Magnetic-Resonance-Based Electrical Properties Tomography: A Review

Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a maj...

Full description

Saved in:
Bibliographic Details
Published inIEEE reviews in biomedical engineering Vol. 7; pp. 87 - 96
Main Authors Zhang, Xiaotong, Liu, Jiaen, He, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed.
AbstractList Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed.
Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed.
Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed.Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed.
Author Jiaen Liu
Xiaotong Zhang
Bin He
Author_xml – sequence: 1
  givenname: Xiaotong
  surname: Zhang
  fullname: Zhang, Xiaotong
– sequence: 2
  givenname: Jiaen
  surname: Liu
  fullname: Liu, Jiaen
– sequence: 3
  givenname: Bin
  surname: He
  fullname: He, Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24803104$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFrFDEUhYNUbK39ASLIQF98mTU3mWQmPgjtsmqhRVnqc8hk7mxTZpM1mW3pvzfDbov2ofclgXzncHLPW3Lgg0dC3gOdAVD1eXl-tZgxCnzGmKoZla_IEagKSoBGHUx3Xpc8zyE5SemW5hFVDQ19Qw5Z1VAOtDoi8yuz8jg6Wy4xBW-8xfLcJOyKxYB2jM6aofgVwwbj6DAV12EdVtFsbh6-FGfFEu8c3r8jr3szJDzZn8fk97fF9fxHefnz-8X87LK0XDJZom2FFIqBafuO9k3PWcslF0J2XFhjOmta1jYcKqSqbTuEplaNUiB7YWpZ8WPydee72bZr7Cz6MZpBb6Jbm_igg3H6_xfvbvQq3OkKgPNKZINPe4MY_mwxjXrtksVhMB7DNmkQjMkGRA0ZPX2G3oZt9Pl7mZKV5HmFk-HHfxM9RXncbwbqHWBjSClir60bzejCFNANGqieytRTmXoqU-_LzEp4pnw0f0nzYadxiPjEy5oCMM7_ApdiqMg
CODEN IRBECO
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_01_019
crossref_primary_10_3390_diagnostics11020176
crossref_primary_10_1088_1361_6420_aa7ef2
crossref_primary_10_1109_TBME_2020_3003460
crossref_primary_10_1002_mrm_27453
crossref_primary_10_1002_mrm_28542
crossref_primary_10_1038_s41598_021_03928_y
crossref_primary_10_1002_ima_22257
crossref_primary_10_1038_s41598_019_40595_6
crossref_primary_10_1088_1361_6420_aa8414
crossref_primary_10_1002_nbm_4211
crossref_primary_10_1109_TMI_2016_2560146
crossref_primary_10_1002_mrm_26283
crossref_primary_10_1371_journal_pone_0260922
crossref_primary_10_1002_mrm_27414
crossref_primary_10_1109_TMTT_2017_2725830
crossref_primary_10_1109_TMI_2024_3354463
crossref_primary_10_3390_jimaging5020025
crossref_primary_10_1002_mrm_26609
crossref_primary_10_1109_TBME_2017_2777143
crossref_primary_10_1097_RMR_0000000000000204
crossref_primary_10_1109_TMTT_2019_2963870
crossref_primary_10_1109_TAP_2018_2877270
crossref_primary_10_1109_TAP_2020_3048550
crossref_primary_10_1002_nbm_5137
crossref_primary_10_1109_RBME_2021_3055556
crossref_primary_10_1155_2019_9210258
crossref_primary_10_1002_mrm_30338
crossref_primary_10_1038_s41598_023_36958_9
crossref_primary_10_1002_mrm_25820
crossref_primary_10_1002_mrm_27004
crossref_primary_10_1088_1361_6560_ab3259
crossref_primary_10_1109_JETCAS_2018_2822684
crossref_primary_10_1002_mmce_21211
crossref_primary_10_1109_TIM_2024_3485405
crossref_primary_10_1088_1361_6560_aacc35
crossref_primary_10_1016_j_colsurfa_2023_132425
crossref_primary_10_1515_bmt_2024_0043
crossref_primary_10_1109_TBME_2020_3022884
crossref_primary_10_1016_j_nano_2015_10_014
crossref_primary_10_1002_mrm_28685
crossref_primary_10_1038_s41598_018_36435_8
crossref_primary_10_1109_TMI_2020_3043294
crossref_primary_10_3171_2017_5_JNS162978
crossref_primary_10_1002_cnm_2909
crossref_primary_10_1088_1361_6420_aaf5b8
crossref_primary_10_9746_jcmsi_10_571
crossref_primary_10_3390_app10217910
crossref_primary_10_1109_TMAG_2016_2621731
crossref_primary_10_1088_1361_6560_ac7b64
crossref_primary_10_3390_tomography8050192
crossref_primary_10_1109_JERM_2023_3236153
crossref_primary_10_1186_s13408_016_0041_1
crossref_primary_10_1016_j_compmedimag_2020_101830
crossref_primary_10_1109_TBME_2015_2468672
crossref_primary_10_1109_TIE_2017_2714147
crossref_primary_10_1002_mrm_27589
crossref_primary_10_1109_TIE_2018_2869362
crossref_primary_10_1109_OJEMB_2024_3402998
crossref_primary_10_1007_s40031_019_00391_2
crossref_primary_10_1063_1_5099892
crossref_primary_10_1038_s41598_022_12289_z
crossref_primary_10_1038_s41598_022_19832_y
Cites_doi 10.1109/TBME.2007.897331
10.1085/jgp.9.2.137
10.1109/TMI.2009.2036843
10.1109/10.650364
10.1118/1.597312
10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
10.1016/S1350-4533(02)00194-7
10.1002/mrm.23322
10.1111/j.1749-6632.1999.tb09446.x
10.1088/0031-9155/41/11/002
10.1002/mrm.21893
10.1002/mrm.1910280203
10.1002/nbm.1094
10.1038/380509a0
10.1088/0031-9155/50/21/015
10.1109/TBME.2005.863955
10.1002/mrm.24158
10.1006/jmra.1993.1133
10.1088/0031-9155/58/13/4395
10.1088/0031-9155/36/6/002
10.1002/mrm.21488
10.1016/j.juro.2007.11.043
10.1109/TBME.2006.883827
10.1148/radiol.2432060286
10.1200/JCO.2005.06.155
10.1016/j.neuroimage.2009.02.009
10.1109/TBME.2008.925700
10.1109/TBME.2010.2094618
10.1109/10.1374
10.1109/10.668756
10.1111/j.1749-6632.1999.tb09481.x
10.1002/mrm.20708
10.1109/TMI.2011.2171000
10.1155/2013/421619
10.1002/nbm.1251
10.1002/mrm.22995
10.1117/12.480000
10.1002/mrm.24329
10.1088/0031-9155/41/11/001
10.1016/0730-725X(89)90328-7
10.1002/mrm.21676
10.1088/0031-9155/50/11/016
10.1148/radiol.2312030606
10.1109/RBME.2011.2169780
10.1088/0031-9155/41/11/003
10.1002/cmr.b.21204
10.1109/TBME.2008.918565
10.1002/jmri.20041
10.1002/mrm.22830
10.1109/TMI.2009.2015757
10.1016/0730-725X(93)90078-R
10.1002/mrm.21782
10.1109/10.797998
10.1016/j.juro.2009.06.007
10.1002/mrm.24358
10.1159/000129087
10.1002/mrm.21120
10.1002/mrm.21729
10.1002/mrm.22832
10.1002/mrm.20354
10.1097/00005392-200210010-00085
10.1109/10.477704
10.1002/mrm.22845
10.1002/mrm.24215
10.1016/j.mri.2003.08.027
10.1109/TBME.2002.800759
10.1109/TBME.2004.836523
10.1109/TMI.2013.2251653
10.1109/10.979355
10.1002/mrm.22357
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
Copyright (c) 2013 IEEE. 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
– notice: Copyright (c) 2013 IEEE. 2013
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/RBME.2013.2297206
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Libary (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1941-1189
EndPage 96
ExternalDocumentID PMC4113345
3442147651
24803104
10_1109_RBME_2013_2297206
6701123
Genre orig-research
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: RO1EB006433; RO1EB007920; R21EB017069; R21EB009133; R21EB014353; P41RR008079; P30NS057091; U01HL117664
– fundername: NINDS NIH HHS
  grantid: P30NS057091
– fundername: NIBIB NIH HHS
  grantid: R21EB009133
– fundername: NIBIB NIH HHS
  grantid: R21EB017069
– fundername: NIBIB NIH HHS
  grantid: R21EB014353
– fundername: NHLBI NIH HHS
  grantid: U01 HL117664
– fundername: NIBIB NIH HHS
  grantid: R21 EB014353
– fundername: NIBIB NIH HHS
  grantid: R01EB006433
– fundername: NIBIB NIH HHS
  grantid: R01 EB007920
– fundername: NHLBI NIH HHS
  grantid: U01HL117664
– fundername: NCRR NIH HHS
  grantid: P41 RR008079
GroupedDBID ---
0R~
23N
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACPRK
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
F5P
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c3626-ecb565921abfd0f8f32b363556d35caadcab2b8314e09bbde187989916f5a7643
IEDL.DBID RIE
ISSN 1937-3333
1941-1189
IngestDate Thu Aug 21 13:56:18 EDT 2025
Fri Jul 11 15:47:36 EDT 2025
Mon Jun 30 10:14:08 EDT 2025
Thu Apr 03 07:04:28 EDT 2025
Tue Jul 01 00:53:40 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Tue Aug 26 16:49:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3626-ecb565921abfd0f8f32b363556d35caadcab2b8314e09bbde187989916f5a7643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/6701123
PMID 24803104
PQID 1564632485
PQPubID 85512
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4113345
pubmed_primary_24803104
crossref_citationtrail_10_1109_RBME_2013_2297206
crossref_primary_10_1109_RBME_2013_2297206
proquest_journals_1564632485
proquest_miscellaneous_1522681571
ieee_primary_6701123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140000
2014-00-00
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 20140000
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE reviews in biomedical engineering
PublicationTitleAbbrev RBME
PublicationTitleAlternate IEEE Rev Biomed Eng
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref96
ref55
ref11
ref54
ref10
huhndorf (ref85) 2013
ref17
ref16
ref19
ref18
nehrke (ref64) 2012; 68
balidemaj (ref94) 2013
seo (ref45) 2012; 31
ref51
ref50
zhang (ref91) 2013
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
liu (ref75) 2013
ref7
van lier (ref84) 2011
ref9
ref4
lee (ref93) 2013
ref3
ref6
voigt (ref83) 2011
ref82
ref81
ref40
ref79
ref35
ref78
ref34
ref37
ref36
ref31
ref30
ref77
ref33
foster (ref5) 1989; 17
ref2
ref1
ref39
ref38
van de moortele (ref72) 2009
buchenau (ref53) 2013
van lier (ref52) 2013
stehning (ref80) 2011
stehning (ref87) 2012
katscher (ref88) 2013
sodickson (ref74) 2012
ref70
ref73
ref68
ref24
ref23
hafalir (ref92) 2013
ref26
ref69
ref25
sodickson (ref95) 2013
ref20
van de moortele (ref71) 2007
ref63
katscher (ref76) 2012
ref66
ref22
ref65
ref21
van lier (ref86) 2012
shin (ref90) 2013
ref27
(ref32) 0
ref29
bulumulla (ref89) 2012
ref60
ref62
ref61
korzhenevskii (ref28) 0; 42
katscher (ref67) 2010
17278589 - IEEE Trans Biomed Eng. 2007 Feb;54(2):323-30
12148820 - IEEE Trans Biomed Eng. 2002 Aug;49(8):812-22
23401276 - Magn Reson Med. 2014 Jan;71(1):354-63
15112317 - J Magn Reson Imaging. 2004 May;19(5):650-6
15837985 - J Clin Oncol. 2005 Apr 20;23(12):2703-15
21381106 - Magn Reson Med. 2011 May;65(5):1470-82
21773985 - Magn Reson Med. 2011 Aug;66(2):456-66
12538062 - Med Eng Phys. 2003 Mar;25(2):79-90
16270333 - Magn Reson Med. 2005 Dec;54(6):1503-18
20129847 - IEEE Trans Med Imaging. 2010 Feb;29(2):474-81
23554838 - Comput Math Methods Med. 2013;2013:421619
15128998 - Radiology. 2004 May;231(2):571-80
8938025 - Phys Med Biol. 1996 Nov;41(11):2251-69
8058021 - Med Phys. 1994 Apr;21(4):547-50
18295258 - J Urol. 2008 Apr;179(4):1580-6
12066883 - IEEE Trans Biomed Eng. 2002 Feb;49(2):160-7
23508259 - IEEE Trans Med Imaging. 2013 Jun;32(6):1058-67
2918822 - Magn Reson Imaging. 1989 Jan-Feb;7(1):89-94
21710613 - Magn Reson Med. 2012 Feb;67(2):552-61
15901962 - Phys Med Biol. 2005 Jun 7;50(11):2675-87
21990329 - IEEE Trans Med Imaging. 2012 Feb;31(2):430-7
22213053 - Magn Reson Med. 2012 Oct;68(4):1117-26
22692921 - Magn Reson Med. 2013 May;69(5):1285-96
8567009 - IEEE Trans Biomed Eng. 1996 Jan;43(1):88-94
12352458 - J Urol. 2002 Oct;168(4 Pt 1):1563-7
2384126 - Eur Surg Res. 1990;22(2):86-92
9444846 - IEEE Trans Biomed Eng. 1998 Jan;45(1):119-24
17605363 - IEEE Trans Biomed Eng. 2007 Jul;54(7):1321-7
8505878 - Magn Reson Imaging. 1993;11(3):437-41
18838370 - IEEE Trans Biomed Eng. 2008 Oct;55(10):2444-51
10372147 - Ann N Y Acad Sci. 1999 Apr 20;873:30-41
22273794 - IEEE Rev Biomed Eng. 2011;4:103-18
1461122 - Magn Reson Med. 1992 Dec;28(2):186-201
8938024 - Phys Med Biol. 1996 Nov;41(11):2231-49
23599691 - Concepts Magn Reson Part B Magn Reson Eng. 2012 Feb 1;41B(1):13-21
22252850 - Magn Reson Med. 2012 Nov;68(5):1517-26
17006885 - NMR Biomed. 2007 Feb;20(1):58-68
22611018 - Magn Reson Med. 2013 Apr;69(4):1157-68
19165885 - Magn Reson Med. 2009 Feb;61(2):315-34
16237248 - Phys Med Biol. 2005 Nov 7;50(21):5175-87
15605856 - IEEE Trans Biomed Eng. 2004 Dec;51(12):2097-102
18816809 - Magn Reson Med. 2008 Oct;60(4):889-94
14725934 - Magn Reson Imaging. 2003 Dec;21(10):1263-81
9581064 - IEEE Trans Biomed Eng. 1998 May;45(5):650-9
20432302 - Magn Reson Med. 2010 May;63(5):1315-22
19233292 - Neuroimage. 2009 Jun;46(2):432-46
19369153 - IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74
19872238 - J Gen Physiol. 1925 Nov 20;9(2):137-52
18440899 - IEEE Trans Biomed Eng. 2008 May;55(5):1530-8
22374804 - Magn Reson Med. 2012 Dec;68(6):1911-8
2651001 - Crit Rev Biomed Eng. 1989;17(1):25-104
10582423 - IEEE Trans Biomed Eng. 1999 Nov;46(11):1379-86
2834285 - IEEE Trans Biomed Eng. 1988 Apr;35(4):257-63
23443882 - MAGMA. 2013 Oct;26(5):463-76
21394773 - Magn Reson Med. 2011 Sep;66(3):846-58
15678526 - Magn Reson Med. 2005 Feb;53(2):408-17
8938026 - Phys Med Biol. 1996 Nov;41(11):2271-93
8606768 - Nature. 1996 Apr 11;380(6574):509-12
17191242 - Magn Reson Med. 2007 Jan;57(1):192-200
18727090 - Magn Reson Med. 2008 Sep;60(3):739-43
21097372 - IEEE Trans Biomed Eng. 2011 Mar;58(3):713-20
19353666 - Magn Reson Med. 2009 Jun;61(6):1480-8
18384179 - NMR Biomed. 2009 Nov;22(9):919-26
17400760 - Radiology. 2007 May;243(2):350-9
19683745 - J Urol. 2009 Oct;182(4):1600-7
10372181 - Ann N Y Acad Sci. 1999 Apr 20;873:335-45
16686411 - IEEE Trans Biomed Eng. 2006 May;53(5):885-95
23743673 - Phys Med Biol. 2013 Jul 7;58(13):4395-408
18219635 - Magn Reson Med. 2008 Mar;59(3):590-7
References_xml – ident: ref19
  doi: 10.1109/TBME.2007.897331
– ident: ref4
  doi: 10.1085/jgp.9.2.137
– ident: ref43
  doi: 10.1109/TMI.2009.2036843
– start-page: 387
  year: 2012
  ident: ref74
  article-title: Local Maxwell tomography using transmit-receive coil arrays for contact-free mapping of tissue electrical properties and determination of absolute RF phase
  publication-title: Proc ISMRM
– ident: ref36
  doi: 10.1109/10.650364
– start-page: 4180
  year: 2013
  ident: ref90
  article-title: Systematic brain tumor conductivity study with optimized EPT sequence and reconstruction algorithm
  publication-title: Proc ISMRM
– ident: ref6
  doi: 10.1118/1.597312
– ident: ref54
  doi: 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
– ident: ref13
  doi: 10.1016/S1350-4533(02)00194-7
– ident: ref79
  doi: 10.1002/mrm.23322
– ident: ref10
  doi: 10.1111/j.1749-6632.1999.tb09446.x
– ident: ref2
  doi: 10.1088/0031-9155/41/11/002
– ident: ref73
  doi: 10.1002/mrm.21893
– ident: ref31
  doi: 10.1002/mrm.1910280203
– ident: ref65
  doi: 10.1002/nbm.1094
– ident: ref26
  doi: 10.1038/380509a0
– year: 0
  ident: ref32
– ident: ref37
  doi: 10.1088/0031-9155/50/21/015
– ident: ref55
  doi: 10.1109/TBME.2005.863955
– start-page: 386
  year: 2012
  ident: ref87
  article-title: Electric properties tomography (EPT) of the liver in a single breathhold using SSFP
  publication-title: Proc ISMRM
– volume: 68
  start-page: 1517
  year: 2012
  ident: ref64
  article-title: DREAM?A novel approach for robust, ultrafast, multislice B1 mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24158
– ident: ref69
  doi: 10.1006/jmra.1993.1133
– ident: ref51
  doi: 10.1088/0031-9155/58/13/4395
– ident: ref40
  doi: 10.1088/0031-9155/36/6/002
– ident: ref81
  doi: 10.1002/mrm.21488
– start-page: 2532
  year: 2012
  ident: ref89
  article-title: Breast permittivity imaging
  publication-title: Proc ISMRM
– ident: ref20
  doi: 10.1016/j.juro.2007.11.043
– ident: ref38
  doi: 10.1109/TBME.2006.883827
– ident: ref15
  doi: 10.1148/radiol.2432060286
– ident: ref7
  doi: 10.1200/JCO.2005.06.155
– ident: ref82
  doi: 10.1016/j.neuroimage.2009.02.009
– ident: ref16
  doi: 10.1109/TBME.2008.925700
– ident: ref39
  doi: 10.1109/TBME.2010.2094618
– ident: ref8
  doi: 10.1109/10.1374
– ident: ref78
  doi: 10.1109/10.668756
– ident: ref29
  doi: 10.1111/j.1749-6632.1999.tb09481.x
– start-page: 1676
  year: 2007
  ident: ref71
  article-title: Calibration tools for RF shim at very high field with multiple element RF coils: From ultra fast local relative phase to absolute magnitude B1 +mapping
  publication-title: Proc ISMRM
– ident: ref70
  doi: 10.1002/mrm.20708
– volume: 31
  start-page: 430
  year: 2012
  ident: ref45
  article-title: Error analysis of nonconstant admittivity for MR-based electric property imaging
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2011.2171000
– ident: ref68
  doi: 10.1155/2013/421619
– ident: ref66
  doi: 10.1002/nbm.1251
– start-page: 367
  year: 2009
  ident: ref72
  article-title: Very fast multi channel B1 calibration at high field in the small flip angle regime
  publication-title: Proc ISMRM
– start-page: 3372
  year: 2013
  ident: ref88
  article-title: Systematic brain tumor conductivity study with optimized EPT sequence and reconstruction algorithm
  publication-title: Proc ISMRM
– ident: ref46
  doi: 10.1002/mrm.22995
– ident: ref41
  doi: 10.1117/12.480000
– ident: ref96
  doi: 10.1002/mrm.24329
– ident: ref1
  doi: 10.1088/0031-9155/41/11/001
– ident: ref30
  doi: 10.1016/0730-725X(89)90328-7
– start-page: 3484
  year: 2012
  ident: ref86
  article-title: Electrical conductivity in ischemic stroke at 7.0 Tesla: A case study
  publication-title: Proc ISMRM
– ident: ref63
  doi: 10.1002/mrm.21676
– ident: ref34
  doi: 10.1088/0031-9155/50/11/016
– start-page: 1
  year: 2013
  ident: ref53
  article-title: Iterative separation of transmit and receive phase contributions and B1+-based estimation of the specific absorption rate for transmit arrays
  publication-title: Magn Reson Mater Phys Biol Med
– year: 2013
  ident: ref52
  article-title: Electrical properties tomography in the human brain at 1.5, 3, and 7 T: A comparison study
  publication-title: Magn Reson Med
– ident: ref14
  doi: 10.1148/radiol.2312030606
– start-page: 4175
  year: 2013
  ident: ref95
  article-title: Generalized local Maxwell tomography for mapping of electrical property gradients and tensors
  publication-title: Proc ISMRM
– ident: ref17
  doi: 10.1109/RBME.2011.2169780
– start-page: 463
  year: 2013
  ident: ref75
  article-title: In vivo imaging of electrical properties of human brain using a gradient based algorithm
  publication-title: Proc ISMRM
– start-page: 2866
  year: 2010
  ident: ref67
  article-title: Estimation of the anisotropy of electric conductivity via B1 mapping
  publication-title: Proc ISMRM
– ident: ref57
  doi: 10.1006/jmra.1993.1133
– start-page: 3482
  year: 2012
  ident: ref76
  article-title: Estimation of breast tumor conductivity using parabolic phase fitting
  publication-title: Proc ISMRM
– ident: ref3
  doi: 10.1088/0031-9155/41/11/003
– ident: ref48
  doi: 10.1002/cmr.b.21204
– ident: ref35
  doi: 10.1109/TBME.2008.918565
– ident: ref24
  doi: 10.1002/jmri.20041
– ident: ref25
  doi: 10.1002/mrm.22830
– ident: ref42
  doi: 10.1109/TMI.2009.2015757
– ident: ref62
  doi: 10.1016/0730-725X(93)90078-R
– start-page: 128
  year: 2011
  ident: ref80
  article-title: Real-time conductivity mapping using balanced SSFP and phase-based reconstruction
  publication-title: Proc ISMRM
– ident: ref23
  doi: 10.1002/mrm.21782
– volume: 17
  start-page: 25
  year: 1989
  ident: ref5
  article-title: Dielectric properties of tissues and biological materials: A critical review
  publication-title: Crit Rev Biomed Eng
– ident: ref27
  doi: 10.1109/10.797998
– start-page: 4185
  year: 2013
  ident: ref94
  article-title: CSI-EPT: A novel contrast source inversion approach to EPT and patient-specific SAR based on B1+ maps
  publication-title: Proc ISMRM
– ident: ref21
  doi: 10.1016/j.juro.2009.06.007
– ident: ref49
  doi: 10.1002/mrm.24358
– ident: ref9
  doi: 10.1159/000129087
– ident: ref59
  doi: 10.1002/mrm.21120
– ident: ref60
  doi: 10.1002/mrm.21729
– start-page: 4187
  year: 2013
  ident: ref92
  article-title: Magnetic resonance electrical properties tomography (MREPT) based on the solution of the convection-reaction equation
  publication-title: Proc ISMRM
– start-page: 288
  year: 2013
  ident: ref91
  article-title: Local SAR estimation for human brain imaging using multi-channel transceiver coil at 7 T
  publication-title: Proc ISMRM
– ident: ref44
  doi: 10.1002/mrm.22832
– ident: ref58
  doi: 10.1002/mrm.20354
– start-page: 127
  year: 2011
  ident: ref83
  article-title: In vivo glioma characterization using MR conductivity imaging
  publication-title: Proc ISMRM
– ident: ref11
  doi: 10.1097/00005392-200210010-00085
– ident: ref77
  doi: 10.1109/10.477704
– ident: ref56
  doi: 10.1002/mrm.22845
– ident: ref47
  doi: 10.1002/mrm.24215
– ident: ref22
  doi: 10.1016/j.mri.2003.08.027
– ident: ref12
  doi: 10.1109/TBME.2002.800759
– ident: ref18
  doi: 10.1109/TBME.2004.836523
– ident: ref50
  doi: 10.1109/TMI.2013.2251653
– start-page: 4464
  year: 2011
  ident: ref84
  article-title: Electrical conductivity imaging of brain tumours
  publication-title: Proc ISMRM
– start-page: 3626
  year: 2013
  ident: ref85
  article-title: Systematic brain tumor conductivity study with optimized EPT sequence and reconstruction algorithm
  publication-title: Proc ISMRM
– ident: ref33
  doi: 10.1109/10.979355
– start-page: 4183
  year: 2013
  ident: ref93
  article-title: Reduction of boundary artifact in electrical property mapping using MREPT
  publication-title: Proc ISMRM
– ident: ref61
  doi: 10.1002/mrm.22357
– volume: 42
  start-page: 469
  year: 0
  ident: ref28
  article-title: Magnetic induction tomography
  publication-title: J Commun Technol Electron
– reference: 18727090 - Magn Reson Med. 2008 Sep;60(3):739-43
– reference: 15678526 - Magn Reson Med. 2005 Feb;53(2):408-17
– reference: 23443882 - MAGMA. 2013 Oct;26(5):463-76
– reference: 18838370 - IEEE Trans Biomed Eng. 2008 Oct;55(10):2444-51
– reference: 21097372 - IEEE Trans Biomed Eng. 2011 Mar;58(3):713-20
– reference: 22611018 - Magn Reson Med. 2013 Apr;69(4):1157-68
– reference: 15901962 - Phys Med Biol. 2005 Jun 7;50(11):2675-87
– reference: 8606768 - Nature. 1996 Apr 11;380(6574):509-12
– reference: 22273794 - IEEE Rev Biomed Eng. 2011;4:103-18
– reference: 14725934 - Magn Reson Imaging. 2003 Dec;21(10):1263-81
– reference: 23401276 - Magn Reson Med. 2014 Jan;71(1):354-63
– reference: 15128998 - Radiology. 2004 May;231(2):571-80
– reference: 10582423 - IEEE Trans Biomed Eng. 1999 Nov;46(11):1379-86
– reference: 23554838 - Comput Math Methods Med. 2013;2013:421619
– reference: 19369153 - IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74
– reference: 2384126 - Eur Surg Res. 1990;22(2):86-92
– reference: 8938025 - Phys Med Biol. 1996 Nov;41(11):2251-69
– reference: 18816809 - Magn Reson Med. 2008 Oct;60(4):889-94
– reference: 9444846 - IEEE Trans Biomed Eng. 1998 Jan;45(1):119-24
– reference: 17006885 - NMR Biomed. 2007 Feb;20(1):58-68
– reference: 23743673 - Phys Med Biol. 2013 Jul 7;58(13):4395-408
– reference: 19872238 - J Gen Physiol. 1925 Nov 20;9(2):137-52
– reference: 21394773 - Magn Reson Med. 2011 Sep;66(3):846-58
– reference: 16237248 - Phys Med Biol. 2005 Nov 7;50(21):5175-87
– reference: 17605363 - IEEE Trans Biomed Eng. 2007 Jul;54(7):1321-7
– reference: 2918822 - Magn Reson Imaging. 1989 Jan-Feb;7(1):89-94
– reference: 16270333 - Magn Reson Med. 2005 Dec;54(6):1503-18
– reference: 22374804 - Magn Reson Med. 2012 Dec;68(6):1911-8
– reference: 18384179 - NMR Biomed. 2009 Nov;22(9):919-26
– reference: 20432302 - Magn Reson Med. 2010 May;63(5):1315-22
– reference: 21990329 - IEEE Trans Med Imaging. 2012 Feb;31(2):430-7
– reference: 22692921 - Magn Reson Med. 2013 May;69(5):1285-96
– reference: 18295258 - J Urol. 2008 Apr;179(4):1580-6
– reference: 10372147 - Ann N Y Acad Sci. 1999 Apr 20;873:30-41
– reference: 16686411 - IEEE Trans Biomed Eng. 2006 May;53(5):885-95
– reference: 22252850 - Magn Reson Med. 2012 Nov;68(5):1517-26
– reference: 21773985 - Magn Reson Med. 2011 Aug;66(2):456-66
– reference: 19233292 - Neuroimage. 2009 Jun;46(2):432-46
– reference: 12148820 - IEEE Trans Biomed Eng. 2002 Aug;49(8):812-22
– reference: 10372181 - Ann N Y Acad Sci. 1999 Apr 20;873:335-45
– reference: 21710613 - Magn Reson Med. 2012 Feb;67(2):552-61
– reference: 8058021 - Med Phys. 1994 Apr;21(4):547-50
– reference: 17191242 - Magn Reson Med. 2007 Jan;57(1):192-200
– reference: 15837985 - J Clin Oncol. 2005 Apr 20;23(12):2703-15
– reference: 8505878 - Magn Reson Imaging. 1993;11(3):437-41
– reference: 2651001 - Crit Rev Biomed Eng. 1989;17(1):25-104
– reference: 12352458 - J Urol. 2002 Oct;168(4 Pt 1):1563-7
– reference: 23599691 - Concepts Magn Reson Part B Magn Reson Eng. 2012 Feb 1;41B(1):13-21
– reference: 17278589 - IEEE Trans Biomed Eng. 2007 Feb;54(2):323-30
– reference: 8938024 - Phys Med Biol. 1996 Nov;41(11):2231-49
– reference: 19165885 - Magn Reson Med. 2009 Feb;61(2):315-34
– reference: 15605856 - IEEE Trans Biomed Eng. 2004 Dec;51(12):2097-102
– reference: 17400760 - Radiology. 2007 May;243(2):350-9
– reference: 1461122 - Magn Reson Med. 1992 Dec;28(2):186-201
– reference: 22213053 - Magn Reson Med. 2012 Oct;68(4):1117-26
– reference: 19683745 - J Urol. 2009 Oct;182(4):1600-7
– reference: 19353666 - Magn Reson Med. 2009 Jun;61(6):1480-8
– reference: 8567009 - IEEE Trans Biomed Eng. 1996 Jan;43(1):88-94
– reference: 23508259 - IEEE Trans Med Imaging. 2013 Jun;32(6):1058-67
– reference: 15112317 - J Magn Reson Imaging. 2004 May;19(5):650-6
– reference: 20129847 - IEEE Trans Med Imaging. 2010 Feb;29(2):474-81
– reference: 18440899 - IEEE Trans Biomed Eng. 2008 May;55(5):1530-8
– reference: 18219635 - Magn Reson Med. 2008 Mar;59(3):590-7
– reference: 9581064 - IEEE Trans Biomed Eng. 1998 May;45(5):650-9
– reference: 12538062 - Med Eng Phys. 2003 Mar;25(2):79-90
– reference: 21381106 - Magn Reson Med. 2011 May;65(5):1470-82
– reference: 12066883 - IEEE Trans Biomed Eng. 2002 Feb;49(2):160-7
– reference: 2834285 - IEEE Trans Biomed Eng. 1988 Apr;35(4):257-63
– reference: 8938026 - Phys Med Biol. 1996 Nov;41(11):2271-93
SSID ssj0000547180
Score 2.273343
SecondaryResourceType review_article
Snippet Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor...
Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Algorithms
B_{1} mapping
Bioimpedance
Biomedical measurement
Brain - anatomy & histology
Brain - physiology
Electric Impedance
electrical properties tomography (EPT)
Humans
Image reconstruction
Magnetic field measurement
Magnetic fields
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - methods
Medical imaging
NMR
Nuclear magnetic resonance
R&D
Radio frequency
Research & development
Specific absorption rate
specific absorption rate (SAR)
Tomography
Tomography - methods
Title Magnetic-Resonance-Based Electrical Properties Tomography: A Review
URI https://ieeexplore.ieee.org/document/6701123
https://www.ncbi.nlm.nih.gov/pubmed/24803104
https://www.proquest.com/docview/1564632485
https://www.proquest.com/docview/1522681571
https://pubmed.ncbi.nlm.nih.gov/PMC4113345
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAh4k9MAYMymDqJJ4QPfJ5bXkDdAhN6oQQSLxVSZpuCOghdveyvx67zVUcQog-VYobJbHdOHb8M8CeEMYrU6GmMcMSZWqTGFk5PKqQE5KSF1s_ZPF7eH6tft3omwU46HNhvPft5TM_oNc2ll-N3ZRcZYfDFKVRyEVYxINbl6vV-1PQ9MDfLOuCyKg3-IQgJmf54eVJMaJ7XHIgRJ4KRpWLhMoIF1PN7UhtiZW3rM3XlyZf7EJnX6CYjb-7fHI3mE7swP1_Be340QmuwkowR-PjTn6-woJv1uDzC5DCNfhUhPD7OpwW5k9DWY8Jef0JqsMnJ7gNVvGoraZDDI8vyL3_RDit8dX4ISBiH8XHcReG2IDrs9HV6XkSqjAkjqBqEu-sptgrN7auWJ3VUlhJZsqwktoZUzljhc0kV57l1lae6pdnZHbW2qRo8HyDpWbc-C2IsUNlpJaeq1RlludOasu9RDlBWVI6AjbjROkCRDlVyrgv26MKy0viY0l8LAMfI9jvP3ns8DneI16nNe8Jw3JHsDNjdxk0-F9JIDoEZZ_hqH72zah7FFAxjR9PiQaN14zrlEew2UlH3_dMuiJI5-SmJyBc7_mW5vZvi--tOJdS6e23R_sdlnFOqnMD7cDS5Gnqd9EwmtgfrUY8A3oUBeQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGJsF44GMfUBhQJJ4QveXz2vK2TTcdsE4I3aS9VUmabtO2Hhp3L_z12G2u2k0TWp8qJY2S2K4dO_4Z4JMQxitToaQxwxJlapMYWTk8qpATkpIXWz9kcTwcn6jvp_p0Bb70uTDe-_bymR_QaxvLr6ZuTq6y3WGK3CjkI1hDva95l63Ve1TQ-MAfLevCyCg5-IQwJmf57q_9YkQ3ueRAiDwVjGoXCZURMqZa0kltkZX77M271yZv6aHD51AsVtBdP7kczGd24P7eAXd86BJfwLNgkMZ7HQe9hBXfbMDTWzCFG_C4CAH4TTgozFlDeY8J-f0JrMMn-6gIq3jU1tMhksc_ycF_Q0it8WR6HTCxv8Z7cReI2IKTw9HkYJyEOgyJI7CaxDurKfrKja0rVme1FFaSoTKspHbGVM5YYTPJlWe5tZWnCuYZGZ61NimaPNuw2kwb_xpiHFAZqaXnKlWZ5bmT2nIvkVOQm5SOgC0oUboAUk61Mq7K9rDC8pLoWBIdy0DHCD73n_zuEDr-13mT9rzvGLY7gp0Fucsgw39KgtEhMPsMZ_Wxb0bpo5CKafx0Tn3QfM24TnkErzru6MdecFcE6RLf9B0I2Xu5pbk4bxG-FedSKv3m_tl-gCfjSXFUHn07_vEW1nF9qnMK7cDq7Gbu36GZNLPvW-n4B0VSCS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic-resonance-based+electrical+properties+tomography%3A+a+review&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Zhang%2C+Xiaotong&rft.au=Liu%2C+Jiaen&rft.au=He%2C+Bin&rft.date=2014&rft.eissn=1941-1189&rft.volume=7&rft.spage=87&rft_id=info:doi/10.1109%2FRBME.2013.2297206&rft_id=info%3Apmid%2F24803104&rft.externalDocID=24803104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon