Deep learning to ternary hash codes by continuation

Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 57; no. 24; pp. 925 - 926
Main Authors Chen, Mingrui, Li, Weiyu, Lu, Weizhi
Format Journal Article
LanguageEnglish
Published Stevenage John Wiley & Sons, Inc 01.11.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non‐smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes. For the first time, the authors propose to generate ternary hash codes by jointly learning the codes with deep features via a continuation method. Experiments show that the proposed method outperforms existing methods.
AbstractList Abstract Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non‐smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes. For the first time, the authors propose to generate ternary hash codes by jointly learning the codes with deep features via a continuation method. Experiments show that the proposed method outperforms existing methods.
Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non‐smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes. For the first time, the authors propose to generate ternary hash codes by jointly learning the codes with deep features via a continuation method. Experiments show that the proposed method outperforms existing methods.
Recently, ithas been observed that ‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform ‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non‐smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes. For the first time, the authors propose to generate ternary hash codes by jointly learning the codes with deep features via a continuation method. Experiments show that the proposed method outperforms existing methods.
Author Lu, Weizhi
Chen, Mingrui
Li, Weiyu
Author_xml – sequence: 1
  givenname: Mingrui
  surname: Chen
  fullname: Chen, Mingrui
  organization: Shandong University
– sequence: 2
  givenname: Weiyu
  surname: Li
  fullname: Li, Weiyu
  organization: Shandong University
– sequence: 3
  givenname: Weizhi
  orcidid: 0000-0003-3812-7405
  surname: Lu
  fullname: Lu, Weizhi
  email: wzlu@sdu.edu.cn
  organization: Shandong University
BookMark eNp9kE1r3DAQhkVIIZu0l_4CQ24FpzOSbFnHkuZjwdBLC72JsTzKenGsjeSl7L-vE4cee5oPnnln5r0U51OcWIjPCDcI2n7lcZQ3KBWaM7FBVUFpEX-fiw0AqrJCqy_EZc77pZTWmo1Q35kPxciUpmF6KuZYzJwmSqdiR3lX-NhzLrrTkkzzMB1pHuL0UXwINGb-9B6vxK_7u5-3j2X742F7-60tvaqlKUPfNx2h0rZHbTSBYTBoyHfGkrdVZzwgAQZfK8ME0EAXguohYK37GtSV2K66faS9O6ThebnLRRrcWyOmJ0dpHvzIjirfaGRZgVp2se06WZFqrGQZyIZ60bpetQ4pvhw5z24fj8ujY3YKrGxA60Yt1JeV8inmnDj824rgXg12rwa7N4MXGFf4zzDy6T-ku2tbuc78BeIvfPM
Cites_doi 10.1109/CVPR.2016.227
10.1109/ICCV.2017.598
10.1109/TPAMI.2017.2699960
10.1109/TNNLS.2020.2997020
10.1145/1646396.1646452
10.1109/CVPR.2015.7298947
10.1007/s11263-020-01331-0
10.1145/3372278.3390711
10.1609/aaai.v30i1.10235
10.1109/CVPR.2009.5206848
10.1109/CVPRW.2015.7301269
10.1609/aaai.v28i1.8952
10.1016/j.neucom.2018.04.034
10.1109/CVPR.2018.00140
10.24963/ijcai.2020/115
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1049/ell2.12317
DatabaseName Wiley Online Library Journals (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 926
ExternalDocumentID oai_doaj_org_article_a5c841e2503147e9bb25a3892e2fa9f6
10_1049_ell2_12317
ELL212317
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61801264; 61991412
– fundername: the Fundamental Research Funds of Shandong University
  funderid: 2019HW018
GroupedDBID -4A
-~X
.DC
0R~
0ZK
1OC
24P
29G
2QL
3EH
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ELQJU
ESX
F5P
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
IFIPE
IPLJI
ITC
JAVBF
K1G
K7-
L6V
LAI
LXO
LXU
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P0-
P2P
P62
PTHSS
QWB
R4Z
RIE
RIG
RNS
RUI
TN5
U5U
UNMZH
VH1
WH7
ZL0
~ZZ
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c3627-fdd8ba1349d1474a07e0717acb79ac95b7c01a01fc637ea0080bff3d0f164d603
IEDL.DBID 24P
ISSN 0013-5194
IngestDate Wed Aug 27 01:18:45 EDT 2025
Wed Aug 13 02:44:41 EDT 2025
Tue Jul 01 05:17:26 EDT 2025
Wed Jan 22 16:26:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3627-fdd8ba1349d1474a07e0717acb79ac95b7c01a01fc637ea0080bff3d0f164d603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3812-7405
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.12317
PQID 3092804483
PQPubID 1936364
PageCount 2
ParticipantIDs doaj_primary_oai_doaj_org_article_a5c841e2503147e9bb25a3892e2fa9f6
proquest_journals_3092804483
crossref_primary_10_1049_ell2_12317
wiley_primary_10_1049_ell2_12317_ELL212317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle Electronics letters
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 40
2012
2018; 303
2021
2020
2009
2020; 128
2018
2017
2016
2015
2014
2012; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
Allgower E.L. (e_1_2_7_18_1) 2012
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 40
  start-page: 769
  issue: 4
  year: 2017
  end-page: 790
  article-title: A survey on learning to hash
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2009
– year: 2012
  article-title: Imagenet classification with deep convolutional neural networks
– year: 2020
  article-title: Deep semantic multimodal hashing network for scalable image‐text and video‐text retrievals
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 13
  year: 2012
– year: 2020
– year: 2021
– volume: 303
  start-page: 60
  year: 2018
  end-page: 67
  article-title: Optimization of deep convolutional neural network for large scale image retrieval
  publication-title: Neurocomputing
– volume: 128
  start-page: 2265
  year: 2020
  end-page: 2278
  article-title: Weakly‐supervised semantic guided hashing for social image retrieval
  publication-title: International Journal of Computer Vision
– year: 2017
– year: 2016
– year: 2018
– year: 2014
– year: 2015
– year: 2012
– ident: e_1_2_7_6_1
  doi: 10.1109/CVPR.2016.227
– ident: e_1_2_7_16_1
– ident: e_1_2_7_17_1
  doi: 10.1109/ICCV.2017.598
– ident: e_1_2_7_2_1
  doi: 10.1109/TPAMI.2017.2699960
– ident: e_1_2_7_8_1
  doi: 10.1109/TNNLS.2020.2997020
– ident: e_1_2_7_20_1
  doi: 10.1145/1646396.1646452
– ident: e_1_2_7_13_1
– ident: e_1_2_7_11_1
  doi: 10.1109/CVPR.2015.7298947
– ident: e_1_2_7_14_1
– ident: e_1_2_7_9_1
  doi: 10.1007/s11263-020-01331-0
– volume-title: Numerical Continuation Methods: An Introduction
  year: 2012
  ident: e_1_2_7_18_1
– ident: e_1_2_7_19_1
– ident: e_1_2_7_10_1
  doi: 10.1145/3372278.3390711
– ident: e_1_2_7_5_1
  doi: 10.1609/aaai.v30i1.10235
– ident: e_1_2_7_21_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_7_4_1
  doi: 10.1109/CVPRW.2015.7301269
– ident: e_1_2_7_3_1
  doi: 10.1609/aaai.v28i1.8952
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neucom.2018.04.034
– ident: e_1_2_7_12_1
  doi: 10.1109/CVPR.2018.00140
– ident: e_1_2_7_15_1
  doi: 10.24963/ijcai.2020/115
SSID ssj0012997
Score 2.3586504
Snippet Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary...
Recently, ithas been observed that ‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform ‐binary codes in...
Abstract Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 925
SubjectTerms Algebra
Binary codes
Codes
Continuation methods
Deep learning
Discrete functions
Entropy
Error reduction
Experiments
Image recognition
Image retrieval
Integral transforms
Optical, image and video signal processing
Other topics in statistics
Retrieval
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQnyJQkCWYkEId27HjkY9WFSpMVOpm2Y5NkapQtWXov8d2EigLLGxR5OHyLrl7F_veAXCVcS1c4UyqMs5Tql2RalaglGvPzanCWLDQKPz0zIZj-jjJJxujvsKZsFoeuAaup3JT0Mz6TE0yyq3QGufKZ1lssVPCRbFtn_PaYqrZP_BBlrezCzxHoa0wKRU9O5vhGx-v44iy71QUFft_0MxNshqzzWAP7DY0Ed7W5u2DLVsdgJ0N8cBDQB6sncNm6sMrXL3D-G9vsYZTtZzC0Ku-hHoNw2H0t6pW9D4C40H_5X6YNiMQUuMzC09dWRZaBQnB0j89VYjbUIApo7lQRuSaG5QplDnDCLcq8D_tHCmR81CXDJFj0KneK3sCoLNMYR9mVaiKQlVIiDBZ4RdZhkohEnDZoiHntdKFjDvUVMiAmYyYJeAuAPW1IqhTxxveZ7LxmfzLZwnotjDL5pNZSoIELpCvFkkCriP0v5gh-6MRjlen_2HQGdjG4axK7DHsgs5q8WHPPdlY6Yv4Xn0CDKfMzg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XvQgPrG-COhJWM0m6SY5idUWERURBW8hySYqSFvbevDfm6RZHxdvyxKW8CU7881k8g3AYcmN9MLbQpecF8x4UZhK4IKbwM2ZJkRW8aLwzW11-ciunjpPOeE2yWWVjU1Mhroe2pgjP6FYEoFDMEFPR-9F7BoVT1dzC415WAgmWIgWLHR7t3f33-cIwdjypodB4CqsEShl8sS9vZHjYLdTq7Ifl5SU-__Qzd-kNXmd_gosZ7qIzmbruwpzbrAGS79EBNeBXjg3Qrn7wzOaDlHK8Y0_0YuevKB4Z32CzCeKRemvg5my9wY89nsP55dFboVQ2OBheOHrWhgdpQTrknGmMXcxENPWcKmt7Bhucalx6W1FudORBxrvaY19gLyuMN2E1mA4cFuAvKs0CeZWx-goRoeUSluKMMhVuJayDQcNGmo0U7xQ6aSaSRUxUwmzNnQjUN8jokp1ejEcP6u86ZXuWMFKF1gWDbN20hjS0YEhEUe8lr5qw24Ds8q_zkT9LHQbjhL0_0xD9a6vSXra_v9bO7BIYjVKukW4C63p-MPtBToxNft5z3wBlhbF9g
  priority: 102
  providerName: ProQuest
Title Deep learning to ternary hash codes by continuation
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.12317
https://www.proquest.com/docview/3092804483
https://doaj.org/article/a5c841e2503147e9bb25a3892e2fa9f6
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ba9swFH50zaU7lK7bWLo0CLbTwKssKZYFuzRdslKyUkpTQi9CsqW2UJKQZIf8--nJdppeCr3YRsggPklP35P0vgfwPZVW-dwXiUmlTIT1eWKznCbSBm4uDGMqw0Dhv5fZ-VhcTHqTHfjVxMJU-hCbDTecGdFe4wQ3tspCEkgtduLTE_sZ7G4q30ELY2vxQh8TV5szhGBoZZO_IPAU0YiTCnXy_O-L5Siq9r-gmtuENa44wwPYr6kiOa369gPsuOkhvN8SEPwI_Ldzc1JnfrgnqxmJ-3uLNXkwyweC8epLYtcEL6Q_TitV708wHg5uzs6TOg1CUoTVRSa-LHNrUEawTIUUhkqHTpgprFSmUD0rC5oamvoi49IZ5IDWe15SH-AuM8o_w-50NnVfgHiXGRZMrUHPCD1DzlWR5qGSy2ipVBu-NWjoeaV2oeMptVAaMdMRszb0EahNDVSojgWzxb2uB7w2vSIXqQsMi4dWO2Ut65nAjphj3iiftaHTwKzrabPUnCqW0-Ax8jb8iNC_0gw9GI1Y_Dp6S-WvsMfwXkqMJ-zA7mrxzx0HYrGy3Th-wjMf_ulC6_R2fDcO7_7g8uq6G531_444ym0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1Remh7QLS0alpKLbVcKm3xep31-lBVfKWhBE4gcXNtrw2VUJImQSh_it_YGWeXjws3bqvVyrLejmfe2J55AF9z5XSsos9srlQmXawyV1Y8Uw65ubRC6JIKhY-Oy_6p_H3WPVuCm7YWhq5Vtj4xOep65GmPfKvgWlQck4ni5_hfRqpRdLraSmgszOIwzK8xZZv-ONjD_7spRG__ZLefNaoCmUdnrbJY15Wz1JWvzqWSlqtAOY31Tmnrddcpz3PL8-jLQgVLlMrFWNQ84uzrkhc47jN4LguM5FSZ3vt1e2qBrl21ignIjGTbDlXqrXB5Kb5jlEjCaHcBMOkEPCC39ylyinG9VVhpyCnbXljTa1gKwzfw6l7LwjUo9kIYs0Zr4pzNRiztKE7m7MJOLxhVyE-ZmzO6Av93uOgj_hZOnwSid7A8HA3De2AxlFagc7eUi1EuirD5vMKPQslrrTvwpUXDjBf9NUw6F5faEGYmYdaBHQLq9gvqiZ1ejCbnpllixnZ9JfOAnK7AWQftnOha5GMiiGh1LDuw3sJsmoU6NXdm1YFvCfpHpmH2BwORnj48PtZneNE_ORqYwcHx4Ud4KegeTKpfXIfl2eQqfEIiM3MbyXoY_Hlqc_0PTdwBVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEB5SB0p7KE0f1E2aCJJeCltrJXm1OpTSxDZJ45hQGshNlbRSUgi2Y7sU_7X-umrk3TwuueW2LEJoZ0ejbzSPD2Avl1aFMrjM5FJmwoYys0VJM2kjNheGMVVgofDJqDg8E9_Pu-dr8K-phcG0ysYmJkNdTRzekXc4Vayk0ZngnVCnRZz2Bl-n1xkySGGktaHTWKnIsV_-je7b_MtRL_7rj4wN-j8PDrOaYSBz0XDLLFRVaQ126KtyIYWh0qN_Y5yVyjjVtdLR3NA8uIJLbxBe2RB4RUP8kqqgPM77BNYlekUtWN_vj05_3MQwoqGXDX9CxEmiaY4qVMdfXbHP8cxINGm3x2FiDbgHde8C5nTiDV7Cixqqkm8r3dqANT9-Bc_vNDB8Dbzn_ZTUzBMXZDEh6X5xtiSXZn5JsF5-TuySYEL87_Gqq_gbOHsUIb2F1ngy9u-ABF8YFk29Qc8MPVPOlcvLOMgXtFKqDbuNNPR01W1Dpyi5UBplppPM2rCPgroZgR2y04vJ7ELXG06britF7iPC43HVXlnLuiaiM-ZZMCoUbdhqxKzrbTvXt0rWhk9J9A8sQ_eHQ5ae3j881w48jaqqh0ej4014xjApJhUzbkFrMfvjP0RUs7DbtfoQ-PXYGvsfqaoG5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+to+ternary+hash+codes+by+continuation&rft.jtitle=Electronics+letters&rft.au=Chen%2C+Mingrui&rft.au=Li%2C+Weiyu&rft.au=Lu%2C+Weizhi&rft.date=2021-11-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=57&rft.issue=24&rft.spage=925&rft.epage=926&rft_id=info:doi/10.1049%2Fell2.12317&rft.externalDBID=10.1049%252Fell2.12317&rft.externalDocID=ELL212317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon