Highly N‐doped carbon with low graphitic‐N content as anode material for enhanced initial Coulombic efficiency of lithium‐ion batteries
N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carb...
Saved in:
Published in | Carbon energy Vol. 5; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
John Wiley & Sons, Inc
01.02.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g‐C3N4). In brief, more than 14.5 at% of N from g‐C3N4 (55.1 at% N) was retained by reacting graphitic‐N with lithium, which was subsequently removed. As graphitic‐N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N‐doped carbons with high graphitic‐N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N‐doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g−1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li+ storage capacity and high ICE, and thus promoting research and application of N‐doped carbon materials.
High N‐doped (14.5–42.7 at%) carbon with low graphitic‐N proportion (10.8%–17.2%) has been fabricated by denitrification for graphitic carbon nitride (g‐C3N4) using Li metal powder as both reductant and prelithiation reagent. As anode materials for lithium batteries, the optimal sample exhibits a high capacity of 1499.9 mAh g−1 with an enhanced ICE of 93.7%. |
---|---|
AbstractList | Abstract N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g‐C3N4). In brief, more than 14.5 at% of N from g‐C3N4 (55.1 at% N) was retained by reacting graphitic‐N with lithium, which was subsequently removed. As graphitic‐N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N‐doped carbons with high graphitic‐N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N‐doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g−1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li+ storage capacity and high ICE, and thus promoting research and application of N‐doped carbon materials. N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li + storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g‐C 3 N 4 ). In brief, more than 14.5 at% of N from g‐C 3 N 4 (55.1 at% N) was retained by reacting graphitic‐N with lithium, which was subsequently removed. As graphitic‐N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N‐doped carbons with high graphitic‐N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N‐doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g −1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li + storage capacity and high ICE, and thus promoting research and application of N‐doped carbon materials. N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N-doped carbon anodes still suffer from low N-doping levels and low initial Coulombic efficiency (ICE). In this study, high N-doped and low graphitic-N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g-C3N4). In brief, more than 14.5 at% of N from g-C3N4 (55.1 at% N) was retained by reacting graphitic-N with lithium, which was subsequently removed. As graphitic-N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N-doped carbons with high graphitic-N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N-doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g−1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li+ storage capacity and high ICE, and thus promoting research and application of N-doped carbon materials. N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g‐C3N4). In brief, more than 14.5 at% of N from g‐C3N4 (55.1 at% N) was retained by reacting graphitic‐N with lithium, which was subsequently removed. As graphitic‐N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N‐doped carbons with high graphitic‐N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N‐doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g−1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li+ storage capacity and high ICE, and thus promoting research and application of N‐doped carbon materials. High N‐doped (14.5–42.7 at%) carbon with low graphitic‐N proportion (10.8%–17.2%) has been fabricated by denitrification for graphitic carbon nitride (g‐C3N4) using Li metal powder as both reductant and prelithiation reagent. As anode materials for lithium batteries, the optimal sample exhibits a high capacity of 1499.9 mAh g−1 with an enhanced ICE of 93.7%. |
Author | Roth, Christina Mao, Zhiyong Wang, Dajian Chen, Jingjing Tang, Yihua |
Author_xml | – sequence: 1 givenname: Yihua orcidid: 0000-0003-3754-5293 surname: Tang fullname: Tang, Yihua email: Yihua.Tang@uni-bayreuth.de organization: Bavarian Center for Battery Technology (BayBatt) – sequence: 2 givenname: Jingjing surname: Chen fullname: Chen, Jingjing organization: Tianjin University of Technology – sequence: 3 givenname: Zhiyong surname: Mao fullname: Mao, Zhiyong organization: Tianjin University of Technology – sequence: 4 givenname: Christina surname: Roth fullname: Roth, Christina organization: Universität Bayreuth – sequence: 5 givenname: Dajian surname: Wang fullname: Wang, Dajian organization: Tianjin University of Technology |
BookMark | eNp1kcFq3DAQhk1JIWkayCMIeunFW0m2JftYlrQJhPSSHnoS4_FoV4tX2spaFt_yAoU-Y5-k2m4LpTQnDcP3f5phXhVnPngqimvBF4Jz-Q5plgvZ6BfFhVSVLrtKtWd_1efF1TRteEaFFlx2F8W3W7dajzN7-PH0fQg7GhhC7INnB5fWbAwHtoqwW7vkMBMPDINP5BODiYEPA7EtJIoORmZDZOTX4DFLnM-J3FyG_Ri2vUNG1jp05HFmwbIx291-m5Uu_9VDOkpoel28tDBOdPX7vSw-f7h5XN6W958-3i3f35dYKalL2-mqVnkr5EqhELrplWhRNQN1IAeLLR-Guu2xqUC0IKipu6ZSqoMOO9021WVxd_IOATZmF90W4mwCOPOrEeLKQMwrj2S0yAlCidbyWlGb1bzued_2BMp2VXa9Obl2MXzd05TMJuyjz-MbqbWWTdtwkanFicIYpimSNegSpLx9iuBGI7g5XtAcL2jyBXPg7T-BP2P-By1P6MGNND_LmeXNF3nkfwJNTq_X |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_159824 crossref_primary_10_1016_j_indcrop_2024_119231 crossref_primary_10_1039_D3QI00934C crossref_primary_10_1016_S1872_5805_23_60777_2 crossref_primary_10_1039_D3CS00929G crossref_primary_10_1016_j_seppur_2024_129237 crossref_primary_10_1021_acsami_4c05993 crossref_primary_10_1016_j_cej_2025_161312 crossref_primary_10_1002_cey2_633 crossref_primary_10_1016_j_est_2023_108696 crossref_primary_10_1021_acsomega_3c07706 crossref_primary_10_1007_s11581_024_05391_x crossref_primary_10_1002_admi_202300088 crossref_primary_10_1039_D4TA00427B crossref_primary_10_1007_s40820_024_01639_3 crossref_primary_10_1016_j_apsusc_2023_157530 crossref_primary_10_1002_smll_202500645 crossref_primary_10_1016_j_gee_2022_10_004 crossref_primary_10_1002_cey2_480 crossref_primary_10_1016_j_jcis_2023_08_086 crossref_primary_10_1007_s11581_023_05113_9 crossref_primary_10_1016_j_est_2023_109651 crossref_primary_10_1016_j_carbon_2024_119143 crossref_primary_10_1002_adfm_202308706 crossref_primary_10_1007_s11581_024_05387_7 crossref_primary_10_1002_smll_202309029 crossref_primary_10_1016_j_cej_2023_148047 crossref_primary_10_1016_j_cej_2024_150939 crossref_primary_10_1016_j_fuel_2024_133472 crossref_primary_10_1016_j_jcis_2024_04_118 crossref_primary_10_1016_j_est_2023_108604 crossref_primary_10_1016_j_carbon_2024_119547 crossref_primary_10_1016_j_electacta_2023_143384 crossref_primary_10_1016_j_nxmate_2024_100180 crossref_primary_10_1002_chem_202304114 crossref_primary_10_1002_smll_202310201 crossref_primary_10_1002_adfm_202401397 crossref_primary_10_1021_acs_energyfuels_2c03551 crossref_primary_10_1016_j_colsurfb_2024_114475 crossref_primary_10_1021_acssuschemeng_3c08045 crossref_primary_10_1016_j_jcis_2024_09_009 crossref_primary_10_3389_fenrg_2023_1285044 crossref_primary_10_1016_j_ijhydene_2024_03_176 crossref_primary_10_1016_j_cej_2024_153833 crossref_primary_10_1016_j_carbon_2024_119870 crossref_primary_10_1021_acs_energyfuels_3c02084 crossref_primary_10_1021_acsami_3c16533 crossref_primary_10_1016_j_ceramint_2024_10_337 crossref_primary_10_1002_smll_202406630 crossref_primary_10_1016_j_jelechem_2024_118332 crossref_primary_10_1021_acsami_3c17816 crossref_primary_10_1016_j_apmate_2023_100169 crossref_primary_10_1007_s10853_024_10326_y |
Cites_doi | 10.1002/adfm.202009433 10.1039/C6TA01929C 10.1016/j.carbon.2017.02.057 10.1002/adma.201104634 10.1016/j.carbon.2017.12.125 10.1016/j.carbon.2020.12.029 10.1021/acs.jpcc.5b07572 10.1016/j.electacta.2015.12.189 10.1039/C5TA05759K 10.1002/ente.202000361 10.1007/s41061-017-0139-2 10.1016/j.ssi.2008.12.015 10.1039/C4TA03868A 10.1016/j.carbon.2020.07.022 10.1039/D0CY00391C 10.1002/adfm.202006425 10.1021/acsnano.7b07116 10.1016/j.apsusc.2019.144136 10.1016/j.carbon.2019.07.047 10.1021/jp074464w 10.3390/nano10112286 10.1016/j.electacta.2018.11.088 10.1039/C7CS00614D 10.1039/D0TA02264K 10.1016/j.apsusc.2018.09.035 10.1016/j.jpcs.2020.109639 10.1002/cey2.2 10.1038/nmat3601 10.1016/j.matlet.2021.129459 10.1016/S0167-2738(02)00134-0 10.1016/j.ensm.2020.02.004 10.1021/acs.chemmater.9b05235 10.1016/j.electacta.2021.138043 10.1039/C4NR07645A 10.1038/srep26146 10.1021/cm303870x 10.1002/cnma.201700051 10.1016/j.carbon.2020.12.010 10.1002/aenm.202000927 10.1021/acsnano.9b03861 10.1016/j.jpowsour.2016.03.049 10.1021/cm0101069 10.1002/adfm.201706294 10.1016/j.carbon.2020.04.003 10.1016/j.electacta.2022.139971 10.1021/jp4122722 10.1039/c3cp51689j 10.1103/PhysRevLett.97.187401 10.1016/j.ssi.2021.115562 10.1021/acsaem.0c01254 10.1002/aenm.201500559 10.1016/j.dsp.2019.01.018 10.1007/s00339-008-4816-4 10.1002/smll.202105866 10.1016/j.carbon.2015.06.039 10.1016/j.carbon.2017.09.099 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG 8FH ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P P5Z P62 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
DOI | 10.1002/cey2.257 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological science database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2637-9368 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_71978ec2cff046e880d04b0b8bea6f93 10_1002_cey2_257 CEY2257 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51777138 – fundername: Open Access Publishing Fund of the University of Bayreuth – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) funderid: 491183248 |
GroupedDBID | 0R~ 1OC 24P AAHHS ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS ATCPS AVUZU BBNVY BENPR BGLVJ BHPHI CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IEP ITC M7P OK1 PATMY PIMPY PYCSY WIN -SB -SC -S~ AAYXX ADMLS CAJEB CAJEC CITATION M~E PHGZM PHGZT Q-- U1G U5L U5M 8FE 8FG 8FH AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ LK8 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c3627-f97346263c066c1175b618c65de9a2dfc80dd48bc53a18a1e54953669a9c97853 |
IEDL.DBID | DOA |
ISSN | 2637-9368 |
IngestDate | Wed Aug 27 01:16:52 EDT 2025 Wed Aug 13 10:47:34 EDT 2025 Tue Jul 01 02:57:36 EDT 2025 Thu Apr 24 23:12:10 EDT 2025 Wed Jan 22 16:16:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3627-f97346263c066c1175b618c65de9a2dfc80dd48bc53a18a1e54953669a9c97853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3754-5293 |
OpenAccessLink | https://doaj.org/article/71978ec2cff046e880d04b0b8bea6f93 |
PQID | 2777258501 |
PQPubID | 5066174 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_71978ec2cff046e880d04b0b8bea6f93 proquest_journals_2777258501 crossref_citationtrail_10_1002_cey2_257 crossref_primary_10_1002_cey2_257 wiley_primary_10_1002_cey2_257_CEY2257 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Carbon energy |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2013; 25 2017; 3 2020; 164 2019; 13 2018; 126 2021; 361 2020; 168 2020; 10 2017; 116 2020; 8 2018; 130 2013; 15 2021; 31 2020; 3 2014; 2 2016; 317 2009; 94 2013; 12 2020; 49 2002; 148 2022; 409 2012; 24 2001; 13 2016; 190 2019; 153 2014; 118 2018; 28 2006; 97 2015; 5 2015; 3 2009; 180 2019; 1 2015; 94 2020; 501 2020; 32 2020; 147 2017; 375 2015; 7 2019; 464 2016; 4 2016; 6 2021; 376 2019; 87 2017; 11 2007; 111 2020; 27 2015; 119 2021; 174 2022; 18 2021; 290 2019; 296 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 49 start-page: 301 issue: 1 year: 2020 end-page: 331 article-title: Synthesis of micro/nanoscaled metal‐organic frameworks and their direct electrochemical applications publication-title: Chem Soc Rev – volume: 168 start-page: 458 year: 2020 end-page: 467 article-title: Templated transformation of g‐C N nanosheets into nitrogen‐doped hollow carbon sphere with tunable nitrogen‐doping properties for application in Li‐ions batteries publication-title: Carbon – volume: 4 start-page: 8155 issue: 21 year: 2016 end-page: 8160 article-title: Cobalt phosphate nanoparticles decorated with nitrogen‐doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction publication-title: J Mater Chem A – volume: 32 start-page: 2961 issue: 7 year: 2020 end-page: 2977 article-title: Structural analysis of sucrose‐derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion publication-title: Chem Mater – volume: 409 year: 2022 article-title: Understanding efficient phosphorus‐functionalization of graphite for vanadium flow batteries publication-title: Electrochim Acta – volume: 190 start-page: 141 year: 2016 end-page: 149 article-title: An advanced lithium ion battery based on a sulfur‐doped porous carbon anode and a lithium iron phosphate cathode publication-title: Electrochim Acta – volume: 130 start-page: 41 year: 2018 end-page: 47 article-title: Direct production of nitrogen‐doped porous carbon from urea via magnesiothermic reduction publication-title: Carbon – volume: 97 issue: 18 year: 2006 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys Rev Lett – volume: 464 start-page: 422 year: 2019 end-page: 428 article-title: In situ double‐template fabrication of boron‐doped 3D hierarchical porous carbon network as anode materials for Li‐ and Na‐ion batteries publication-title: Appl Surf Sci – volume: 10 issue: 27 year: 2020 article-title: Heteroatom doping: an effective way to boost sodium ion storage publication-title: Adv Energy Mater – volume: 28 issue: 10 year: 2018 article-title: N‐doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage publication-title: Adv Funct Mater – volume: 317 start-page: 25 year: 2016 end-page: 34 article-title: Changes of the balancing between anode and cathode due to fatigue in commercial lithium‐ion cells publication-title: J Power Sources – volume: 25 start-page: 503 issue: 3 year: 2013 end-page: 508 article-title: Electrochemical and solid‐state lithiation of graphitic C N publication-title: Chem Mater – volume: 94 start-page: 1 year: 2015 end-page: 8 article-title: Iodine doped graphene as anode material for lithium ion battery publication-title: Carbon – volume: 10 start-page: 4794 issue: 14 year: 2020 end-page: 4808 article-title: Directing nitrogen‐doped carbon support chemistry for improved aqueous phase hydrogenation catalysis publication-title: Catal Sci Technol – volume: 31 issue: 3 year: 2021 article-title: Rational design of core‐shell ZnTe@N‐doped carbon nanowires for high gravimetric and volumetric alkali metal ion storage publication-title: Adv Funct Mater – volume: 180 start-page: 222 issue: 2‐3 year: 2009 end-page: 225 article-title: Determination of the diffusion coefficient of lithium ions in nano‐Si publication-title: Solid State Ion – volume: 376 year: 2021 article-title: Magnesium citrate induced growth of noodle‐like porous graphitic carbons from coal tar pitch for high‐performance lithium‐ion batteries publication-title: Electrochim Acta – volume: 10 start-page: 2286 issue: 11 year: 2020 article-title: A review of strategies for the synthesis of N‐doped graphene‐like materials publication-title: Nanomaterials – volume: 27 start-page: 212 year: 2020 end-page: 225 article-title: Sulfur‐nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms publication-title: Energy Storage Mater – volume: 12 start-page: 518 issue: 6 year: 2013 end-page: 522 article-title: High‐rate electrochemical energy storage through Li intercalation pseudocapacitance publication-title: Nat Mater – volume: 501 year: 2020 article-title: N‐doped rGO/C@Si composites using sustainable chitosan as the carbon source for lithium‐ion batteries publication-title: Appl Surf Sci – volume: 118 start-page: 9318 issue: 18 year: 2014 end-page: 9323 article-title: Graphitic carbon nitride nanotubes as Li‐ion battery materials: a first‐principles study publication-title: J Phys Chem C – volume: 375 start-page: 54 issue: 3 year: 2017 article-title: Challenges considering the degradation of cell components in commercial lithium‐ion cells: a review and evaluation of present systems publication-title: Top Curr Chem – volume: 6 year: 2016 article-title: One‐pot hydrothermal synthesis of nitrogen‐doped graphene as high‐performance anode materials for lithium ion batteries publication-title: Sci Rep – volume: 3 start-page: 18229 issue: 35 year: 2015 end-page: 18237 article-title: A highly nitrogen‐doped porous graphene—an anode material for lithium ion batteries publication-title: J Mater Chem A – volume: 8 issue: 9 year: 2020 article-title: High‐level pyridinic‐N‐doped carbon nanosheets with promising performances severed as Li‐ion battery anodes publication-title: Energy Technol – volume: 2 start-page: 19678 issue: 46 year: 2014 end-page: 19684 article-title: Nitrogen‐enriched electrospun porous carbon nanofiber networks as high‐performance freestanding electrode materials publication-title: J Mater Chem A – volume: 18 issue: 7 year: 2022 article-title: Red phosphorus anchored on nitrogen‐doped carbon bubble‐carbon nanotube network for highly stable and fast‐charging lithium‐ion batteries publication-title: Small – volume: 361 year: 2021 article-title: N, O co‐doped urchin‐like carbon microspheres as high‐performance anode materials for lithium ion batteries publication-title: Solid State Ion – volume: 87 start-page: 104 year: 2019 end-page: 111 article-title: Bounded non‐linear covariance based ESPRIT method for noncircular signals in presence of impulsive noise publication-title: Digit Signal Prog – volume: 31 issue: 13 year: 2021 article-title: A general strategy for antimony‐based alloy nanocomposite embedded in Swiss‐cheese‐like nitrogen‐doped porous carbon for energy storage publication-title: Adv Funct Mater – volume: 13 start-page: 3169 issue: 10 year: 2001 end-page: 3183 article-title: Gas adsorption characterization of ordered organic‐inorganic nanocomposite materials publication-title: Chem Mater – volume: 11 start-page: 12650 issue: 12 year: 2017 end-page: 12657 article-title: Nitrogen‐deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes publication-title: ACS Nano – volume: 174 start-page: 98 year: 2021 end-page: 109 article-title: PVP‐assisted synthesis of g‐C N ‐derived N‐doped graphene with tunable interplanar spacing as high‐performance lithium/sodium ions battery anodes publication-title: Carbon – volume: 111 start-page: 14925 issue: 40 year: 2007 end-page: 14931 article-title: Pseudocapacitive contributions to electrochemical energy storage in TiO (anatase) nanoparticles publication-title: J Phys Chem C – volume: 15 start-page: 16819 issue: 39 year: 2013 end-page: 16827 article-title: Can all nitrogen‐doped defects improve the performance of graphene anode materials for lithium‐ion batteries? publication-title: Phys Chem Chem Phys – volume: 116 start-page: 686 year: 2017 end-page: 694 article-title: Covalent‐organic‐frameworks derived N‐doped porous carbon materials as anode for superior long‐life cycling lithium and sodium ion batteries publication-title: Carbon – volume: 13 start-page: 9279 issue: 8 year: 2019 end-page: 9291 article-title: Carbon nitride transforms into a high lithium storage capacity nitrogen‐rich carbon publication-title: ACS Nano – volume: 153 start-page: 372 year: 2019 end-page: 380 article-title: Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage publication-title: Carbon – volume: 1 start-page: 57 issue: 1 year: 2019 end-page: 76 article-title: The critical role of carbon in marrying silicon and graphite anodes for high‐energy lithium‐ion batteries publication-title: Carbon Energy – volume: 8 start-page: 11529 issue: 23 year: 2020 end-page: 11537 article-title: Boosting chem‐insertion and phys‐adsorption in S/N co‐doped porous carbon nanospheres for high‐performance symmetric Li‐ion capacitors publication-title: J Mater Chem A – volume: 164 start-page: 261 year: 2020 end-page: 271 article-title: An electrochemical evaluation of nitrogen‐doped carbons as anodes for lithium ion batteries publication-title: Carbon – volume: 148 start-page: 45 issue: 1‐2 year: 2002 end-page: 51 article-title: Determination of the chemical diffusion coefficient of lithium in LiFePO publication-title: Solid State Ion – volume: 94 start-page: 387 issue: 2 year: 2009 end-page: 392 article-title: Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine publication-title: Appl Phys A – volume: 24 start-page: 2047 issue: 15 year: 2012 end-page: 2050 article-title: Nitrogen‐doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability publication-title: Adv Mater – volume: 147 year: 2020 article-title: Synthesis and electrochemical properties of nitrogen‐doped porous carbon for lithium ion batteries publication-title: J Phys Chem Solids – volume: 119 start-page: 21921 issue: 38 year: 2015 end-page: 21927 article-title: Lithium and sodium storage on graphitic carbon nitride publication-title: J Phys Chem C – volume: 3 start-page: 311 issue: 5 year: 2017 end-page: 318 article-title: Tunable nitrogen‐doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots publication-title: ChemNanoMat – volume: 5 issue: 15 year: 2015 article-title: Supramolecular polymerization promoted in situ fabrication of nitrogen‐doped porous graphene sheets as anode materials for Li‐Ion batteries publication-title: Adv Energy Mater – volume: 290 year: 2021 article-title: Nitrogen and phosphorus co‐doped mesoporous carbon nanosheets derived from bagasse for lithium‐ion batteries publication-title: Mater Lett – volume: 174 start-page: 317 year: 2021 end-page: 324 article-title: Self‐templated synthesis of hollow hierarchical porous olive‐like carbon toward universal high‐performance alkali (Li, Na, K)‐ion storage publication-title: Carbon – volume: 3 start-page: 8676 issue: 9 year: 2020 end-page: 8687 article-title: Bacterial cellulose‐polyaniline composite derived hierarchical nitrogen‐doped porous carbon nanofibers as anode for high‐rate lithium‐ion batteries publication-title: ACS Appl Energy Mater – volume: 296 start-page: 925 year: 2019 end-page: 937 article-title: Polyborosilazane derived ceramics—nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries publication-title: Electrochim Acta – volume: 126 start-page: 9 year: 2018 end-page: 16 article-title: Nitrogen and sulfur dual‐doped carbon films as flexible free‐standing anodes for Li‐ion and Na‐ion batteries publication-title: Carbon – volume: 7 start-page: 5152 issue: 12 year: 2015 end-page: 5156 article-title: Structural distortion in graphitic‐C N realizing an efficient photoreactivity publication-title: Nanoscale – ident: e_1_2_7_21_1 doi: 10.1002/adfm.202009433 – ident: e_1_2_7_44_1 doi: 10.1039/C6TA01929C – ident: e_1_2_7_49_1 doi: 10.1016/j.carbon.2017.02.057 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201104634 – ident: e_1_2_7_53_1 doi: 10.1016/j.carbon.2017.12.125 – ident: e_1_2_7_4_1 doi: 10.1016/j.carbon.2020.12.029 – ident: e_1_2_7_19_1 doi: 10.1021/acs.jpcc.5b07572 – ident: e_1_2_7_35_1 doi: 10.1016/j.electacta.2015.12.189 – ident: e_1_2_7_31_1 doi: 10.1039/C5TA05759K – ident: e_1_2_7_48_1 doi: 10.1002/ente.202000361 – ident: e_1_2_7_10_1 doi: 10.1007/s41061-017-0139-2 – ident: e_1_2_7_55_1 doi: 10.1016/j.ssi.2008.12.015 – ident: e_1_2_7_34_1 doi: 10.1039/C4TA03868A – ident: e_1_2_7_17_1 doi: 10.1016/j.carbon.2020.07.022 – ident: e_1_2_7_25_1 doi: 10.1039/D0CY00391C – ident: e_1_2_7_7_1 doi: 10.1002/adfm.202006425 – ident: e_1_2_7_15_1 doi: 10.1021/acsnano.7b07116 – ident: e_1_2_7_6_1 doi: 10.1016/j.apsusc.2019.144136 – ident: e_1_2_7_38_1 doi: 10.1016/j.carbon.2019.07.047 – ident: e_1_2_7_56_1 doi: 10.1021/jp074464w – ident: e_1_2_7_12_1 doi: 10.3390/nano10112286 – ident: e_1_2_7_45_1 doi: 10.1016/j.electacta.2018.11.088 – ident: e_1_2_7_27_1 doi: 10.1039/C7CS00614D – ident: e_1_2_7_5_1 doi: 10.1039/D0TA02264K – ident: e_1_2_7_52_1 doi: 10.1016/j.apsusc.2018.09.035 – ident: e_1_2_7_46_1 doi: 10.1016/j.jpcs.2020.109639 – ident: e_1_2_7_3_1 doi: 10.1002/cey2.2 – ident: e_1_2_7_57_1 doi: 10.1038/nmat3601 – ident: e_1_2_7_41_1 doi: 10.1016/j.matlet.2021.129459 – ident: e_1_2_7_54_1 doi: 10.1016/S0167-2738(02)00134-0 – ident: e_1_2_7_30_1 doi: 10.1016/j.ensm.2020.02.004 – ident: e_1_2_7_29_1 doi: 10.1021/acs.chemmater.9b05235 – ident: e_1_2_7_42_1 doi: 10.1016/j.electacta.2021.138043 – ident: e_1_2_7_22_1 doi: 10.1039/C4NR07645A – ident: e_1_2_7_43_1 doi: 10.1038/srep26146 – ident: e_1_2_7_14_1 doi: 10.1021/cm303870x – ident: e_1_2_7_24_1 doi: 10.1002/cnma.201700051 – ident: e_1_2_7_16_1 doi: 10.1016/j.carbon.2020.12.010 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.202000927 – ident: e_1_2_7_28_1 doi: 10.1021/acsnano.9b03861 – ident: e_1_2_7_9_1 doi: 10.1016/j.jpowsour.2016.03.049 – ident: e_1_2_7_26_1 doi: 10.1021/cm0101069 – ident: e_1_2_7_51_1 doi: 10.1002/adfm.201706294 – ident: e_1_2_7_8_1 doi: 10.1016/j.carbon.2020.04.003 – ident: e_1_2_7_2_1 doi: 10.1016/j.electacta.2022.139971 – ident: e_1_2_7_13_1 doi: 10.1021/jp4122722 – ident: e_1_2_7_18_1 doi: 10.1039/c3cp51689j – ident: e_1_2_7_20_1 doi: 10.1103/PhysRevLett.97.187401 – ident: e_1_2_7_36_1 doi: 10.1016/j.ssi.2021.115562 – ident: e_1_2_7_40_1 doi: 10.1021/acsaem.0c01254 – ident: e_1_2_7_32_1 doi: 10.1002/aenm.201500559 – ident: e_1_2_7_47_1 doi: 10.1016/j.dsp.2019.01.018 – ident: e_1_2_7_23_1 doi: 10.1007/s00339-008-4816-4 – ident: e_1_2_7_39_1 doi: 10.1002/smll.202105866 – ident: e_1_2_7_37_1 doi: 10.1016/j.carbon.2015.06.039 – ident: e_1_2_7_50_1 doi: 10.1016/j.carbon.2017.09.099 |
SSID | ssj0002171029 |
Score | 2.4877229 |
Snippet | N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon... N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li + storage performance. However, N‐doped carbon... N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N-doped carbon... Abstract N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However,... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Carbon Carbon nitride denitrification Doping Efficiency Electrode materials Electrolytes graphitic carbon nitride graphitic‐N Lasers Lithium Lithium-ion batteries N‐doped carbon Rechargeable batteries Speciation Specific capacity Spectrum analysis Storage capacity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB8RShBRkJwcl019mXT4hGqSokIoSoVE6WH2MaKV2nSaOqv4C_zYzjhCABV-_KsnbsmW9mP3_D2BtopbEAhQgY_UXlXS065UuBZwvRP5BIHd0d_jxpTs-qT-f1eS64LTOtcuMTk6P20VGN_Ei2iAMR2xblh_mVoK5R9Hc1t9C4y_bRBXeYfO0fjydfvm6rLAi4MYKqjepsIY8c3Mr3kqLRThxKcv1_YMxdpJpCzclD9iBjRP5xbdRH7A70j9n9HeXAJ-wn8TNmt3wifJyD584sbOw5VVX5LN7wpENNxDYx4cRGx9DCzZKbPnrgCFLTvuMIWDn0F4kEwKdEI8LBUVzN4qWdOg5JXoLuZvIYOOL1i-nqUqAhuU2qnJhkP2VnJ-Nvo1OReyoIh6GqFUG1w4oUaBxiDUc6nbYpO9fUHpSRPriu8L7qrKuHpuxMCTURUJtGGeUw4ayHz9heH3t4zrgKykrrA3p7zCmtUzhlaAI0LWASVZcD9m7zhbXLguPU92Km11LJUpMtNNpiwF5v35yvRTb-8s4xGWn7nGSx00Bc_ND5lOm2xDWCky4EzPsBfZMvKlvYzoJpghoO2OHGxDqf1aX-vbMG7G0y-z8XoUfj7-gA2xf_n-eA3aOu9Gty9yHbu16s4CVil2v7Km_QX_gK8IQ priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgXOCAypdYKGiQEJxCEydx4iOsWlVIrDhQqZwsf4zpStuk2u0K9cYfQOI38ks642SXVgKJa-JYVsYz88Z68yzEa2ykdYh5Fin7Z1XwddbqUGTkW4T-kUXquHf400wdHVcfT-qTkVXJvTCDPsT2wI09I8VrdnDrVvt_REM9Xsp3tOFuizvcWcu6-bL6vD1fIahNuZPRr1Rlk-lStRvt2Vzubz6-kY2SaP8NpHkdr6aEc7gr7o9IEd4Ppn0gbmH3UNy7ph_4SPxklsbiEma_f_wK_TkG8Hbp-g74dBUW_XdIetRMcKMRM2BeOiUZsCuwXR8QCK6mHQgEXQG700QHgDkTiujhtF8v-jM394BJaIK7NKGPQMj9dL4-oynJqOCSQicV3I_F8eHBl-lRNt6vkHlKW00WdVNWrEbjCXd41ux0qmi9qgNqK0P0bR5C1Tpfl7ZobYE1k1GV0lZ7Kj7r8onY6foOnwrQUTvpQqTIT_Wl85qmjCqiapAKqrqYiLeb_2z8KD7Od2AszCCbLA1bxJBFJuLVduT5ILjxlzEf2FTb9yyRnR70y29m9DjTFLRG9NLHmFcKKU6FvHK5ax1aFXU5EXsbQ5vRb1dGNlRtUAWV04rfJOP_cxFmevCVgmHz7H8HPhd3-a76gfK9J3Yulmt8QYjmwr1MW_cKw2H1zw priority: 102 providerName: Wiley-Blackwell |
Title | Highly N‐doped carbon with low graphitic‐N content as anode material for enhanced initial Coulombic efficiency of lithium‐ion batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.257 https://www.proquest.com/docview/2777258501 https://doaj.org/article/71978ec2cff046e880d04b0b8bea6f93 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG40XvQgPnGTuJQgehoz0zuvPppl1yBkCWIgnpp-VJOFzUxIskguwT8g-Bv9JVb1zIYRFC9e-tDTNE1XdddXw9dfCfEaK2ksYpoEiv5J7l2R1MpnCZ0tQv_IInX8dvhwUR4c5x9PipNBqS_mhHXywN3G7VUZ5TnopAuBUjkkd_NpblNbWzRlUFHnk2LeIJniO5iANkVOtVGbTeWew2v5TnIUGsSfKNP_G7YcItQYYuaPxMMeG8L7bk2PxR1snogHA8XAp-I78zJW17D4-e2Hb8_RgzMXtm2A_6fCqv0KUYGaKW00YgHMRKewAuYSTNN6BAKo0eeAwCpgcxoJALBkChF1Ttv1qj2zSwcYpSX4XSa0AQirny7XZzQlmRFs1OSkFPuZOJ7PPk8Pkr6iQuIoUFVJUNUkZ_0ZR0jDsUqnLbPalYVHZaQPjnbX57V1xcRktcmwYPppWSqjHJmhmDwXW03b4AsBKigrrQ9011NGaZ2iKUMZsKyQUqgiG4m3m33Wrpcb56oXK90JJUvNFtFkkZF4dTvyvJPY-MOYfTbV7XcWxY4d5Cq6dxX9L1cZid2NoXV_Ui-1rCi_oJwppRW_icb_6yL0dPaFrr9q-38sZkfc58r1HQF8V2xdXazxJeGbKzsWd2V-RG09_zAW9_Zni6NP4-je1B7ezH4BWzQCEw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAOiKcIFDASj5PprvfpA0IQGlLa5tRK5WTW9phGSndD0qjKL-Df8BuZ8WZDkIBbr17Lsjyvb7zjbxh7AYWsDEAkPEZ_kTqbiVK5WKBtIfoHIqmjt8NHo3x4kn4-zU632M_uLQyVVXY-MThq11i6I9-VBeJAxLZR_G76XVDXKPq72rXQaNXiAJaXmLLN3-5_RPm-lHKwd9wfilVXAWHRWRfCqyJJiYPFYrS1xFRp8ri0eeZAVdJ5W0bOpaWxWVLFZRVDRiWYea4qZTHloi4R6PKvpUmiyKLKwaf1nQ7Ce4zXquO4jeSuhaV8Iyn2bUS90BzgD0S7iYtDYBvcZrdWiJS_b1XoDtuC-i67ucFTeI_9oGqQyZKPhGum4LitZqapOd3h8klzyQPrNZXRiRGn2ncMZLya86puHHCExEHLOcJjDvVZKDngYypawsF-s5g052ZsOQQyC3oJyhvPMTs4Gy_OBaoNN4EDFFP6--zkSs76AduumxoeMq68MtI4j7EFM1hjFS7pcw95AZiyZXGPve5OWNsVvTl12ZjolphZapKFRln02PP1zGlL6fGXOR9ISOvvRMIdBprZN72yaV3EuEew0nofpTmgJ3RRaiJTGqhyr5Ie2-lErFeeYa5_63GPvQpi_-cmdH_vC7rb4tH_13nGrg-Pjw714f7o4DG7IRGFtWXlO2z7YraAJ4iaLszToKqcfb1q2_gF-KQqFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbhMxELWqVELwgLiK0AJG4vJksuvszQ8I0TRRSyGqEJXKk1nfaKR0nSaNqnwB_8TXMePdDUEC3vq6u7Isz3jmjPf4DCEvbM5LZW3EHGR_lhidskKYmMHeAvRvUaQO7w5_GmcHJ8mH0_R0i_xs78IgrbKNiSFQG6_xjLzHc8CBgG2juOcaWsTx_ujd7IJhByn809q206hd5MiurqB8W7w93Adbv-R8NPwyOGBNhwGmIXDnzIm8n6Aei4bMq1G1UmVxobPUWFFy43QRGZMUSqf9Mi7K2KZIx8wyUQoN5Rd2jIDwv51DVRR1yPbecHz8eX3CA2AfsrdoFW8j3tN2xd9wzIQbOTC0CvgD326i5JDmRnfI7Qaf0ve1Q90lW7a6R25tqBbeJz-QGzJd0TEzfmYN1eVc-YriiS6d-isaNLCRVMfGFJnwkNZouaBl5Y2lAJCDz1MAy9RWZ4GAQCdIYYKHA7-c-nM10dQGaQu8F0q9o1ArnE2W5wyciKqgCAoF_gNyci2r_ZB0Kl_ZR4QKJxRXxkGmgXpWaQFDuszZLLdQwKVxl7xuV1jqRuwce25MZS3TzCXaQoItuuT5-stZLfDxl2_20Ejr9yjJHR74-XfZ7HCZxzBHq7l2LkoyC3HRRImKVKFsmTnR75Ld1sSyiRML-duru-RVMPs_JyEHw68QfPPH_x_nGbkB-0J-PBwf7ZCbHCBZzTHfJZ3L-dI-AQh1qZ42vkrJt-veHr8AtTEvqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+N%E2%80%90doped+carbon+with+low+graphitic%E2%80%90N+content+as+anode+material+for+enhanced+initial+Coulombic+efficiency+of+lithium%E2%80%90ion+batteries&rft.jtitle=Carbon+energy&rft.au=Yihua+Tang&rft.au=Jingjing+Chen&rft.au=Zhiyong+Mao&rft.au=Christina+Roth&rft.date=2023-02-01&rft.pub=Wiley&rft.eissn=2637-9368&rft.volume=5&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcey2.257&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_71978ec2cff046e880d04b0b8bea6f93 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon |