Highly N‐doped carbon with low graphitic‐N content as anode material for enhanced initial Coulombic efficiency of lithium‐ion batteries

N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carb...

Full description

Saved in:
Bibliographic Details
Published inCarbon energy Vol. 5; no. 2
Main Authors Tang, Yihua, Chen, Jingjing, Mao, Zhiyong, Roth, Christina, Wang, Dajian
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.02.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g‐C3N4). In brief, more than 14.5 at% of N from g‐C3N4 (55.1 at% N) was retained by reacting graphitic‐N with lithium, which was subsequently removed. As graphitic‐N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N‐doped carbons with high graphitic‐N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N‐doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g−1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li+ storage capacity and high ICE, and thus promoting research and application of N‐doped carbon materials. High N‐doped (14.5–42.7 at%) carbon with low graphitic‐N proportion (10.8%–17.2%) has been fabricated by denitrification for graphitic carbon nitride (g‐C3N4) using Li metal powder as both reductant and prelithiation reagent. As anode materials for lithium batteries, the optimal sample exhibits a high capacity of 1499.9 mAh g−1 with an enhanced ICE of 93.7%.
AbstractList Abstract N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g‐C3N4). In brief, more than 14.5 at% of N from g‐C3N4 (55.1 at% N) was retained by reacting graphitic‐N with lithium, which was subsequently removed. As graphitic‐N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N‐doped carbons with high graphitic‐N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N‐doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g−1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li+ storage capacity and high ICE, and thus promoting research and application of N‐doped carbon materials.
N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li + storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g‐C 3 N 4 ). In brief, more than 14.5 at% of N from g‐C 3 N 4 (55.1 at% N) was retained by reacting graphitic‐N with lithium, which was subsequently removed. As graphitic‐N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N‐doped carbons with high graphitic‐N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N‐doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g −1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li + storage capacity and high ICE, and thus promoting research and application of N‐doped carbon materials.
N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N-doped carbon anodes still suffer from low N-doping levels and low initial Coulombic efficiency (ICE). In this study, high N-doped and low graphitic-N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g-C3N4). In brief, more than 14.5 at% of N from g-C3N4 (55.1 at% N) was retained by reacting graphitic-N with lithium, which was subsequently removed. As graphitic-N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N-doped carbons with high graphitic-N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N-doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g−1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li+ storage capacity and high ICE, and thus promoting research and application of N-doped carbon materials.
N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon anodes still suffer from low N‐doping levels and low initial Coulombic efficiency (ICE). In this study, high N‐doped and low graphitic‐N carbons (LGNCs) with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride (g‐C3N4). In brief, more than 14.5 at% of N from g‐C3N4 (55.1 at% N) was retained by reacting graphitic‐N with lithium, which was subsequently removed. As graphitic‐N is largely responsible for the irreversible capacity, the anode's performance was significantly increased. Compared to general N‐doped carbons with high graphitic‐N proportion (>50%) and low N content (<15 at%), LGNCs delivered a low proportion of 10.8%–17.2% within the high N‐doping content of 14.5–42.7 at%, leading to an enhanced specific capacity of 1499.9 mAh g−1 at an ICE of 93.7% for the optimal sample of LGNC (4:1). This study provides a facile strategy to control the N content and speciation, achieving both high Li+ storage capacity and high ICE, and thus promoting research and application of N‐doped carbon materials. High N‐doped (14.5–42.7 at%) carbon with low graphitic‐N proportion (10.8%–17.2%) has been fabricated by denitrification for graphitic carbon nitride (g‐C3N4) using Li metal powder as both reductant and prelithiation reagent. As anode materials for lithium batteries, the optimal sample exhibits a high capacity of 1499.9 mAh g−1 with an enhanced ICE of 93.7%.
Author Roth, Christina
Mao, Zhiyong
Wang, Dajian
Chen, Jingjing
Tang, Yihua
Author_xml – sequence: 1
  givenname: Yihua
  orcidid: 0000-0003-3754-5293
  surname: Tang
  fullname: Tang, Yihua
  email: Yihua.Tang@uni-bayreuth.de
  organization: Bavarian Center for Battery Technology (BayBatt)
– sequence: 2
  givenname: Jingjing
  surname: Chen
  fullname: Chen, Jingjing
  organization: Tianjin University of Technology
– sequence: 3
  givenname: Zhiyong
  surname: Mao
  fullname: Mao, Zhiyong
  organization: Tianjin University of Technology
– sequence: 4
  givenname: Christina
  surname: Roth
  fullname: Roth, Christina
  organization: Universität Bayreuth
– sequence: 5
  givenname: Dajian
  surname: Wang
  fullname: Wang, Dajian
  organization: Tianjin University of Technology
BookMark eNp1kcFq3DAQhk1JIWkayCMIeunFW0m2JftYlrQJhPSSHnoS4_FoV4tX2spaFt_yAoU-Y5-k2m4LpTQnDcP3f5phXhVnPngqimvBF4Jz-Q5plgvZ6BfFhVSVLrtKtWd_1efF1TRteEaFFlx2F8W3W7dajzN7-PH0fQg7GhhC7INnB5fWbAwHtoqwW7vkMBMPDINP5BODiYEPA7EtJIoORmZDZOTX4DFLnM-J3FyG_Ri2vUNG1jp05HFmwbIx291-m5Uu_9VDOkpoel28tDBOdPX7vSw-f7h5XN6W958-3i3f35dYKalL2-mqVnkr5EqhELrplWhRNQN1IAeLLR-Guu2xqUC0IKipu6ZSqoMOO9021WVxd_IOATZmF90W4mwCOPOrEeLKQMwrj2S0yAlCidbyWlGb1bzued_2BMp2VXa9Obl2MXzd05TMJuyjz-MbqbWWTdtwkanFicIYpimSNegSpLx9iuBGI7g5XtAcL2jyBXPg7T-BP2P-By1P6MGNND_LmeXNF3nkfwJNTq_X
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_159824
crossref_primary_10_1016_j_indcrop_2024_119231
crossref_primary_10_1039_D3QI00934C
crossref_primary_10_1016_S1872_5805_23_60777_2
crossref_primary_10_1039_D3CS00929G
crossref_primary_10_1016_j_seppur_2024_129237
crossref_primary_10_1021_acsami_4c05993
crossref_primary_10_1016_j_cej_2025_161312
crossref_primary_10_1002_cey2_633
crossref_primary_10_1016_j_est_2023_108696
crossref_primary_10_1021_acsomega_3c07706
crossref_primary_10_1007_s11581_024_05391_x
crossref_primary_10_1002_admi_202300088
crossref_primary_10_1039_D4TA00427B
crossref_primary_10_1007_s40820_024_01639_3
crossref_primary_10_1016_j_apsusc_2023_157530
crossref_primary_10_1002_smll_202500645
crossref_primary_10_1016_j_gee_2022_10_004
crossref_primary_10_1002_cey2_480
crossref_primary_10_1016_j_jcis_2023_08_086
crossref_primary_10_1007_s11581_023_05113_9
crossref_primary_10_1016_j_est_2023_109651
crossref_primary_10_1016_j_carbon_2024_119143
crossref_primary_10_1002_adfm_202308706
crossref_primary_10_1007_s11581_024_05387_7
crossref_primary_10_1002_smll_202309029
crossref_primary_10_1016_j_cej_2023_148047
crossref_primary_10_1016_j_cej_2024_150939
crossref_primary_10_1016_j_fuel_2024_133472
crossref_primary_10_1016_j_jcis_2024_04_118
crossref_primary_10_1016_j_est_2023_108604
crossref_primary_10_1016_j_carbon_2024_119547
crossref_primary_10_1016_j_electacta_2023_143384
crossref_primary_10_1016_j_nxmate_2024_100180
crossref_primary_10_1002_chem_202304114
crossref_primary_10_1002_smll_202310201
crossref_primary_10_1002_adfm_202401397
crossref_primary_10_1021_acs_energyfuels_2c03551
crossref_primary_10_1016_j_colsurfb_2024_114475
crossref_primary_10_1021_acssuschemeng_3c08045
crossref_primary_10_1016_j_jcis_2024_09_009
crossref_primary_10_3389_fenrg_2023_1285044
crossref_primary_10_1016_j_ijhydene_2024_03_176
crossref_primary_10_1016_j_cej_2024_153833
crossref_primary_10_1016_j_carbon_2024_119870
crossref_primary_10_1021_acs_energyfuels_3c02084
crossref_primary_10_1021_acsami_3c16533
crossref_primary_10_1016_j_ceramint_2024_10_337
crossref_primary_10_1002_smll_202406630
crossref_primary_10_1016_j_jelechem_2024_118332
crossref_primary_10_1021_acsami_3c17816
crossref_primary_10_1016_j_apmate_2023_100169
crossref_primary_10_1007_s10853_024_10326_y
Cites_doi 10.1002/adfm.202009433
10.1039/C6TA01929C
10.1016/j.carbon.2017.02.057
10.1002/adma.201104634
10.1016/j.carbon.2017.12.125
10.1016/j.carbon.2020.12.029
10.1021/acs.jpcc.5b07572
10.1016/j.electacta.2015.12.189
10.1039/C5TA05759K
10.1002/ente.202000361
10.1007/s41061-017-0139-2
10.1016/j.ssi.2008.12.015
10.1039/C4TA03868A
10.1016/j.carbon.2020.07.022
10.1039/D0CY00391C
10.1002/adfm.202006425
10.1021/acsnano.7b07116
10.1016/j.apsusc.2019.144136
10.1016/j.carbon.2019.07.047
10.1021/jp074464w
10.3390/nano10112286
10.1016/j.electacta.2018.11.088
10.1039/C7CS00614D
10.1039/D0TA02264K
10.1016/j.apsusc.2018.09.035
10.1016/j.jpcs.2020.109639
10.1002/cey2.2
10.1038/nmat3601
10.1016/j.matlet.2021.129459
10.1016/S0167-2738(02)00134-0
10.1016/j.ensm.2020.02.004
10.1021/acs.chemmater.9b05235
10.1016/j.electacta.2021.138043
10.1039/C4NR07645A
10.1038/srep26146
10.1021/cm303870x
10.1002/cnma.201700051
10.1016/j.carbon.2020.12.010
10.1002/aenm.202000927
10.1021/acsnano.9b03861
10.1016/j.jpowsour.2016.03.049
10.1021/cm0101069
10.1002/adfm.201706294
10.1016/j.carbon.2020.04.003
10.1016/j.electacta.2022.139971
10.1021/jp4122722
10.1039/c3cp51689j
10.1103/PhysRevLett.97.187401
10.1016/j.ssi.2021.115562
10.1021/acsaem.0c01254
10.1002/aenm.201500559
10.1016/j.dsp.2019.01.018
10.1007/s00339-008-4816-4
10.1002/smll.202105866
10.1016/j.carbon.2015.06.039
10.1016/j.carbon.2017.09.099
ContentType Journal Article
Copyright 2022 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
8FH
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
P5Z
P62
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.1002/cey2.257
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological science database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2637-9368
EndPage n/a
ExternalDocumentID oai_doaj_org_article_71978ec2cff046e880d04b0b8bea6f93
10_1002_cey2_257
CEY2257
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51777138
– fundername: Open Access Publishing Fund of the University of Bayreuth
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  funderid: 491183248
GroupedDBID 0R~
1OC
24P
AAHHS
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
ATCPS
AVUZU
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IEP
ITC
M7P
OK1
PATMY
PIMPY
PYCSY
WIN
-SB
-SC
-S~
AAYXX
ADMLS
CAJEB
CAJEC
CITATION
M~E
PHGZM
PHGZT
Q--
U1G
U5L
U5M
8FE
8FG
8FH
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
LK8
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c3627-f97346263c066c1175b618c65de9a2dfc80dd48bc53a18a1e54953669a9c97853
IEDL.DBID DOA
ISSN 2637-9368
IngestDate Wed Aug 27 01:16:52 EDT 2025
Wed Aug 13 10:47:34 EDT 2025
Tue Jul 01 02:57:36 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Wed Jan 22 16:16:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3627-f97346263c066c1175b618c65de9a2dfc80dd48bc53a18a1e54953669a9c97853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3754-5293
OpenAccessLink https://doaj.org/article/71978ec2cff046e880d04b0b8bea6f93
PQID 2777258501
PQPubID 5066174
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_71978ec2cff046e880d04b0b8bea6f93
proquest_journals_2777258501
crossref_citationtrail_10_1002_cey2_257
crossref_primary_10_1002_cey2_257
wiley_primary_10_1002_cey2_257_CEY2257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Carbon energy
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2013; 25
2017; 3
2020; 164
2019; 13
2018; 126
2021; 361
2020; 168
2020; 10
2017; 116
2020; 8
2018; 130
2013; 15
2021; 31
2020; 3
2014; 2
2016; 317
2009; 94
2013; 12
2020; 49
2002; 148
2022; 409
2012; 24
2001; 13
2016; 190
2019; 153
2014; 118
2018; 28
2006; 97
2015; 5
2015; 3
2009; 180
2019; 1
2015; 94
2020; 501
2020; 32
2020; 147
2017; 375
2015; 7
2019; 464
2016; 4
2016; 6
2021; 376
2019; 87
2017; 11
2007; 111
2020; 27
2015; 119
2021; 174
2022; 18
2021; 290
2019; 296
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 49
  start-page: 301
  issue: 1
  year: 2020
  end-page: 331
  article-title: Synthesis of micro/nanoscaled metal‐organic frameworks and their direct electrochemical applications
  publication-title: Chem Soc Rev
– volume: 168
  start-page: 458
  year: 2020
  end-page: 467
  article-title: Templated transformation of g‐C N nanosheets into nitrogen‐doped hollow carbon sphere with tunable nitrogen‐doping properties for application in Li‐ions batteries
  publication-title: Carbon
– volume: 4
  start-page: 8155
  issue: 21
  year: 2016
  end-page: 8160
  article-title: Cobalt phosphate nanoparticles decorated with nitrogen‐doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction
  publication-title: J Mater Chem A
– volume: 32
  start-page: 2961
  issue: 7
  year: 2020
  end-page: 2977
  article-title: Structural analysis of sucrose‐derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion
  publication-title: Chem Mater
– volume: 409
  year: 2022
  article-title: Understanding efficient phosphorus‐functionalization of graphite for vanadium flow batteries
  publication-title: Electrochim Acta
– volume: 190
  start-page: 141
  year: 2016
  end-page: 149
  article-title: An advanced lithium ion battery based on a sulfur‐doped porous carbon anode and a lithium iron phosphate cathode
  publication-title: Electrochim Acta
– volume: 130
  start-page: 41
  year: 2018
  end-page: 47
  article-title: Direct production of nitrogen‐doped porous carbon from urea via magnesiothermic reduction
  publication-title: Carbon
– volume: 97
  issue: 18
  year: 2006
  article-title: Raman spectrum of graphene and graphene layers
  publication-title: Phys Rev Lett
– volume: 464
  start-page: 422
  year: 2019
  end-page: 428
  article-title: In situ double‐template fabrication of boron‐doped 3D hierarchical porous carbon network as anode materials for Li‐ and Na‐ion batteries
  publication-title: Appl Surf Sci
– volume: 10
  issue: 27
  year: 2020
  article-title: Heteroatom doping: an effective way to boost sodium ion storage
  publication-title: Adv Energy Mater
– volume: 28
  issue: 10
  year: 2018
  article-title: N‐doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage
  publication-title: Adv Funct Mater
– volume: 317
  start-page: 25
  year: 2016
  end-page: 34
  article-title: Changes of the balancing between anode and cathode due to fatigue in commercial lithium‐ion cells
  publication-title: J Power Sources
– volume: 25
  start-page: 503
  issue: 3
  year: 2013
  end-page: 508
  article-title: Electrochemical and solid‐state lithiation of graphitic C N
  publication-title: Chem Mater
– volume: 94
  start-page: 1
  year: 2015
  end-page: 8
  article-title: Iodine doped graphene as anode material for lithium ion battery
  publication-title: Carbon
– volume: 10
  start-page: 4794
  issue: 14
  year: 2020
  end-page: 4808
  article-title: Directing nitrogen‐doped carbon support chemistry for improved aqueous phase hydrogenation catalysis
  publication-title: Catal Sci Technol
– volume: 31
  issue: 3
  year: 2021
  article-title: Rational design of core‐shell ZnTe@N‐doped carbon nanowires for high gravimetric and volumetric alkali metal ion storage
  publication-title: Adv Funct Mater
– volume: 180
  start-page: 222
  issue: 2‐3
  year: 2009
  end-page: 225
  article-title: Determination of the diffusion coefficient of lithium ions in nano‐Si
  publication-title: Solid State Ion
– volume: 376
  year: 2021
  article-title: Magnesium citrate induced growth of noodle‐like porous graphitic carbons from coal tar pitch for high‐performance lithium‐ion batteries
  publication-title: Electrochim Acta
– volume: 10
  start-page: 2286
  issue: 11
  year: 2020
  article-title: A review of strategies for the synthesis of N‐doped graphene‐like materials
  publication-title: Nanomaterials
– volume: 27
  start-page: 212
  year: 2020
  end-page: 225
  article-title: Sulfur‐nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms
  publication-title: Energy Storage Mater
– volume: 12
  start-page: 518
  issue: 6
  year: 2013
  end-page: 522
  article-title: High‐rate electrochemical energy storage through Li intercalation pseudocapacitance
  publication-title: Nat Mater
– volume: 501
  year: 2020
  article-title: N‐doped rGO/C@Si composites using sustainable chitosan as the carbon source for lithium‐ion batteries
  publication-title: Appl Surf Sci
– volume: 118
  start-page: 9318
  issue: 18
  year: 2014
  end-page: 9323
  article-title: Graphitic carbon nitride nanotubes as Li‐ion battery materials: a first‐principles study
  publication-title: J Phys Chem C
– volume: 375
  start-page: 54
  issue: 3
  year: 2017
  article-title: Challenges considering the degradation of cell components in commercial lithium‐ion cells: a review and evaluation of present systems
  publication-title: Top Curr Chem
– volume: 6
  year: 2016
  article-title: One‐pot hydrothermal synthesis of nitrogen‐doped graphene as high‐performance anode materials for lithium ion batteries
  publication-title: Sci Rep
– volume: 3
  start-page: 18229
  issue: 35
  year: 2015
  end-page: 18237
  article-title: A highly nitrogen‐doped porous graphene—an anode material for lithium ion batteries
  publication-title: J Mater Chem A
– volume: 8
  issue: 9
  year: 2020
  article-title: High‐level pyridinic‐N‐doped carbon nanosheets with promising performances severed as Li‐ion battery anodes
  publication-title: Energy Technol
– volume: 2
  start-page: 19678
  issue: 46
  year: 2014
  end-page: 19684
  article-title: Nitrogen‐enriched electrospun porous carbon nanofiber networks as high‐performance freestanding electrode materials
  publication-title: J Mater Chem A
– volume: 18
  issue: 7
  year: 2022
  article-title: Red phosphorus anchored on nitrogen‐doped carbon bubble‐carbon nanotube network for highly stable and fast‐charging lithium‐ion batteries
  publication-title: Small
– volume: 361
  year: 2021
  article-title: N, O co‐doped urchin‐like carbon microspheres as high‐performance anode materials for lithium ion batteries
  publication-title: Solid State Ion
– volume: 87
  start-page: 104
  year: 2019
  end-page: 111
  article-title: Bounded non‐linear covariance based ESPRIT method for noncircular signals in presence of impulsive noise
  publication-title: Digit Signal Prog
– volume: 31
  issue: 13
  year: 2021
  article-title: A general strategy for antimony‐based alloy nanocomposite embedded in Swiss‐cheese‐like nitrogen‐doped porous carbon for energy storage
  publication-title: Adv Funct Mater
– volume: 13
  start-page: 3169
  issue: 10
  year: 2001
  end-page: 3183
  article-title: Gas adsorption characterization of ordered organic‐inorganic nanocomposite materials
  publication-title: Chem Mater
– volume: 11
  start-page: 12650
  issue: 12
  year: 2017
  end-page: 12657
  article-title: Nitrogen‐deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes
  publication-title: ACS Nano
– volume: 174
  start-page: 98
  year: 2021
  end-page: 109
  article-title: PVP‐assisted synthesis of g‐C N ‐derived N‐doped graphene with tunable interplanar spacing as high‐performance lithium/sodium ions battery anodes
  publication-title: Carbon
– volume: 111
  start-page: 14925
  issue: 40
  year: 2007
  end-page: 14931
  article-title: Pseudocapacitive contributions to electrochemical energy storage in TiO (anatase) nanoparticles
  publication-title: J Phys Chem C
– volume: 15
  start-page: 16819
  issue: 39
  year: 2013
  end-page: 16827
  article-title: Can all nitrogen‐doped defects improve the performance of graphene anode materials for lithium‐ion batteries?
  publication-title: Phys Chem Chem Phys
– volume: 116
  start-page: 686
  year: 2017
  end-page: 694
  article-title: Covalent‐organic‐frameworks derived N‐doped porous carbon materials as anode for superior long‐life cycling lithium and sodium ion batteries
  publication-title: Carbon
– volume: 13
  start-page: 9279
  issue: 8
  year: 2019
  end-page: 9291
  article-title: Carbon nitride transforms into a high lithium storage capacity nitrogen‐rich carbon
  publication-title: ACS Nano
– volume: 153
  start-page: 372
  year: 2019
  end-page: 380
  article-title: Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage
  publication-title: Carbon
– volume: 1
  start-page: 57
  issue: 1
  year: 2019
  end-page: 76
  article-title: The critical role of carbon in marrying silicon and graphite anodes for high‐energy lithium‐ion batteries
  publication-title: Carbon Energy
– volume: 8
  start-page: 11529
  issue: 23
  year: 2020
  end-page: 11537
  article-title: Boosting chem‐insertion and phys‐adsorption in S/N co‐doped porous carbon nanospheres for high‐performance symmetric Li‐ion capacitors
  publication-title: J Mater Chem A
– volume: 164
  start-page: 261
  year: 2020
  end-page: 271
  article-title: An electrochemical evaluation of nitrogen‐doped carbons as anodes for lithium ion batteries
  publication-title: Carbon
– volume: 148
  start-page: 45
  issue: 1‐2
  year: 2002
  end-page: 51
  article-title: Determination of the chemical diffusion coefficient of lithium in LiFePO
  publication-title: Solid State Ion
– volume: 94
  start-page: 387
  issue: 2
  year: 2009
  end-page: 392
  article-title: Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine
  publication-title: Appl Phys A
– volume: 24
  start-page: 2047
  issue: 15
  year: 2012
  end-page: 2050
  article-title: Nitrogen‐doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability
  publication-title: Adv Mater
– volume: 147
  year: 2020
  article-title: Synthesis and electrochemical properties of nitrogen‐doped porous carbon for lithium ion batteries
  publication-title: J Phys Chem Solids
– volume: 119
  start-page: 21921
  issue: 38
  year: 2015
  end-page: 21927
  article-title: Lithium and sodium storage on graphitic carbon nitride
  publication-title: J Phys Chem C
– volume: 3
  start-page: 311
  issue: 5
  year: 2017
  end-page: 318
  article-title: Tunable nitrogen‐doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots
  publication-title: ChemNanoMat
– volume: 5
  issue: 15
  year: 2015
  article-title: Supramolecular polymerization promoted in situ fabrication of nitrogen‐doped porous graphene sheets as anode materials for Li‐Ion batteries
  publication-title: Adv Energy Mater
– volume: 290
  year: 2021
  article-title: Nitrogen and phosphorus co‐doped mesoporous carbon nanosheets derived from bagasse for lithium‐ion batteries
  publication-title: Mater Lett
– volume: 174
  start-page: 317
  year: 2021
  end-page: 324
  article-title: Self‐templated synthesis of hollow hierarchical porous olive‐like carbon toward universal high‐performance alkali (Li, Na, K)‐ion storage
  publication-title: Carbon
– volume: 3
  start-page: 8676
  issue: 9
  year: 2020
  end-page: 8687
  article-title: Bacterial cellulose‐polyaniline composite derived hierarchical nitrogen‐doped porous carbon nanofibers as anode for high‐rate lithium‐ion batteries
  publication-title: ACS Appl Energy Mater
– volume: 296
  start-page: 925
  year: 2019
  end-page: 937
  article-title: Polyborosilazane derived ceramics—nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries
  publication-title: Electrochim Acta
– volume: 126
  start-page: 9
  year: 2018
  end-page: 16
  article-title: Nitrogen and sulfur dual‐doped carbon films as flexible free‐standing anodes for Li‐ion and Na‐ion batteries
  publication-title: Carbon
– volume: 7
  start-page: 5152
  issue: 12
  year: 2015
  end-page: 5156
  article-title: Structural distortion in graphitic‐C N realizing an efficient photoreactivity
  publication-title: Nanoscale
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.202009433
– ident: e_1_2_7_44_1
  doi: 10.1039/C6TA01929C
– ident: e_1_2_7_49_1
  doi: 10.1016/j.carbon.2017.02.057
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201104634
– ident: e_1_2_7_53_1
  doi: 10.1016/j.carbon.2017.12.125
– ident: e_1_2_7_4_1
  doi: 10.1016/j.carbon.2020.12.029
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.jpcc.5b07572
– ident: e_1_2_7_35_1
  doi: 10.1016/j.electacta.2015.12.189
– ident: e_1_2_7_31_1
  doi: 10.1039/C5TA05759K
– ident: e_1_2_7_48_1
  doi: 10.1002/ente.202000361
– ident: e_1_2_7_10_1
  doi: 10.1007/s41061-017-0139-2
– ident: e_1_2_7_55_1
  doi: 10.1016/j.ssi.2008.12.015
– ident: e_1_2_7_34_1
  doi: 10.1039/C4TA03868A
– ident: e_1_2_7_17_1
  doi: 10.1016/j.carbon.2020.07.022
– ident: e_1_2_7_25_1
  doi: 10.1039/D0CY00391C
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.202006425
– ident: e_1_2_7_15_1
  doi: 10.1021/acsnano.7b07116
– ident: e_1_2_7_6_1
  doi: 10.1016/j.apsusc.2019.144136
– ident: e_1_2_7_38_1
  doi: 10.1016/j.carbon.2019.07.047
– ident: e_1_2_7_56_1
  doi: 10.1021/jp074464w
– ident: e_1_2_7_12_1
  doi: 10.3390/nano10112286
– ident: e_1_2_7_45_1
  doi: 10.1016/j.electacta.2018.11.088
– ident: e_1_2_7_27_1
  doi: 10.1039/C7CS00614D
– ident: e_1_2_7_5_1
  doi: 10.1039/D0TA02264K
– ident: e_1_2_7_52_1
  doi: 10.1016/j.apsusc.2018.09.035
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jpcs.2020.109639
– ident: e_1_2_7_3_1
  doi: 10.1002/cey2.2
– ident: e_1_2_7_57_1
  doi: 10.1038/nmat3601
– ident: e_1_2_7_41_1
  doi: 10.1016/j.matlet.2021.129459
– ident: e_1_2_7_54_1
  doi: 10.1016/S0167-2738(02)00134-0
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ensm.2020.02.004
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.chemmater.9b05235
– ident: e_1_2_7_42_1
  doi: 10.1016/j.electacta.2021.138043
– ident: e_1_2_7_22_1
  doi: 10.1039/C4NR07645A
– ident: e_1_2_7_43_1
  doi: 10.1038/srep26146
– ident: e_1_2_7_14_1
  doi: 10.1021/cm303870x
– ident: e_1_2_7_24_1
  doi: 10.1002/cnma.201700051
– ident: e_1_2_7_16_1
  doi: 10.1016/j.carbon.2020.12.010
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.202000927
– ident: e_1_2_7_28_1
  doi: 10.1021/acsnano.9b03861
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jpowsour.2016.03.049
– ident: e_1_2_7_26_1
  doi: 10.1021/cm0101069
– ident: e_1_2_7_51_1
  doi: 10.1002/adfm.201706294
– ident: e_1_2_7_8_1
  doi: 10.1016/j.carbon.2020.04.003
– ident: e_1_2_7_2_1
  doi: 10.1016/j.electacta.2022.139971
– ident: e_1_2_7_13_1
  doi: 10.1021/jp4122722
– ident: e_1_2_7_18_1
  doi: 10.1039/c3cp51689j
– ident: e_1_2_7_20_1
  doi: 10.1103/PhysRevLett.97.187401
– ident: e_1_2_7_36_1
  doi: 10.1016/j.ssi.2021.115562
– ident: e_1_2_7_40_1
  doi: 10.1021/acsaem.0c01254
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.201500559
– ident: e_1_2_7_47_1
  doi: 10.1016/j.dsp.2019.01.018
– ident: e_1_2_7_23_1
  doi: 10.1007/s00339-008-4816-4
– ident: e_1_2_7_39_1
  doi: 10.1002/smll.202105866
– ident: e_1_2_7_37_1
  doi: 10.1016/j.carbon.2015.06.039
– ident: e_1_2_7_50_1
  doi: 10.1016/j.carbon.2017.09.099
SSID ssj0002171029
Score 2.4877229
Snippet N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N‐doped carbon...
N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li + storage performance. However, N‐doped carbon...
N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However, N-doped carbon...
Abstract N‐doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+ storage performance. However,...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Carbon
Carbon nitride
denitrification
Doping
Efficiency
Electrode materials
Electrolytes
graphitic carbon nitride
graphitic‐N
Lasers
Lithium
Lithium-ion batteries
N‐doped carbon
Rechargeable batteries
Speciation
Specific capacity
Spectrum analysis
Storage capacity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB8RShBRkJwcl019mXT4hGqSokIoSoVE6WH2MaKV2nSaOqv4C_zYzjhCABV-_KsnbsmW9mP3_D2BtopbEAhQgY_UXlXS065UuBZwvRP5BIHd0d_jxpTs-qT-f1eS64LTOtcuMTk6P20VGN_Ei2iAMR2xblh_mVoK5R9Hc1t9C4y_bRBXeYfO0fjydfvm6rLAi4MYKqjepsIY8c3Mr3kqLRThxKcv1_YMxdpJpCzclD9iBjRP5xbdRH7A70j9n9HeXAJ-wn8TNmt3wifJyD584sbOw5VVX5LN7wpENNxDYx4cRGx9DCzZKbPnrgCFLTvuMIWDn0F4kEwKdEI8LBUVzN4qWdOg5JXoLuZvIYOOL1i-nqUqAhuU2qnJhkP2VnJ-Nvo1OReyoIh6GqFUG1w4oUaBxiDUc6nbYpO9fUHpSRPriu8L7qrKuHpuxMCTURUJtGGeUw4ayHz9heH3t4zrgKykrrA3p7zCmtUzhlaAI0LWASVZcD9m7zhbXLguPU92Km11LJUpMtNNpiwF5v35yvRTb-8s4xGWn7nGSx00Bc_ND5lOm2xDWCky4EzPsBfZMvKlvYzoJpghoO2OHGxDqf1aX-vbMG7G0y-z8XoUfj7-gA2xf_n-eA3aOu9Gty9yHbu16s4CVil2v7Km_QX_gK8IQ
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgXOCAypdYKGiQEJxCEydx4iOsWlVIrDhQqZwsf4zpStuk2u0K9cYfQOI38ks642SXVgKJa-JYVsYz88Z68yzEa2ykdYh5Fin7Z1XwddbqUGTkW4T-kUXquHf400wdHVcfT-qTkVXJvTCDPsT2wI09I8VrdnDrVvt_REM9Xsp3tOFuizvcWcu6-bL6vD1fIahNuZPRr1Rlk-lStRvt2Vzubz6-kY2SaP8NpHkdr6aEc7gr7o9IEd4Ppn0gbmH3UNy7ph_4SPxklsbiEma_f_wK_TkG8Hbp-g74dBUW_XdIetRMcKMRM2BeOiUZsCuwXR8QCK6mHQgEXQG700QHgDkTiujhtF8v-jM394BJaIK7NKGPQMj9dL4-oynJqOCSQicV3I_F8eHBl-lRNt6vkHlKW00WdVNWrEbjCXd41ux0qmi9qgNqK0P0bR5C1Tpfl7ZobYE1k1GV0lZ7Kj7r8onY6foOnwrQUTvpQqTIT_Wl85qmjCqiapAKqrqYiLeb_2z8KD7Od2AszCCbLA1bxJBFJuLVduT5ILjxlzEf2FTb9yyRnR70y29m9DjTFLRG9NLHmFcKKU6FvHK5ax1aFXU5EXsbQ5vRb1dGNlRtUAWV04rfJOP_cxFmevCVgmHz7H8HPhd3-a76gfK9J3Yulmt8QYjmwr1MW_cKw2H1zw
  priority: 102
  providerName: Wiley-Blackwell
Title Highly N‐doped carbon with low graphitic‐N content as anode material for enhanced initial Coulombic efficiency of lithium‐ion batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.257
https://www.proquest.com/docview/2777258501
https://doaj.org/article/71978ec2cff046e880d04b0b8bea6f93
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG40XvQgPnGTuJQgehoz0zuvPppl1yBkCWIgnpp-VJOFzUxIskguwT8g-Bv9JVb1zIYRFC9e-tDTNE1XdddXw9dfCfEaK2ksYpoEiv5J7l2R1MpnCZ0tQv_IInX8dvhwUR4c5x9PipNBqS_mhHXywN3G7VUZ5TnopAuBUjkkd_NpblNbWzRlUFHnk2LeIJniO5iANkVOtVGbTeWew2v5TnIUGsSfKNP_G7YcItQYYuaPxMMeG8L7bk2PxR1snogHA8XAp-I78zJW17D4-e2Hb8_RgzMXtm2A_6fCqv0KUYGaKW00YgHMRKewAuYSTNN6BAKo0eeAwCpgcxoJALBkChF1Ttv1qj2zSwcYpSX4XSa0AQirny7XZzQlmRFs1OSkFPuZOJ7PPk8Pkr6iQuIoUFVJUNUkZ_0ZR0jDsUqnLbPalYVHZaQPjnbX57V1xcRktcmwYPppWSqjHJmhmDwXW03b4AsBKigrrQ9011NGaZ2iKUMZsKyQUqgiG4m3m33Wrpcb56oXK90JJUvNFtFkkZF4dTvyvJPY-MOYfTbV7XcWxY4d5Cq6dxX9L1cZid2NoXV_Ui-1rCi_oJwppRW_icb_6yL0dPaFrr9q-38sZkfc58r1HQF8V2xdXazxJeGbKzsWd2V-RG09_zAW9_Zni6NP4-je1B7ezH4BWzQCEw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAOiKcIFDASj5PprvfpA0IQGlLa5tRK5WTW9phGSndD0qjKL-Df8BuZ8WZDkIBbr17Lsjyvb7zjbxh7AYWsDEAkPEZ_kTqbiVK5WKBtIfoHIqmjt8NHo3x4kn4-zU632M_uLQyVVXY-MThq11i6I9-VBeJAxLZR_G76XVDXKPq72rXQaNXiAJaXmLLN3-5_RPm-lHKwd9wfilVXAWHRWRfCqyJJiYPFYrS1xFRp8ri0eeZAVdJ5W0bOpaWxWVLFZRVDRiWYea4qZTHloi4R6PKvpUmiyKLKwaf1nQ7Ce4zXquO4jeSuhaV8Iyn2bUS90BzgD0S7iYtDYBvcZrdWiJS_b1XoDtuC-i67ucFTeI_9oGqQyZKPhGum4LitZqapOd3h8klzyQPrNZXRiRGn2ncMZLya86puHHCExEHLOcJjDvVZKDngYypawsF-s5g052ZsOQQyC3oJyhvPMTs4Gy_OBaoNN4EDFFP6--zkSs76AduumxoeMq68MtI4j7EFM1hjFS7pcw95AZiyZXGPve5OWNsVvTl12ZjolphZapKFRln02PP1zGlL6fGXOR9ISOvvRMIdBprZN72yaV3EuEew0nofpTmgJ3RRaiJTGqhyr5Ie2-lErFeeYa5_63GPvQpi_-cmdH_vC7rb4tH_13nGrg-Pjw714f7o4DG7IRGFtWXlO2z7YraAJ4iaLszToKqcfb1q2_gF-KQqFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbhMxELWqVELwgLiK0AJG4vJksuvszQ8I0TRRSyGqEJXKk1nfaKR0nSaNqnwB_8TXMePdDUEC3vq6u7Isz3jmjPf4DCEvbM5LZW3EHGR_lhidskKYmMHeAvRvUaQO7w5_GmcHJ8mH0_R0i_xs78IgrbKNiSFQG6_xjLzHc8CBgG2juOcaWsTx_ujd7IJhByn809q206hd5MiurqB8W7w93Adbv-R8NPwyOGBNhwGmIXDnzIm8n6Aei4bMq1G1UmVxobPUWFFy43QRGZMUSqf9Mi7K2KZIx8wyUQoN5Rd2jIDwv51DVRR1yPbecHz8eX3CA2AfsrdoFW8j3tN2xd9wzIQbOTC0CvgD326i5JDmRnfI7Qaf0ve1Q90lW7a6R25tqBbeJz-QGzJd0TEzfmYN1eVc-YriiS6d-isaNLCRVMfGFJnwkNZouaBl5Y2lAJCDz1MAy9RWZ4GAQCdIYYKHA7-c-nM10dQGaQu8F0q9o1ArnE2W5wyciKqgCAoF_gNyci2r_ZB0Kl_ZR4QKJxRXxkGmgXpWaQFDuszZLLdQwKVxl7xuV1jqRuwce25MZS3TzCXaQoItuuT5-stZLfDxl2_20Ejr9yjJHR74-XfZ7HCZxzBHq7l2LkoyC3HRRImKVKFsmTnR75Ld1sSyiRML-duru-RVMPs_JyEHw68QfPPH_x_nGbkB-0J-PBwf7ZCbHCBZzTHfJZ3L-dI-AQh1qZ42vkrJt-veHr8AtTEvqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+N%E2%80%90doped+carbon+with+low+graphitic%E2%80%90N+content+as+anode+material+for+enhanced+initial+Coulombic+efficiency+of+lithium%E2%80%90ion+batteries&rft.jtitle=Carbon+energy&rft.au=Yihua+Tang&rft.au=Jingjing+Chen&rft.au=Zhiyong+Mao&rft.au=Christina+Roth&rft.date=2023-02-01&rft.pub=Wiley&rft.eissn=2637-9368&rft.volume=5&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcey2.257&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_71978ec2cff046e880d04b0b8bea6f93
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon