequency-space classification of EEG in a brain-computer interface application
  publication-title: Eurasip Journal on Advances in Signal Processing
– reference: Meng, M., Lu, S., Man, H., Ma, Y., & Gao, Y. (2015). Feature extraction method of motor imagery EEG based on DTCWT sample entropy. In
– reference: (pp. 2621–2625).
– volume: 4
  start-page: 155
  year: 2017
  end-page: 174
  ident: b8
  article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review
  publication-title: Brain-Computer Interfaces
– start-page: 983622
  year: 2016
  ident: b15
  article-title: Single-trial EEG RSVP classification using convolutional neural networks
  publication-title: SPIE Defense + Security
– volume: 12
  start-page: e0182578
  year: 2017
  ident: b21
  article-title: Upper limb movements can be decoded from the time-domain of low-frequency EEG
  publication-title: PLoS One
– volume: 130
  start-page: 11
  year: 2017
  end-page: 18
  ident: b27
  article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks
  publication-title: Optik - International Journal for Light and Electron Optics
– volume: 47
  start-page: 650
  year: 2000
  end-page: 667
  ident: b29
  article-title: Wavelet packet feature extraction for vibration monitoring
  publication-title: IEEE Transactions on Industrial Electronics
– start-page: 136
  year: 2008
  end-page: 142
  ident: b6
  article-title: BCI Competition 2008-Graz Data Set A
– year: 2007
  ident: b25
  article-title: EEG signal processing
– volume: 63
  start-page: 15
  year: 2016
  end-page: 29
  ident: b2
  article-title: Separable common spatio-spectral patterns for motor imagery BCI systems
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Clevert, D., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). In
– reference: Ferrante, A., Gavriel, C., & Faisal, A. (2015). Data-efficient hand motor imagery decoding in EEG-BCI by using morlet wavelets and common spatial pattern algorithms. In
– reference: .
– start-page: 352
  year: 2009
  end-page: 355
  ident: b13
  article-title: Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces
  publication-title: International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing
– volume: 45
  start-page: 2137
  year: 2012
  end-page: 2144
  ident: b3
  article-title: Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs
  publication-title: Pattern Recognition
– volume: 25
  start-page: 41
  year: 2007
  end-page: 56
  ident: b5
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Processing Magazine
– volume: 123
  start-page: 69
  year: 2003
  end-page: 87
  ident: b1
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: Journal of Neuroscience Methods
– volume: 25
  start-page: 1753
  year: 2017
  end-page: 1762
  ident: b30
  article-title: Riemannian approaches in brain-computer interfaces: a review
  publication-title: IEEE Transactions on Neural Systems & Rehabilitation Engineering
– volume: 60
  start-page: 2289
  year: 2013
  end-page: 2298
  ident: b24
  article-title: Transferring subspaces between subjects in brain–computer interfacing
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: (pp. 948–951).
– start-page: 34
  year: 2017
  end-page: 39
  ident: b14
  article-title: A deep learning approach for motor imagery EEG signal classification
  publication-title: 3rd Asia-Pacific world congress on computer science and engineering
– volume: 12
  start-page: 1211
  year: 2012
  end-page: 1279
  ident: b20
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
– volume: 275
  start-page: 80
  year: 2016
  end-page: 92
  ident: b17
  article-title: The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing
  publication-title: Journal of Neuroscience Methods
– volume: 33
  start-page: 6001
  year: 2013
  end-page: 6011
  ident: b23
  article-title: Toward high performance, weakly invasive brain computer interfaces using selective visual attention
  publication-title: Journal of Neuroscience the Official Journal of the Society for Neuroscience
– year: 2008
  ident: b16
  article-title: BCI Competition 2008-Graz data set B
– reference: (pp. 3964–3968).
– volume: 130
  start-page: 11
  year: 2017
  ident: 10.1016/j.neunet.2019.02.009_b27
  article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks
  publication-title: Optik - International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2016.10.117
– start-page: 136
  year: 2008
  ident: 10.1016/j.neunet.2019.02.009_b6
– ident: 10.1016/j.neunet.2019.02.009_b18
  doi: 10.1109/ChiCC.2015.7260250
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.neunet.2019.02.009_b22
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
– volume: 45
  start-page: 2137
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2019.02.009_b3
  article-title: Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.04.018
– volume: 59
  start-page: 920
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2019.02.009_b4
  article-title: Multiclass brain-computer interface classification by Riemannian geometry
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2172210
– volume: 275
  start-page: 80
  year: 2016
  ident: 10.1016/j.neunet.2019.02.009_b17
  article-title: The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2016.11.002
– volume: 38
  start-page: 5391
  year: 2017
  ident: 10.1016/j.neunet.2019.02.009_b26
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– volume: 82
  start-page: 109
  year: 2012
  ident: 10.1016/j.neunet.2019.02.009_b28
  article-title: A subject transfer framework for EEG classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.024
– start-page: 983622
  year: 2016
  ident: 10.1016/j.neunet.2019.02.009_b15
  article-title: Single-trial EEG RSVP classification using convolutional neural networks
– volume: 33
  start-page: 6001
  issue: 14
  year: 2013
  ident: 10.1016/j.neunet.2019.02.009_b23
  article-title: Toward high performance, weakly invasive brain computer interfaces using selective visual attention
  publication-title: Journal of Neuroscience the Official Journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.4225-12.2013
– volume: 12
  start-page: e0182578
  issue: 8
  year: 2017
  ident: 10.1016/j.neunet.2019.02.009_b21
  article-title: Upper limb movements can be decoded from the time-domain of low-frequency EEG
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0182578
– start-page: 34
  year: 2017
  ident: 10.1016/j.neunet.2019.02.009_b14
  article-title: A deep learning approach for motor imagery EEG signal classification
– volume: 2003
  start-page: 713
  issue: 7
  year: 2003
  ident: 10.1016/j.neunet.2019.02.009_b19
  article-title: Joint time-frequency-space classification of EEG in a brain-computer interface application
  publication-title: Eurasip Journal on Advances in Signal Processing
  doi: 10.1155/S1110865703302082
– volume: 4
  start-page: 155
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2019.02.009_b8
  article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review
  publication-title: Brain-Computer Interfaces
  doi: 10.1080/2326263X.2017.1297192
– ident: 10.1016/j.neunet.2019.02.009_b7
– year: 2008
  ident: 10.1016/j.neunet.2019.02.009_b16
– start-page: 319
  year: 1998
  ident: 10.1016/j.neunet.2019.02.009_b12
  article-title: The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters
  publication-title: Image Processing
– volume: 47
  start-page: 650
  issue: 3
  year: 2000
  ident: 10.1016/j.neunet.2019.02.009_b29
  article-title: Wavelet packet feature extraction for vibration monitoring
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/41.847906
– volume: 25
  start-page: 41
  issue: 1
  year: 2007
  ident: 10.1016/j.neunet.2019.02.009_b5
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2008.4408441
– ident: 10.1016/j.neunet.2019.02.009_b9
  doi: 10.1109/NER.2015.7146782
– volume: 12
  start-page: 1211
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2019.02.009_b20
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 25
  start-page: 1753
  issue: 10
  year: 2017
  ident: 10.1016/j.neunet.2019.02.009_b30
  article-title: Riemannian approaches in brain-computer interfaces: a review
  publication-title: IEEE Transactions on Neural Systems & Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2627016
– start-page: 2390
  year: 2008
  ident: 10.1016/j.neunet.2019.02.009_b11
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– start-page: 352
  year: 2009
  ident: 10.1016/j.neunet.2019.02.009_b13
  article-title: Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain computer interfaces
– volume: 60
  start-page: 2289
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2019.02.009_b24
  article-title: Transferring subspaces between subjects in brain–computer interfacing
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2013.2253608
– volume: 63
  start-page: 15
  issue: 1
  year: 2016
  ident: 10.1016/j.neunet.2019.02.009_b2
  article-title: Separable common spatio-spectral patterns for motor imagery BCI systems
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2015.2487738
– ident: 10.1016/j.neunet.2019.02.009_b10
  doi: 10.1109/ICMA.2015.7237900
– year: 2007
  ident: 10.1016/j.neunet.2019.02.009_b25
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  ident: 10.1016/j.neunet.2019.02.009_b1
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/S0165-0270(02)00340-0
SSID ssj0006843
Score 2.5555964
Snippet Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain...
Brain-computer interfaces (BCIs), which control external equipment using cerebral activity, have received considerable attention recently. Translating brain...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 67
SubjectTerms Brain–computer interfaces
Convolutional neural network
Joint space–time–frequency feature learning
Small labeled data
Subject-to-subject weight transfer
Title Learning joint space–time–frequency features for EEG decoding on small labeled data
URI https://dx.doi.org/10.1016/j.neunet.2019.02.009
https://www.ncbi.nlm.nih.gov/pubmed/30897519
https://www.proquest.com/docview/2196521389
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--H-uLCF7rpklN0qMsu66KXlT0FtJ2IitrV9zdgxfxP_gP_SVOmlbxIIKn0pLSMDOZ7yv5MkPIQRZLxaxmUS5ARojQmAeFcFHOXczjQuhQruniUvZvkrO7o7sZ0mnOwnhZZZ37Q06vsnX9pF1bs_00GLSvGEKtRMKDFMQDZXWCPVE-yg9fv2UeUgflHA6O_Ojm-Fyl8SphWoJXVMZpqNyZ_gZPv9HPCoZ6S2Sh5o_0OExxmcxAuUIWm94MtF6qq-S2Lpx6Tx9Gg3JCMXHk8PH27nvJ48U9Bwn1C3VQlfYcU2SvtNs9oQX-kHpAo6OSjh_tcEgxUBCcCurVpGvkute97vSjuokCWl_yScS54wqcBJ7orFDCKV64I2FT5qwChak6YTazRZxB6nSi0W8ylUmaxMxBrsU6mS1HJWwSKi1wzVzGLKQJpAynrXMOAtNUhrRBtIhoTGfyusC473MxNI2S7MEEgxtvcMO4QYO3SPT11lMosPHHeNV4xfwIFIMY8Meb-40TDa4hvzFiSxhNx4b7sorcb9m2yEbw7tdcBEaOQpq79e_vbpN5fxf0ZTtkdvI8hV1kMpNsrwrVPTJ3fHrev_wEaN_0nQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAXaPlpl5ZiJDiGdezUcQ4cEGy7pT8XFtGb5STjaqslW3V3hXpBfQfehEfiSRjHThGHqhJST5GSOJnMTL4Zy59nAF6Xqcq51TypJKqEIjThoJQuqYRLRVpLHco1HR2r4Zfs08nOyRL86vbCeFplxP6A6S1axzP9qM3--Xjc_8wp1CpKeCgF8YEyjczKA7z8TvO22bv9j2TkN0LsDkYfhklsLUAyKTFPhHAiR6dQZLqsc-lyUbsdaQvubI45AVjGbWnrtMTC6UzT16hCZUWWcoeVlvTYe7CSEVr4rglvf_yllSgdmHokXOKl67brtZyyBhcNegZnWoRKocVN4fCmdLcNe7ur8DDmq-x9UMkaLGHzGB51vSBYhIYn8DUWaj1lZ9NxM2cEVBX-vvrpe9fTwV0EyvYlc9iWEp0xypbZYLDHapoA-wDKpg2bfbOTCSPHpGBYM89efQqju9DsM1hupg1uAFMWheau5BaLDAtOYutKoCRYLClNkT2QnepMFQua-74aE9Mx185MULjxCjdcGFJ4D5LrUeehoMct9-edVcw_jmko5twy8lVnREP_rF-IsQ1OFzMjfBlH4ZeIe7AerHstiyTPySmtfv7f730J94ejo0NzuH98sAkP_JXAbduC5fnFAl9QFjUvt1u3ZWDu-Df5A2g4MIY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+joint+space%E2%80%93time%E2%80%93frequency+features+for+EEG+decoding+on+small+labeled+data&rft.jtitle=Neural+networks&rft.au=Zhao%2C+Dongye&rft.au=Tang%2C+Fengzhen&rft.au=Si%2C+Bailu&rft.au=Feng%2C+Xisheng&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=114&rft.spage=67&rft.epage=77&rft_id=info:doi/10.1016%2Fj.neunet.2019.02.009&rft.externalDocID=S0893608019300711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon