An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols

This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite obse...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the American Meteorological Society Vol. 86; no. 12; pp. 1795 - 1809
Main Authors Anderson, Theodore L., Charlson, Robert J., Bellouin, Nicolas, Boucher, Olivier, Chin, Mian, Christopher, Sundar A., Haywood, Jim, Kaufman, Yoram J., Kinne, Stefan, Ogren, John A., Remer, Lorraine A., Takemura, Toshihiko, Tanré, Didier, Torres, Omar, Trepte, Charles R., Wielicki, Bruce A., Winker, David M., Yu, Hongbin
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.12.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth δ, radiative efficiency per unit optical depthE, fine-mode fraction of optical depthf f, and the anthropogenic fraction of the fine modef af. The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that controlE, for validating the retrieval off f, and for partitioning fine-mode δ between natural and anthropogenic components. The satellite focus is on the “A-Train,” a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers onAqua, the Ozone Monitoring Instrument (OMI) radiometer onAura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework—subject to improvement over time—for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice.
AbstractList This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth δ, radiative efficiency per unit optical depth E, fine-mode fraction of optical depth f^sub f^, and the anthropogenic fraction of the fine mode f^sub af^. The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that control E, for validating the retrieval of f^sub f^, and for partitioning fine-mode δ between natural and anthropogenic components. The satellite focus is on the "A-Train," a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers on Aqua, the Ozone Monitoring Instrument (OMI) radiometer on Aura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework-subject to improvement over time-for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice. [PUBLICATION ABSTRACT]
This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth delta , radiative efficiency per unit optical depth E, fine-mode fraction of optical depth ff, and the anthropogenic fraction of the fine mode faf. The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that control E, for validating the retrieval of ff, and for partitioning fine-mode delta between natural and anthropogenic components. The satellite focus is on the 'A-Train,' a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers on Aqua, the Ozone Monitoring Instrument (OMI) radiometer on Aura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework-subject to improvement over time-for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice.
This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth δ, radiative efficiency per unit optical depthE, fine-mode fraction of optical depthf f, and the anthropogenic fraction of the fine modef af. The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that controlE, for validating the retrieval off f, and for partitioning fine-mode δ between natural and anthropogenic components. The satellite focus is on the “A-Train,” a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers onAqua, the Ozone Monitoring Instrument (OMI) radiometer onAura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework—subject to improvement over time—for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice.
Author Anderson, Theodore L.
Winker, David M.
Kinne, Stefan
Tanré, Didier
Christopher, Sundar A.
Kaufman, Yoram J.
Chin, Mian
Bellouin, Nicolas
Trepte, Charles R.
Torres, Omar
Takemura, Toshihiko
Ogren, John A.
Yu, Hongbin
Charlson, Robert J.
Haywood, Jim
Remer, Lorraine A.
Wielicki, Bruce A.
Boucher, Olivier
Author_xml – sequence: 1
  givenname: Theodore L.
  surname: Anderson
  fullname: Anderson, Theodore L.
  organization: University of Washington, Seattle, Washington
– sequence: 2
  givenname: Robert J.
  surname: Charlson
  fullname: Charlson, Robert J.
  organization: University of Washington, Seattle, Washington
– sequence: 3
  givenname: Nicolas
  surname: Bellouin
  fullname: Bellouin, Nicolas
  organization: Met Office, Exeter, Devon, United Kingdom
– sequence: 4
  givenname: Olivier
  surname: Boucher
  fullname: Boucher, Olivier
  organization: Met Office, Exeter, Devon, United Kingdom
– sequence: 5
  givenname: Mian
  surname: Chin
  fullname: Chin, Mian
  organization: NASA Goddard Space Flight Center, Greenbelt, Maryland
– sequence: 6
  givenname: Sundar A.
  surname: Christopher
  fullname: Christopher, Sundar A.
  organization: University of Alabama in Huntsville, Huntsville, Alabama
– sequence: 7
  givenname: Jim
  surname: Haywood
  fullname: Haywood, Jim
  organization: Met Office, Exeter, Devon, United Kingdom
– sequence: 8
  givenname: Yoram J.
  surname: Kaufman
  fullname: Kaufman, Yoram J.
  organization: NASA Goddard Space Flight Center, Greenbelt, Maryland
– sequence: 9
  givenname: Stefan
  surname: Kinne
  fullname: Kinne, Stefan
  organization: Max Planck Institute for Meteorology, Hamburg, Germany
– sequence: 10
  givenname: John A.
  surname: Ogren
  fullname: Ogren, John A.
  organization: NOAA/CMDL, Boulder, Colorado
– sequence: 11
  givenname: Lorraine A.
  surname: Remer
  fullname: Remer, Lorraine A.
  organization: NASA Goddard Space Flight Center, Greenbelt, Maryland
– sequence: 12
  givenname: Toshihiko
  surname: Takemura
  fullname: Takemura, Toshihiko
  organization: Kyushu University, Fukuoka, Kyushu, Japan
– sequence: 13
  givenname: Didier
  surname: Tanré
  fullname: Tanré, Didier
  organization: University of Lille, Lille, France
– sequence: 14
  givenname: Omar
  surname: Torres
  fullname: Torres, Omar
  organization: JCTE University of Maryland, Baltimore County, Baltimore, Maryland
– sequence: 15
  givenname: Charles R.
  surname: Trepte
  fullname: Trepte, Charles R.
  organization: NASA Langley Research Center, Hampton, Virginia
– sequence: 16
  givenname: Bruce A.
  surname: Wielicki
  fullname: Wielicki, Bruce A.
  organization: NASA Langley Research Center, Hampton, Virginia
– sequence: 17
  givenname: David M.
  surname: Winker
  fullname: Winker, David M.
  organization: NASA Langley Research Center, Hampton, Virginia
– sequence: 18
  givenname: Hongbin
  surname: Yu
  fullname: Yu, Hongbin
  organization: University of Maryland at Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland
BookMark eNp9kDFvGyEYhlGVSHWSzp0qoQ7ZiIE74G68OnUSKVVUJV26IMyBi3UGB_DgzT-k-XP5JeHkKoOHLiDQ8776vucMnPjgDQCfCb4iRLDpt-7HI2o4IhQR0bIPYEIYxQjXQpyACca4QuUQH8FZSqvxWTVkAn53Hr7u_3boKSrnX_cv8DFHlc1yB22I8OdW-ezszvklvHbR6Axng1sXAM5D1OP3Ygc7n__EsAlL452GnYkhhSFdgFOrhmQ-_bvPwa_596fZLbp_uLmbdfdIV5xmRAlvF6bm1rKm56phrBe1XnBMlWmE6iusicVW9K2lDTbM9Iwqq2uBjSWCk-ocXB56NzE8b03Kcu2SNsOgvAnbJCnBtGW8KeDXI3AVttGX2SStaGmq67ZA7ADpskWKxkrtssou-OLFDZJgOeqWo27ZcEmoHHWX3PQot4lFVNz9J_HlkFilHOI7TjmlpGrr6g2JcY8k
CODEN BAMIAT
CitedBy_id crossref_primary_10_1080_02786826_2017_1355547
crossref_primary_10_1016_j_atmosres_2011_08_017
crossref_primary_10_1016_j_isprsjprs_2024_04_020
crossref_primary_10_1109_TGRS_2008_920019
crossref_primary_10_5194_amt_5_501_2012
crossref_primary_10_1109_TGRS_2008_917600
crossref_primary_10_5194_amt_7_2313_2014
crossref_primary_10_1007_s00343_009_0124_x
crossref_primary_10_1175_JAMC_D_15_0083_1
crossref_primary_10_1016_j_atmosenv_2008_08_031
crossref_primary_10_1364_OE_20_021457
crossref_primary_10_5194_amt_6_3281_2013
crossref_primary_10_1080_01431161_2011_631951
crossref_primary_10_1109_TGRS_2021_3051799
crossref_primary_10_1126_science_aad5456
crossref_primary_10_1029_2009JD013335
crossref_primary_10_1109_LGRS_2007_909938
crossref_primary_10_1029_2005JD005909
crossref_primary_10_1029_2006JD007349
crossref_primary_10_1029_2012JD018148
crossref_primary_10_1109_TGRS_2023_3262785
crossref_primary_10_1029_2006JD007625
crossref_primary_10_1109_TGRS_2008_916087
crossref_primary_10_5194_amt_6_3257_2013
crossref_primary_10_5194_acp_13_8947_2013
crossref_primary_10_1029_2011JD016466
crossref_primary_10_1029_2008JD010754
crossref_primary_10_1038_srep05389
crossref_primary_10_1080_02786826_2011_592745
crossref_primary_10_1029_2007GL032314
crossref_primary_10_1080_02786821003716599
crossref_primary_10_1016_j_atmosenv_2009_08_020
crossref_primary_10_1029_2005JD006610
crossref_primary_10_5194_acp_6_4723_2006
crossref_primary_10_1080_01431161_2020_1823040
crossref_primary_10_1175_JTECH_D_11_00143_1
crossref_primary_10_5194_acp_10_51_2010
crossref_primary_10_5194_acp_7_81_2007
crossref_primary_10_1016_j_envres_2014_04_021
crossref_primary_10_1126_science_1131668
crossref_primary_10_1016_j_rse_2011_06_003
crossref_primary_10_5194_acp_14_8119_2014
crossref_primary_10_1364_AO_49_002232
crossref_primary_10_1002_2016JD025706
crossref_primary_10_5194_acp_22_5365_2022
crossref_primary_10_1029_2019JD030974
crossref_primary_10_1038_ngeo437
crossref_primary_10_1175_2009JCLI3461_1
crossref_primary_10_1029_2011JD015809
crossref_primary_10_1016_j_rse_2020_111894
crossref_primary_10_1109_TGRS_2022_3200425
crossref_primary_10_1029_2007JD009258
crossref_primary_10_5194_acp_12_7165_2012
crossref_primary_10_1029_2007GL030749
crossref_primary_10_5194_amt_13_4353_2020
crossref_primary_10_1109_TGRS_2008_916218
crossref_primary_10_5194_acp_13_2045_2013
crossref_primary_10_1016_j_scca_2023_100016
crossref_primary_10_1029_2007JD009170
crossref_primary_10_1016_j_atmosres_2012_12_013
crossref_primary_10_1007_s00376_010_9210_4
crossref_primary_10_5194_amt_7_1459_2014
crossref_primary_10_5194_amt_4_1383_2011
crossref_primary_10_3390_atmos12101299
crossref_primary_10_1016_j_atmosenv_2015_05_023
crossref_primary_10_3390_rs15082038
crossref_primary_10_1175_BAMS_D_13_00040_1
crossref_primary_10_1360_TB_2023_0375
crossref_primary_10_5194_acp_7_2937_2007
crossref_primary_10_5194_acp_11_1393_2011
crossref_primary_10_1038_s41598_017_12681_0
crossref_primary_10_1175_AMSMONOGRAPHS_D_16_0015_1
crossref_primary_10_5194_acp_18_5499_2018
crossref_primary_10_1109_TGRS_2009_2013842
crossref_primary_10_5194_acp_21_11669_2021
crossref_primary_10_1029_2010JD013954
crossref_primary_10_1109_TGRS_2008_921570
crossref_primary_10_1080_2150704X_2014_943321
crossref_primary_10_1029_2008GL036279
crossref_primary_10_5194_essd_16_3233_2024
crossref_primary_10_1016_j_atmosenv_2020_117695
crossref_primary_10_1016_j_atmosres_2012_06_005
crossref_primary_10_3390_mi12040466
crossref_primary_10_1175_2009JAS3257_1
crossref_primary_10_5194_acp_14_691_2014
crossref_primary_10_3390_rs9040340
crossref_primary_10_1175_BAMS_D_17_0175_1
ContentType Journal Article
Copyright 2005 American Meteorological Society
Copyright American Meteorological Society Dec 2005
Copyright_xml – notice: 2005 American Meteorological Society
– notice: Copyright American Meteorological Society Dec 2005
DBID AAYXX
CITATION
3V.
7QH
7TG
7TN
7UA
7XB
88I
8AF
8FE
8FG
8FK
8G5
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H96
HCIFZ
KL.
L.G
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
R05
S0X
7TV
DOI 10.1175/BAMS-86-12-1795
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
ProQuest Research Library
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
University of Michigan
SIRS Editorial
Pollution Abstracts
DatabaseTitle CrossRef
University of Michigan
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Pollution Abstracts
DatabaseTitleList University of Michigan
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1520-0477
EndPage 1809
ExternalDocumentID 975376621
10_1175_BAMS_86_12_1795
26221394
Genre Feature
GroupedDBID -DZ
-~X
.4S
.DC
186
23N
2WC
4.4
5GY
6J9
6TJ
7XC
85S
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
AAEFR
ABBHK
ABDBF
ABPPZ
ABUWG
ABXSQ
ACGFO
ACGOD
ACIHN
ACMJI
ACUHS
ADULT
ADXHL
AEAQA
AEKFB
AENEX
AEUPB
AEUYN
AFFNX
AFKRA
AFRAH
AGFAN
AI.
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ARCSS
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKOMP
BKSAR
BLC
BPHCQ
C1A
CAG
CCPQU
COF
CS3
D1K
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBS
EDH
EDO
EJD
EMK
EPL
ESN
EST
ESX
FAC
FAS
FJW
FRP
GNUQQ
GUQSH
H13
HCIFZ
IAO
IEA
IGS
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JST
K6-
L7B
LK5
LU7
M2O
M2P
M2Q
M7R
MV1
OHT
OK1
P2P
P62
PATMY
PCBAR
PEA
PHGZM
PHGZT
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM1
QM9
QN7
QO4
R05
RWA
RWE
RWL
RXW
S0X
SA0
SC5
SJFOW
SWMRO
TAE
TN5
TR2
TUS
U5U
VH1
VOH
WH7
WHG
X6Y
ZY4
~02
2XV
AAYXX
ABCQX
ABEFU
AETEA
AFQQW
CITATION
H~9
IEP
IOF
ISR
ITC
NEJ
PV9
ROL
RZL
3V.
7QH
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
7TV
ID FETCH-LOGICAL-c362t-2169be46ff58d6a855d74cb602ae87ad30c1f0f7d9f280e5ed52afc470ef17613
IEDL.DBID BENPR
ISSN 0003-0007
IngestDate Thu Jul 10 17:12:27 EDT 2025
Thu Aug 14 14:31:54 EDT 2025
Tue Jul 01 01:19:19 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Thu Jul 03 21:22:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-2169be46ff58d6a855d74cb602ae87ad30c1f0f7d9f280e5ed52afc470ef17613
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.ametsoc.org/downloadpdf/journals/bams/86/12/bams-86-12-1795.pdf
PQID 232613449
PQPubID 31345
PageCount 15
ParticipantIDs proquest_miscellaneous_21029568
proquest_journals_232613449
crossref_citationtrail_10_1175_BAMS_86_12_1795
crossref_primary_10_1175_BAMS_86_12_1795
jstor_primary_26221394
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20051201
2005-12-00
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: 20051201
  day: 1
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Bulletin of the American Meteorological Society
PublicationYear 2005
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
SSID ssj0003381
Score 2.1936085
Snippet This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1795
SubjectTerms Aerosols
Anthropogenic factors
Artificial satellites
Atmospheric sciences
Chemical transport
Climate
Climate change
Climate models
Clouds
Data interpretation
Global climate models
In situ measurement
Lidar
Meteorology
Monitoring instruments
Oceans
Optical analysis
Optical thickness
Polarization
Polders
Radiation
Satellites
Sensors
Spacecraft
Weather forecasting
Title An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols
URI https://www.jstor.org/stable/26221394
https://www.proquest.com/docview/232613449
https://www.proquest.com/docview/21029568
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB_UfTkORL2Tq3prkOO4l5xtNkmzT9JVqxzofaCHbyVNExCWVvfjwf_eSZvtcYg-tp2EMjOZj2TyG4Avgqfj0kNfSmYqyvlYUq1GjlqBq1xgRsJa2MWra3l5y3_cibtQmzMPZZUrm9ga6qoxfo_8GD0_eh6c7OThkfqmUf5wNXTQWIcBWmCFuddgcn79609vijH_-tcyD71hwPZBl3k8wUSZqrYHDeqk-M8tdZWJL6xz63LyLdgMsSLJOuFuw5qtdyC6wjC3mbW74eQrOZ3eY8zZPu3A-5_G6jqAUH-Av1lNjjJ647tAHJGAQ_tEMEwlv5faVwn5O06ks3phJkvyZmb86_KJrLoooJLdG5JZ_PVmOv8It_n5zeklDX0UqEH3tKAskePScumcUJXUSogq5aaUMdNWpboaxSZxsUursWMqRilVgmlneBpbl6TI9V3YqJvafgLiEsZSifTCCD6yRmtWWo-4z5WUXKsIvq_YWJgAMu57XUyLNtlIReH5XihZJKzwfI_gWz_gocPXeJ10t5VLT8ckYxjA8gj2V4IqwgqcF72-RHDYf8Wl489DdG2bJZJgcOVvS-69OX4f3nVwrb6E5QA2FrOl_YyByKIcwrrKL4YwyCZnk3wYlO8ZssrcnA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAhIShUhAK1KkBcQhPHdpwDQkth2dJuEdIW9WYcx5YqrZKyD6H9UfxHxs4DIQS3HpOMrWg8T3v8DcBzzvKi9NCXgpoqZqwQsZaZiy1HLeeYkdAAuzg9E5Nz9umCX2zBz_4ujC-r7G1iMNRVY_we-SF6fvQ8ONnbq--xbxrlD1f7DhqtVJzYzQ_M2JZvjt_j8r6gdPxhdjSJu6YCsUFbvYppKorSMuEcl5XQkvMqZ6YUCdVW5rrKEpO6xOVV4ahM8JcrTrUzLE-sSzHnz3DeG3CTZVnhFUqOPw6GH7O93w360Pd2SELooA_fYVoey9DxBjWA_-EE2zrIv3xBcHDje3C3i0zJqBWl-7Bl6x2IphhUN4uw905ekqP5JUa44WkH7nw2Vtcd5PUD-DqqycEonvmeEwekQ73dEAyKyZe19jVJ_kYVaW1sN5Ml42Zh_OtyQ_qeDSjSl4aMLP56M18-hPNrYfAubNdNbR8BcSmluUB6bjjLrNGaltbj-zMpBNMygtc9G5XpIM19Z425CqlNzpXnu5JCpVR5vkfwahhw1aJ5_Jt0N6zLQEcFpRguswj2-oVSnb4v1SCdEewPX1FR_emLrm2zRhIM5fzdzMf_Hb8Ptyaz6ak6PT472YPbLVCsL555Aturxdo-xRBoVT4Lgkfg23VL-i9HPxZr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFUSEotXiWrWhqPiy3m4uyeYeRK4fR2vtWaUtfYvZbAKFY7e9D-T-NP87J7vZFRF96-PuTsIymc9k8huA15xlw9xDXwpqipixoYi1HLjYctRyjhkJrWEXTyfi6IJ9uuJXa_CzvQvjyypbm1gb6qIyfo-8j54fPQ9O1nehKuLsYPzx5jb2DaT8QWvbTaORkBO7-oHZ2_zD8QEu9RtKx4fn-0dxaDAQG7Tbi5imYphbJpzjshBacl5kzOQiodrKTBeDxKQucVkxdFQm-PsFp9oZliXWpZj_D3Dee7CeYVKU9GB973By9q1zA5j7_W7Xh5444Aqhu-7vYZIey7r_DeoD_8MlNlWRf3mG2t2NH8FGiFPJqBGsx7Bmy02ITjHErmb1Tjx5S_an1xjv1k-b8PCLsboMANhP4HJUkt1RfO47UOySgIG7Ihgik69L7SuU_P0q0ljcMJMl42pm_Ot8RdoODijg14aMLP56NZ0_hYs7YfEW9MqqtM-AuJTSTCA9N5wNrNGa5taj_TMpBNMygvctG5UJAOe-z8ZU1YlOxpXnu5JCpVR5vkfwrhtw02B7_Jt0q16Xjo4KSjF4ZhFstwulgvbPVSerEex0X1Ft_VmMLm21RBIM7PxNzef_Hb8D91HK1efjyck2PGhQY30lzQvoLWZL-xLjoUX-Kkgege93Ley_AOSnG_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+%27A-Train%27+Strategy+for+Quantifying+Direct+Climate+Forcing+by+Anthropogenic+Aerosols&rft.jtitle=Bulletin+of+the+American+Meteorological+Society&rft.au=Anderson%2C+T+L&rft.au=Charlson%2C+R+J&rft.au=Bellouin%2C+N&rft.au=Boucher%2C+O&rft.date=2005-12-01&rft.issn=0003-0007&rft.eissn=1520-0477&rft.volume=86&rft.issue=12&rft.spage=1795&rft.epage=1809&rft_id=info:doi/10.1175%2FBAMS-86-12-1795&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-0007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-0007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-0007&client=summon