Deep learning to ternary hash codes by continuation
Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes...
Saved in:
Published in | Electronics letters Vol. 57; no. 24; pp. 925 - 926 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Stevenage
John Wiley & Sons, Inc
01.11.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non‐smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes. For the first time, the authors propose to generate ternary hash codes by jointly learning the codes with deep features via a continuation method. Experiments show that the proposed method outperforms existing methods. |
---|---|
AbstractList | Abstract Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non‐smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes. For the first time, the authors propose to generate ternary hash codes by jointly learning the codes with deep features via a continuation method. Experiments show that the proposed method outperforms existing methods. Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non‐smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes. For the first time, the authors propose to generate ternary hash codes by jointly learning the codes with deep features via a continuation method. Experiments show that the proposed method outperforms existing methods. Recently, ithas been observed that ‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform ‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non‐smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes. For the first time, the authors propose to generate ternary hash codes by jointly learning the codes with deep features via a continuation method. Experiments show that the proposed method outperforms existing methods. |
Author | Lu, Weizhi Chen, Mingrui Li, Weiyu |
Author_xml | – sequence: 1 givenname: Mingrui surname: Chen fullname: Chen, Mingrui organization: Shandong University – sequence: 2 givenname: Weiyu surname: Li fullname: Li, Weiyu organization: Shandong University – sequence: 3 givenname: Weizhi orcidid: 0000-0003-3812-7405 surname: Lu fullname: Lu, Weizhi email: wzlu@sdu.edu.cn organization: Shandong University |
BookMark | eNp9kE1r3DAQhkVIIZu0l_4CQ24FpzOSbFnHkuZjwdBLC72JsTzKenGsjeSl7L-vE4cee5oPnnln5r0U51OcWIjPCDcI2n7lcZQ3KBWaM7FBVUFpEX-fiw0AqrJCqy_EZc77pZTWmo1Q35kPxciUpmF6KuZYzJwmSqdiR3lX-NhzLrrTkkzzMB1pHuL0UXwINGb-9B6vxK_7u5-3j2X742F7-60tvaqlKUPfNx2h0rZHbTSBYTBoyHfGkrdVZzwgAQZfK8ME0EAXguohYK37GtSV2K66faS9O6ThebnLRRrcWyOmJ0dpHvzIjirfaGRZgVp2se06WZFqrGQZyIZ60bpetQ4pvhw5z24fj8ujY3YKrGxA60Yt1JeV8inmnDj824rgXg12rwa7N4MXGFf4zzDy6T-ku2tbuc78BeIvfPM |
Cites_doi | 10.1109/CVPR.2016.227 10.1109/ICCV.2017.598 10.1109/TPAMI.2017.2699960 10.1109/TNNLS.2020.2997020 10.1145/1646396.1646452 10.1109/CVPR.2015.7298947 10.1007/s11263-020-01331-0 10.1145/3372278.3390711 10.1609/aaai.v30i1.10235 10.1109/CVPR.2009.5206848 10.1109/CVPRW.2015.7301269 10.1609/aaai.v28i1.8952 10.1016/j.neucom.2018.04.034 10.1109/CVPR.2018.00140 10.24963/ijcai.2020/115 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1049/ell2.12317 |
DatabaseName | Wiley Online Library Journals (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1350-911X |
EndPage | 926 |
ExternalDocumentID | oai_doaj_org_article_a5c841e2503147e9bb25a3892e2fa9f6 10_1049_ell2_12317 ELL212317 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61801264; 61991412 – fundername: the Fundamental Research Funds of Shandong University funderid: 2019HW018 |
GroupedDBID | -4A -~X .DC 0R~ 0ZK 1OC 24P 29G 2QL 3EH 4.4 4IJ 5GY 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ELQJU ESX F5P F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX IFIPE IPLJI ITC JAVBF K1G K7- L6V LAI LXO LXU M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P0- P2P P62 PTHSS QWB R4Z RIE RIG RNS RUI TN5 U5U UNMZH VH1 WH7 ZL0 ~ZZ AAYXX CITATION IDLOA PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ JQ2 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN PUEGO |
ID | FETCH-LOGICAL-c3627-fdd8ba1349d1474a07e0717acb79ac95b7c01a01fc637ea0080bff3d0f164d603 |
IEDL.DBID | 24P |
ISSN | 0013-5194 |
IngestDate | Wed Aug 27 01:18:45 EDT 2025 Wed Aug 13 02:44:41 EDT 2025 Tue Jul 01 05:17:26 EDT 2025 Wed Jan 22 16:26:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3627-fdd8ba1349d1474a07e0717acb79ac95b7c01a01fc637ea0080bff3d0f164d603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3812-7405 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.12317 |
PQID | 3092804483 |
PQPubID | 1936364 |
PageCount | 2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5c841e2503147e9bb25a3892e2fa9f6 proquest_journals_3092804483 crossref_primary_10_1049_ell2_12317 wiley_primary_10_1049_ell2_12317_ELL212317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 20211101 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | Stevenage |
PublicationPlace_xml | – name: Stevenage |
PublicationTitle | Electronics letters |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 40 2012 2018; 303 2021 2020 2009 2020; 128 2018 2017 2016 2015 2014 2012; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 Allgower E.L. (e_1_2_7_18_1) 2012 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 40 start-page: 769 issue: 4 year: 2017 end-page: 790 article-title: A survey on learning to hash publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2009 – year: 2012 article-title: Imagenet classification with deep convolutional neural networks – year: 2020 article-title: Deep semantic multimodal hashing network for scalable image‐text and video‐text retrievals publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 13 year: 2012 – year: 2020 – year: 2021 – volume: 303 start-page: 60 year: 2018 end-page: 67 article-title: Optimization of deep convolutional neural network for large scale image retrieval publication-title: Neurocomputing – volume: 128 start-page: 2265 year: 2020 end-page: 2278 article-title: Weakly‐supervised semantic guided hashing for social image retrieval publication-title: International Journal of Computer Vision – year: 2017 – year: 2016 – year: 2018 – year: 2014 – year: 2015 – year: 2012 – ident: e_1_2_7_6_1 doi: 10.1109/CVPR.2016.227 – ident: e_1_2_7_16_1 – ident: e_1_2_7_17_1 doi: 10.1109/ICCV.2017.598 – ident: e_1_2_7_2_1 doi: 10.1109/TPAMI.2017.2699960 – ident: e_1_2_7_8_1 doi: 10.1109/TNNLS.2020.2997020 – ident: e_1_2_7_20_1 doi: 10.1145/1646396.1646452 – ident: e_1_2_7_13_1 – ident: e_1_2_7_11_1 doi: 10.1109/CVPR.2015.7298947 – ident: e_1_2_7_14_1 – ident: e_1_2_7_9_1 doi: 10.1007/s11263-020-01331-0 – volume-title: Numerical Continuation Methods: An Introduction year: 2012 ident: e_1_2_7_18_1 – ident: e_1_2_7_19_1 – ident: e_1_2_7_10_1 doi: 10.1145/3372278.3390711 – ident: e_1_2_7_5_1 doi: 10.1609/aaai.v30i1.10235 – ident: e_1_2_7_21_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_7_4_1 doi: 10.1109/CVPRW.2015.7301269 – ident: e_1_2_7_3_1 doi: 10.1609/aaai.v28i1.8952 – ident: e_1_2_7_7_1 doi: 10.1016/j.neucom.2018.04.034 – ident: e_1_2_7_12_1 doi: 10.1109/CVPR.2018.00140 – ident: e_1_2_7_15_1 doi: 10.24963/ijcai.2020/115 |
SSID | ssj0012997 |
Score | 2.3586504 |
Snippet | Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary... Recently, ithas been observed that ‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform ‐binary codes in... Abstract Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 925 |
SubjectTerms | Algebra Binary codes Codes Continuation methods Deep learning Discrete functions Entropy Error reduction Experiments Image recognition Image retrieval Integral transforms Optical, image and video signal processing Other topics in statistics Retrieval |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQnyJQkCWYkEId27HjkY9WFSpMVOpm2Y5NkapQtWXov8d2EigLLGxR5OHyLrl7F_veAXCVcS1c4UyqMs5Tql2RalaglGvPzanCWLDQKPz0zIZj-jjJJxujvsKZsFoeuAaup3JT0Mz6TE0yyq3QGufKZ1lssVPCRbFtn_PaYqrZP_BBlrezCzxHoa0wKRU9O5vhGx-v44iy71QUFft_0MxNshqzzWAP7DY0Ed7W5u2DLVsdgJ0N8cBDQB6sncNm6sMrXL3D-G9vsYZTtZzC0Ku-hHoNw2H0t6pW9D4C40H_5X6YNiMQUuMzC09dWRZaBQnB0j89VYjbUIApo7lQRuSaG5QplDnDCLcq8D_tHCmR81CXDJFj0KneK3sCoLNMYR9mVaiKQlVIiDBZ4RdZhkohEnDZoiHntdKFjDvUVMiAmYyYJeAuAPW1IqhTxxveZ7LxmfzLZwnotjDL5pNZSoIELpCvFkkCriP0v5gh-6MRjlen_2HQGdjG4axK7DHsgs5q8WHPPdlY6Yv4Xn0CDKfMzg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XvQgPrG-COhJWM0m6SY5idUWERURBW8hySYqSFvbevDfm6RZHxdvyxKW8CU7881k8g3AYcmN9MLbQpecF8x4UZhK4IKbwM2ZJkRW8aLwzW11-ciunjpPOeE2yWWVjU1Mhroe2pgjP6FYEoFDMEFPR-9F7BoVT1dzC415WAgmWIgWLHR7t3f33-cIwdjypodB4CqsEShl8sS9vZHjYLdTq7Ifl5SU-__Qzd-kNXmd_gosZ7qIzmbruwpzbrAGS79EBNeBXjg3Qrn7wzOaDlHK8Y0_0YuevKB4Z32CzCeKRemvg5my9wY89nsP55dFboVQ2OBheOHrWhgdpQTrknGmMXcxENPWcKmt7Bhucalx6W1FudORBxrvaY19gLyuMN2E1mA4cFuAvKs0CeZWx-goRoeUSluKMMhVuJayDQcNGmo0U7xQ6aSaSRUxUwmzNnQjUN8jokp1ejEcP6u86ZXuWMFKF1gWDbN20hjS0YEhEUe8lr5qw24Ds8q_zkT9LHQbjhL0_0xD9a6vSXra_v9bO7BIYjVKukW4C63p-MPtBToxNft5z3wBlhbF9g priority: 102 providerName: ProQuest |
Title | Deep learning to ternary hash codes by continuation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.12317 https://www.proquest.com/docview/3092804483 https://doaj.org/article/a5c841e2503147e9bb25a3892e2fa9f6 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ba9swFH50zaU7lK7bWLo0CLbTwKssKZYFuzRdslKyUkpTQi9CsqW2UJKQZIf8--nJdppeCr3YRsggPklP35P0vgfwPZVW-dwXiUmlTIT1eWKznCbSBm4uDGMqw0Dhv5fZ-VhcTHqTHfjVxMJU-hCbDTecGdFe4wQ3tspCEkgtduLTE_sZ7G4q30ELY2vxQh8TV5szhGBoZZO_IPAU0YiTCnXy_O-L5Siq9r-gmtuENa44wwPYr6kiOa369gPsuOkhvN8SEPwI_Ldzc1JnfrgnqxmJ-3uLNXkwyweC8epLYtcEL6Q_TitV708wHg5uzs6TOg1CUoTVRSa-LHNrUEawTIUUhkqHTpgprFSmUD0rC5oamvoi49IZ5IDWe15SH-AuM8o_w-50NnVfgHiXGRZMrUHPCD1DzlWR5qGSy2ipVBu-NWjoeaV2oeMptVAaMdMRszb0EahNDVSojgWzxb2uB7w2vSIXqQsMi4dWO2Ut65nAjphj3iiftaHTwKzrabPUnCqW0-Ax8jb8iNC_0gw9GI1Y_Dp6S-WvsMfwXkqMJ-zA7mrxzx0HYrGy3Th-wjMf_ulC6_R2fDcO7_7g8uq6G531_444ym0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1Remh7QLS0alpKLbVcKm3xep31-lBVfKWhBE4gcXNtrw2VUJImQSh_it_YGWeXjws3bqvVyrLejmfe2J55AF9z5XSsos9srlQmXawyV1Y8Uw65ubRC6JIKhY-Oy_6p_H3WPVuCm7YWhq5Vtj4xOep65GmPfKvgWlQck4ni5_hfRqpRdLraSmgszOIwzK8xZZv-ONjD_7spRG__ZLefNaoCmUdnrbJY15Wz1JWvzqWSlqtAOY31Tmnrddcpz3PL8-jLQgVLlMrFWNQ84uzrkhc47jN4LguM5FSZ3vt1e2qBrl21ignIjGTbDlXqrXB5Kb5jlEjCaHcBMOkEPCC39ylyinG9VVhpyCnbXljTa1gKwzfw6l7LwjUo9kIYs0Zr4pzNRiztKE7m7MJOLxhVyE-ZmzO6Av93uOgj_hZOnwSid7A8HA3De2AxlFagc7eUi1EuirD5vMKPQslrrTvwpUXDjBf9NUw6F5faEGYmYdaBHQLq9gvqiZ1ejCbnpllixnZ9JfOAnK7AWQftnOha5GMiiGh1LDuw3sJsmoU6NXdm1YFvCfpHpmH2BwORnj48PtZneNE_ORqYwcHx4Ud4KegeTKpfXIfl2eQqfEIiM3MbyXoY_Hlqc_0PTdwBVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEB5SB0p7KE0f1E2aCJJeCltrJXm1OpTSxDZJ45hQGshNlbRSUgi2Y7sU_7X-umrk3TwuueW2LEJoZ0ejbzSPD2Avl1aFMrjM5FJmwoYys0VJM2kjNheGMVVgofDJqDg8E9_Pu-dr8K-phcG0ysYmJkNdTRzekXc4Vayk0ZngnVCnRZz2Bl-n1xkySGGktaHTWKnIsV_-je7b_MtRL_7rj4wN-j8PDrOaYSBz0XDLLFRVaQ126KtyIYWh0qN_Y5yVyjjVtdLR3NA8uIJLbxBe2RB4RUP8kqqgPM77BNYlekUtWN_vj05_3MQwoqGXDX9CxEmiaY4qVMdfXbHP8cxINGm3x2FiDbgHde8C5nTiDV7Cixqqkm8r3dqANT9-Bc_vNDB8Dbzn_ZTUzBMXZDEh6X5xtiSXZn5JsF5-TuySYEL87_Gqq_gbOHsUIb2F1ngy9u-ABF8YFk29Qc8MPVPOlcvLOMgXtFKqDbuNNPR01W1Dpyi5UBplppPM2rCPgroZgR2y04vJ7ELXG06britF7iPC43HVXlnLuiaiM-ZZMCoUbdhqxKzrbTvXt0rWhk9J9A8sQ_eHQ5ae3j881w48jaqqh0ej4014xjApJhUzbkFrMfvjP0RUs7DbtfoQ-PXYGvsfqaoG5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+to+ternary+hash+codes+by+continuation&rft.jtitle=Electronics+letters&rft.au=Chen%2C+Mingrui&rft.au=Li%2C+Weiyu&rft.au=Lu%2C+Weizhi&rft.date=2021-11-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=57&rft.issue=24&rft.spage=925&rft.epage=926&rft_id=info:doi/10.1049%2Fell2.12317&rft.externalDBID=10.1049%252Fell2.12317&rft.externalDocID=ELL212317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |