Magnetic-Resonance-Based Electrical Properties Tomography: A Review
Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a maj...
Saved in:
Published in | IEEE reviews in biomedical engineering Vol. 7; pp. 87 - 96 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. |
---|---|
AbstractList | Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution
in vivo
and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in
in vivo
tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed.Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. |
Author | Jiaen Liu Xiaotong Zhang Bin He |
Author_xml | – sequence: 1 givenname: Xiaotong surname: Zhang fullname: Zhang, Xiaotong – sequence: 2 givenname: Jiaen surname: Liu fullname: Liu, Jiaen – sequence: 3 givenname: Bin surname: He fullname: He, Bin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24803104$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVFrFDEUhYNUbK39ASLIQF98mTU3mWQmPgjtsmqhRVnqc8hk7mxTZpM1mW3pvzfDbov2ofclgXzncHLPW3Lgg0dC3gOdAVD1eXl-tZgxCnzGmKoZla_IEagKSoBGHUx3Xpc8zyE5SemW5hFVDQ19Qw5Z1VAOtDoi8yuz8jg6Wy4xBW-8xfLcJOyKxYB2jM6aofgVwwbj6DAV12EdVtFsbh6-FGfFEu8c3r8jr3szJDzZn8fk97fF9fxHefnz-8X87LK0XDJZom2FFIqBafuO9k3PWcslF0J2XFhjOmta1jYcKqSqbTuEplaNUiB7YWpZ8WPydee72bZr7Cz6MZpBb6Jbm_igg3H6_xfvbvQq3OkKgPNKZINPe4MY_mwxjXrtksVhMB7DNmkQjMkGRA0ZPX2G3oZt9Pl7mZKV5HmFk-HHfxM9RXncbwbqHWBjSClir60bzejCFNANGqieytRTmXoqU-_LzEp4pnw0f0nzYadxiPjEy5oCMM7_ApdiqMg |
CODEN | IRBECO |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2017_01_019 crossref_primary_10_3390_diagnostics11020176 crossref_primary_10_1088_1361_6420_aa7ef2 crossref_primary_10_1109_TBME_2020_3003460 crossref_primary_10_1002_mrm_27453 crossref_primary_10_1002_mrm_28542 crossref_primary_10_1038_s41598_021_03928_y crossref_primary_10_1002_ima_22257 crossref_primary_10_1038_s41598_019_40595_6 crossref_primary_10_1088_1361_6420_aa8414 crossref_primary_10_1002_nbm_4211 crossref_primary_10_1109_TMI_2016_2560146 crossref_primary_10_1002_mrm_26283 crossref_primary_10_1371_journal_pone_0260922 crossref_primary_10_1002_mrm_27414 crossref_primary_10_1109_TMTT_2017_2725830 crossref_primary_10_1109_TMI_2024_3354463 crossref_primary_10_3390_jimaging5020025 crossref_primary_10_1002_mrm_26609 crossref_primary_10_1109_TBME_2017_2777143 crossref_primary_10_1097_RMR_0000000000000204 crossref_primary_10_1109_TMTT_2019_2963870 crossref_primary_10_1109_TAP_2018_2877270 crossref_primary_10_1109_TAP_2020_3048550 crossref_primary_10_1002_nbm_5137 crossref_primary_10_1109_RBME_2021_3055556 crossref_primary_10_1155_2019_9210258 crossref_primary_10_1002_mrm_30338 crossref_primary_10_1038_s41598_023_36958_9 crossref_primary_10_1002_mrm_25820 crossref_primary_10_1002_mrm_27004 crossref_primary_10_1088_1361_6560_ab3259 crossref_primary_10_1109_JETCAS_2018_2822684 crossref_primary_10_1002_mmce_21211 crossref_primary_10_1109_TIM_2024_3485405 crossref_primary_10_1088_1361_6560_aacc35 crossref_primary_10_1016_j_colsurfa_2023_132425 crossref_primary_10_1515_bmt_2024_0043 crossref_primary_10_1109_TBME_2020_3022884 crossref_primary_10_1016_j_nano_2015_10_014 crossref_primary_10_1002_mrm_28685 crossref_primary_10_1038_s41598_018_36435_8 crossref_primary_10_1109_TMI_2020_3043294 crossref_primary_10_3171_2017_5_JNS162978 crossref_primary_10_1002_cnm_2909 crossref_primary_10_1088_1361_6420_aaf5b8 crossref_primary_10_9746_jcmsi_10_571 crossref_primary_10_3390_app10217910 crossref_primary_10_1109_TMAG_2016_2621731 crossref_primary_10_1088_1361_6560_ac7b64 crossref_primary_10_3390_tomography8050192 crossref_primary_10_1109_JERM_2023_3236153 crossref_primary_10_1186_s13408_016_0041_1 crossref_primary_10_1016_j_compmedimag_2020_101830 crossref_primary_10_1109_TBME_2015_2468672 crossref_primary_10_1109_TIE_2017_2714147 crossref_primary_10_1002_mrm_27589 crossref_primary_10_1109_TIE_2018_2869362 crossref_primary_10_1109_OJEMB_2024_3402998 crossref_primary_10_1007_s40031_019_00391_2 crossref_primary_10_1063_1_5099892 crossref_primary_10_1038_s41598_022_12289_z crossref_primary_10_1038_s41598_022_19832_y |
Cites_doi | 10.1109/TBME.2007.897331 10.1085/jgp.9.2.137 10.1109/TMI.2009.2036843 10.1109/10.650364 10.1118/1.597312 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q 10.1016/S1350-4533(02)00194-7 10.1002/mrm.23322 10.1111/j.1749-6632.1999.tb09446.x 10.1088/0031-9155/41/11/002 10.1002/mrm.21893 10.1002/mrm.1910280203 10.1002/nbm.1094 10.1038/380509a0 10.1088/0031-9155/50/21/015 10.1109/TBME.2005.863955 10.1002/mrm.24158 10.1006/jmra.1993.1133 10.1088/0031-9155/58/13/4395 10.1088/0031-9155/36/6/002 10.1002/mrm.21488 10.1016/j.juro.2007.11.043 10.1109/TBME.2006.883827 10.1148/radiol.2432060286 10.1200/JCO.2005.06.155 10.1016/j.neuroimage.2009.02.009 10.1109/TBME.2008.925700 10.1109/TBME.2010.2094618 10.1109/10.1374 10.1109/10.668756 10.1111/j.1749-6632.1999.tb09481.x 10.1002/mrm.20708 10.1109/TMI.2011.2171000 10.1155/2013/421619 10.1002/nbm.1251 10.1002/mrm.22995 10.1117/12.480000 10.1002/mrm.24329 10.1088/0031-9155/41/11/001 10.1016/0730-725X(89)90328-7 10.1002/mrm.21676 10.1088/0031-9155/50/11/016 10.1148/radiol.2312030606 10.1109/RBME.2011.2169780 10.1088/0031-9155/41/11/003 10.1002/cmr.b.21204 10.1109/TBME.2008.918565 10.1002/jmri.20041 10.1002/mrm.22830 10.1109/TMI.2009.2015757 10.1016/0730-725X(93)90078-R 10.1002/mrm.21782 10.1109/10.797998 10.1016/j.juro.2009.06.007 10.1002/mrm.24358 10.1159/000129087 10.1002/mrm.21120 10.1002/mrm.21729 10.1002/mrm.22832 10.1002/mrm.20354 10.1097/00005392-200210010-00085 10.1109/10.477704 10.1002/mrm.22845 10.1002/mrm.24215 10.1016/j.mri.2003.08.027 10.1109/TBME.2002.800759 10.1109/TBME.2004.836523 10.1109/TMI.2013.2251653 10.1109/10.979355 10.1002/mrm.22357 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 Copyright (c) 2013 IEEE. 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 – notice: Copyright (c) 2013 IEEE. 2013 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/RBME.2013.2297206 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Libary (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1941-1189 |
EndPage | 96 |
ExternalDocumentID | PMC4113345 3442147651 24803104 10_1109_RBME_2013_2297206 6701123 |
Genre | orig-research Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH grantid: RO1EB006433; RO1EB007920; R21EB017069; R21EB009133; R21EB014353; P41RR008079; P30NS057091; U01HL117664 – fundername: NINDS NIH HHS grantid: P30NS057091 – fundername: NIBIB NIH HHS grantid: R21EB009133 – fundername: NIBIB NIH HHS grantid: R21EB017069 – fundername: NIBIB NIH HHS grantid: R21EB014353 – fundername: NHLBI NIH HHS grantid: U01 HL117664 – fundername: NIBIB NIH HHS grantid: R21 EB014353 – fundername: NIBIB NIH HHS grantid: R01EB006433 – fundername: NIBIB NIH HHS grantid: R01 EB007920 – fundername: NHLBI NIH HHS grantid: U01HL117664 – fundername: NCRR NIH HHS grantid: P41 RR008079 |
GroupedDBID | --- 0R~ 23N 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACPRK AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL F5P HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c3626-ecb565921abfd0f8f32b363556d35caadcab2b8314e09bbde187989916f5a7643 |
IEDL.DBID | RIE |
ISSN | 1937-3333 1941-1189 |
IngestDate | Thu Aug 21 13:56:18 EDT 2025 Fri Jul 11 15:47:36 EDT 2025 Mon Jun 30 10:14:08 EDT 2025 Thu Apr 03 07:04:28 EDT 2025 Tue Jul 01 00:53:40 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Tue Aug 26 16:49:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3626-ecb565921abfd0f8f32b363556d35caadcab2b8314e09bbde187989916f5a7643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/6701123 |
PMID | 24803104 |
PQID | 1564632485 |
PQPubID | 85512 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4113345 pubmed_primary_24803104 crossref_citationtrail_10_1109_RBME_2013_2297206 crossref_primary_10_1109_RBME_2013_2297206 proquest_journals_1564632485 proquest_miscellaneous_1522681571 ieee_primary_6701123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140000 2014-00-00 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 20140000 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE reviews in biomedical engineering |
PublicationTitleAbbrev | RBME |
PublicationTitleAlternate | IEEE Rev Biomed Eng |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref96 ref55 ref11 ref54 ref10 huhndorf (ref85) 2013 ref17 ref16 ref19 ref18 nehrke (ref64) 2012; 68 balidemaj (ref94) 2013 seo (ref45) 2012; 31 ref51 ref50 zhang (ref91) 2013 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 liu (ref75) 2013 ref7 van lier (ref84) 2011 ref9 ref4 lee (ref93) 2013 ref3 ref6 voigt (ref83) 2011 ref82 ref81 ref40 ref79 ref35 ref78 ref34 ref37 ref36 ref31 ref30 ref77 ref33 foster (ref5) 1989; 17 ref2 ref1 ref39 ref38 van de moortele (ref72) 2009 buchenau (ref53) 2013 van lier (ref52) 2013 stehning (ref80) 2011 stehning (ref87) 2012 katscher (ref88) 2013 sodickson (ref74) 2012 ref70 ref73 ref68 ref24 ref23 hafalir (ref92) 2013 ref26 ref69 ref25 sodickson (ref95) 2013 ref20 van de moortele (ref71) 2007 ref63 katscher (ref76) 2012 ref66 ref22 ref65 ref21 van lier (ref86) 2012 shin (ref90) 2013 ref27 (ref32) 0 ref29 bulumulla (ref89) 2012 ref60 ref62 ref61 korzhenevskii (ref28) 0; 42 katscher (ref67) 2010 17278589 - IEEE Trans Biomed Eng. 2007 Feb;54(2):323-30 12148820 - IEEE Trans Biomed Eng. 2002 Aug;49(8):812-22 23401276 - Magn Reson Med. 2014 Jan;71(1):354-63 15112317 - J Magn Reson Imaging. 2004 May;19(5):650-6 15837985 - J Clin Oncol. 2005 Apr 20;23(12):2703-15 21381106 - Magn Reson Med. 2011 May;65(5):1470-82 21773985 - Magn Reson Med. 2011 Aug;66(2):456-66 12538062 - Med Eng Phys. 2003 Mar;25(2):79-90 16270333 - Magn Reson Med. 2005 Dec;54(6):1503-18 20129847 - IEEE Trans Med Imaging. 2010 Feb;29(2):474-81 23554838 - Comput Math Methods Med. 2013;2013:421619 15128998 - Radiology. 2004 May;231(2):571-80 8938025 - Phys Med Biol. 1996 Nov;41(11):2251-69 8058021 - Med Phys. 1994 Apr;21(4):547-50 18295258 - J Urol. 2008 Apr;179(4):1580-6 12066883 - IEEE Trans Biomed Eng. 2002 Feb;49(2):160-7 23508259 - IEEE Trans Med Imaging. 2013 Jun;32(6):1058-67 2918822 - Magn Reson Imaging. 1989 Jan-Feb;7(1):89-94 21710613 - Magn Reson Med. 2012 Feb;67(2):552-61 15901962 - Phys Med Biol. 2005 Jun 7;50(11):2675-87 21990329 - IEEE Trans Med Imaging. 2012 Feb;31(2):430-7 22213053 - Magn Reson Med. 2012 Oct;68(4):1117-26 22692921 - Magn Reson Med. 2013 May;69(5):1285-96 8567009 - IEEE Trans Biomed Eng. 1996 Jan;43(1):88-94 12352458 - J Urol. 2002 Oct;168(4 Pt 1):1563-7 2384126 - Eur Surg Res. 1990;22(2):86-92 9444846 - IEEE Trans Biomed Eng. 1998 Jan;45(1):119-24 17605363 - IEEE Trans Biomed Eng. 2007 Jul;54(7):1321-7 8505878 - Magn Reson Imaging. 1993;11(3):437-41 18838370 - IEEE Trans Biomed Eng. 2008 Oct;55(10):2444-51 10372147 - Ann N Y Acad Sci. 1999 Apr 20;873:30-41 22273794 - IEEE Rev Biomed Eng. 2011;4:103-18 1461122 - Magn Reson Med. 1992 Dec;28(2):186-201 8938024 - Phys Med Biol. 1996 Nov;41(11):2231-49 23599691 - Concepts Magn Reson Part B Magn Reson Eng. 2012 Feb 1;41B(1):13-21 22252850 - Magn Reson Med. 2012 Nov;68(5):1517-26 17006885 - NMR Biomed. 2007 Feb;20(1):58-68 22611018 - Magn Reson Med. 2013 Apr;69(4):1157-68 19165885 - Magn Reson Med. 2009 Feb;61(2):315-34 16237248 - Phys Med Biol. 2005 Nov 7;50(21):5175-87 15605856 - IEEE Trans Biomed Eng. 2004 Dec;51(12):2097-102 18816809 - Magn Reson Med. 2008 Oct;60(4):889-94 14725934 - Magn Reson Imaging. 2003 Dec;21(10):1263-81 9581064 - IEEE Trans Biomed Eng. 1998 May;45(5):650-9 20432302 - Magn Reson Med. 2010 May;63(5):1315-22 19233292 - Neuroimage. 2009 Jun;46(2):432-46 19369153 - IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74 19872238 - J Gen Physiol. 1925 Nov 20;9(2):137-52 18440899 - IEEE Trans Biomed Eng. 2008 May;55(5):1530-8 22374804 - Magn Reson Med. 2012 Dec;68(6):1911-8 2651001 - Crit Rev Biomed Eng. 1989;17(1):25-104 10582423 - IEEE Trans Biomed Eng. 1999 Nov;46(11):1379-86 2834285 - IEEE Trans Biomed Eng. 1988 Apr;35(4):257-63 23443882 - MAGMA. 2013 Oct;26(5):463-76 21394773 - Magn Reson Med. 2011 Sep;66(3):846-58 15678526 - Magn Reson Med. 2005 Feb;53(2):408-17 8938026 - Phys Med Biol. 1996 Nov;41(11):2271-93 8606768 - Nature. 1996 Apr 11;380(6574):509-12 17191242 - Magn Reson Med. 2007 Jan;57(1):192-200 18727090 - Magn Reson Med. 2008 Sep;60(3):739-43 21097372 - IEEE Trans Biomed Eng. 2011 Mar;58(3):713-20 19353666 - Magn Reson Med. 2009 Jun;61(6):1480-8 18384179 - NMR Biomed. 2009 Nov;22(9):919-26 17400760 - Radiology. 2007 May;243(2):350-9 19683745 - J Urol. 2009 Oct;182(4):1600-7 10372181 - Ann N Y Acad Sci. 1999 Apr 20;873:335-45 16686411 - IEEE Trans Biomed Eng. 2006 May;53(5):885-95 23743673 - Phys Med Biol. 2013 Jul 7;58(13):4395-408 18219635 - Magn Reson Med. 2008 Mar;59(3):590-7 |
References_xml | – ident: ref19 doi: 10.1109/TBME.2007.897331 – ident: ref4 doi: 10.1085/jgp.9.2.137 – ident: ref43 doi: 10.1109/TMI.2009.2036843 – start-page: 387 year: 2012 ident: ref74 article-title: Local Maxwell tomography using transmit-receive coil arrays for contact-free mapping of tissue electrical properties and determination of absolute RF phase publication-title: Proc ISMRM – ident: ref36 doi: 10.1109/10.650364 – start-page: 4180 year: 2013 ident: ref90 article-title: Systematic brain tumor conductivity study with optimized EPT sequence and reconstruction algorithm publication-title: Proc ISMRM – ident: ref6 doi: 10.1118/1.597312 – ident: ref54 doi: 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q – ident: ref13 doi: 10.1016/S1350-4533(02)00194-7 – ident: ref79 doi: 10.1002/mrm.23322 – ident: ref10 doi: 10.1111/j.1749-6632.1999.tb09446.x – ident: ref2 doi: 10.1088/0031-9155/41/11/002 – ident: ref73 doi: 10.1002/mrm.21893 – ident: ref31 doi: 10.1002/mrm.1910280203 – ident: ref65 doi: 10.1002/nbm.1094 – ident: ref26 doi: 10.1038/380509a0 – year: 0 ident: ref32 – ident: ref37 doi: 10.1088/0031-9155/50/21/015 – ident: ref55 doi: 10.1109/TBME.2005.863955 – start-page: 386 year: 2012 ident: ref87 article-title: Electric properties tomography (EPT) of the liver in a single breathhold using SSFP publication-title: Proc ISMRM – volume: 68 start-page: 1517 year: 2012 ident: ref64 article-title: DREAM?A novel approach for robust, ultrafast, multislice B1 mapping publication-title: Magn Reson Med doi: 10.1002/mrm.24158 – ident: ref69 doi: 10.1006/jmra.1993.1133 – ident: ref51 doi: 10.1088/0031-9155/58/13/4395 – ident: ref40 doi: 10.1088/0031-9155/36/6/002 – ident: ref81 doi: 10.1002/mrm.21488 – start-page: 2532 year: 2012 ident: ref89 article-title: Breast permittivity imaging publication-title: Proc ISMRM – ident: ref20 doi: 10.1016/j.juro.2007.11.043 – ident: ref38 doi: 10.1109/TBME.2006.883827 – ident: ref15 doi: 10.1148/radiol.2432060286 – ident: ref7 doi: 10.1200/JCO.2005.06.155 – ident: ref82 doi: 10.1016/j.neuroimage.2009.02.009 – ident: ref16 doi: 10.1109/TBME.2008.925700 – ident: ref39 doi: 10.1109/TBME.2010.2094618 – ident: ref8 doi: 10.1109/10.1374 – ident: ref78 doi: 10.1109/10.668756 – ident: ref29 doi: 10.1111/j.1749-6632.1999.tb09481.x – start-page: 1676 year: 2007 ident: ref71 article-title: Calibration tools for RF shim at very high field with multiple element RF coils: From ultra fast local relative phase to absolute magnitude B1 +mapping publication-title: Proc ISMRM – ident: ref70 doi: 10.1002/mrm.20708 – volume: 31 start-page: 430 year: 2012 ident: ref45 article-title: Error analysis of nonconstant admittivity for MR-based electric property imaging publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2011.2171000 – ident: ref68 doi: 10.1155/2013/421619 – ident: ref66 doi: 10.1002/nbm.1251 – start-page: 367 year: 2009 ident: ref72 article-title: Very fast multi channel B1 calibration at high field in the small flip angle regime publication-title: Proc ISMRM – start-page: 3372 year: 2013 ident: ref88 article-title: Systematic brain tumor conductivity study with optimized EPT sequence and reconstruction algorithm publication-title: Proc ISMRM – ident: ref46 doi: 10.1002/mrm.22995 – ident: ref41 doi: 10.1117/12.480000 – ident: ref96 doi: 10.1002/mrm.24329 – ident: ref1 doi: 10.1088/0031-9155/41/11/001 – ident: ref30 doi: 10.1016/0730-725X(89)90328-7 – start-page: 3484 year: 2012 ident: ref86 article-title: Electrical conductivity in ischemic stroke at 7.0 Tesla: A case study publication-title: Proc ISMRM – ident: ref63 doi: 10.1002/mrm.21676 – ident: ref34 doi: 10.1088/0031-9155/50/11/016 – start-page: 1 year: 2013 ident: ref53 article-title: Iterative separation of transmit and receive phase contributions and B1+-based estimation of the specific absorption rate for transmit arrays publication-title: Magn Reson Mater Phys Biol Med – year: 2013 ident: ref52 article-title: Electrical properties tomography in the human brain at 1.5, 3, and 7 T: A comparison study publication-title: Magn Reson Med – ident: ref14 doi: 10.1148/radiol.2312030606 – start-page: 4175 year: 2013 ident: ref95 article-title: Generalized local Maxwell tomography for mapping of electrical property gradients and tensors publication-title: Proc ISMRM – ident: ref17 doi: 10.1109/RBME.2011.2169780 – start-page: 463 year: 2013 ident: ref75 article-title: In vivo imaging of electrical properties of human brain using a gradient based algorithm publication-title: Proc ISMRM – start-page: 2866 year: 2010 ident: ref67 article-title: Estimation of the anisotropy of electric conductivity via B1 mapping publication-title: Proc ISMRM – ident: ref57 doi: 10.1006/jmra.1993.1133 – start-page: 3482 year: 2012 ident: ref76 article-title: Estimation of breast tumor conductivity using parabolic phase fitting publication-title: Proc ISMRM – ident: ref3 doi: 10.1088/0031-9155/41/11/003 – ident: ref48 doi: 10.1002/cmr.b.21204 – ident: ref35 doi: 10.1109/TBME.2008.918565 – ident: ref24 doi: 10.1002/jmri.20041 – ident: ref25 doi: 10.1002/mrm.22830 – ident: ref42 doi: 10.1109/TMI.2009.2015757 – ident: ref62 doi: 10.1016/0730-725X(93)90078-R – start-page: 128 year: 2011 ident: ref80 article-title: Real-time conductivity mapping using balanced SSFP and phase-based reconstruction publication-title: Proc ISMRM – ident: ref23 doi: 10.1002/mrm.21782 – volume: 17 start-page: 25 year: 1989 ident: ref5 article-title: Dielectric properties of tissues and biological materials: A critical review publication-title: Crit Rev Biomed Eng – ident: ref27 doi: 10.1109/10.797998 – start-page: 4185 year: 2013 ident: ref94 article-title: CSI-EPT: A novel contrast source inversion approach to EPT and patient-specific SAR based on B1+ maps publication-title: Proc ISMRM – ident: ref21 doi: 10.1016/j.juro.2009.06.007 – ident: ref49 doi: 10.1002/mrm.24358 – ident: ref9 doi: 10.1159/000129087 – ident: ref59 doi: 10.1002/mrm.21120 – ident: ref60 doi: 10.1002/mrm.21729 – start-page: 4187 year: 2013 ident: ref92 article-title: Magnetic resonance electrical properties tomography (MREPT) based on the solution of the convection-reaction equation publication-title: Proc ISMRM – start-page: 288 year: 2013 ident: ref91 article-title: Local SAR estimation for human brain imaging using multi-channel transceiver coil at 7 T publication-title: Proc ISMRM – ident: ref44 doi: 10.1002/mrm.22832 – ident: ref58 doi: 10.1002/mrm.20354 – start-page: 127 year: 2011 ident: ref83 article-title: In vivo glioma characterization using MR conductivity imaging publication-title: Proc ISMRM – ident: ref11 doi: 10.1097/00005392-200210010-00085 – ident: ref77 doi: 10.1109/10.477704 – ident: ref56 doi: 10.1002/mrm.22845 – ident: ref47 doi: 10.1002/mrm.24215 – ident: ref22 doi: 10.1016/j.mri.2003.08.027 – ident: ref12 doi: 10.1109/TBME.2002.800759 – ident: ref18 doi: 10.1109/TBME.2004.836523 – ident: ref50 doi: 10.1109/TMI.2013.2251653 – start-page: 4464 year: 2011 ident: ref84 article-title: Electrical conductivity imaging of brain tumours publication-title: Proc ISMRM – start-page: 3626 year: 2013 ident: ref85 article-title: Systematic brain tumor conductivity study with optimized EPT sequence and reconstruction algorithm publication-title: Proc ISMRM – ident: ref33 doi: 10.1109/10.979355 – start-page: 4183 year: 2013 ident: ref93 article-title: Reduction of boundary artifact in electrical property mapping using MREPT publication-title: Proc ISMRM – ident: ref61 doi: 10.1002/mrm.22357 – volume: 42 start-page: 469 year: 0 ident: ref28 article-title: Magnetic induction tomography publication-title: J Commun Technol Electron – reference: 18727090 - Magn Reson Med. 2008 Sep;60(3):739-43 – reference: 15678526 - Magn Reson Med. 2005 Feb;53(2):408-17 – reference: 23443882 - MAGMA. 2013 Oct;26(5):463-76 – reference: 18838370 - IEEE Trans Biomed Eng. 2008 Oct;55(10):2444-51 – reference: 21097372 - IEEE Trans Biomed Eng. 2011 Mar;58(3):713-20 – reference: 22611018 - Magn Reson Med. 2013 Apr;69(4):1157-68 – reference: 15901962 - Phys Med Biol. 2005 Jun 7;50(11):2675-87 – reference: 8606768 - Nature. 1996 Apr 11;380(6574):509-12 – reference: 22273794 - IEEE Rev Biomed Eng. 2011;4:103-18 – reference: 14725934 - Magn Reson Imaging. 2003 Dec;21(10):1263-81 – reference: 23401276 - Magn Reson Med. 2014 Jan;71(1):354-63 – reference: 15128998 - Radiology. 2004 May;231(2):571-80 – reference: 10582423 - IEEE Trans Biomed Eng. 1999 Nov;46(11):1379-86 – reference: 23554838 - Comput Math Methods Med. 2013;2013:421619 – reference: 19369153 - IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74 – reference: 2384126 - Eur Surg Res. 1990;22(2):86-92 – reference: 8938025 - Phys Med Biol. 1996 Nov;41(11):2251-69 – reference: 18816809 - Magn Reson Med. 2008 Oct;60(4):889-94 – reference: 9444846 - IEEE Trans Biomed Eng. 1998 Jan;45(1):119-24 – reference: 17006885 - NMR Biomed. 2007 Feb;20(1):58-68 – reference: 23743673 - Phys Med Biol. 2013 Jul 7;58(13):4395-408 – reference: 19872238 - J Gen Physiol. 1925 Nov 20;9(2):137-52 – reference: 21394773 - Magn Reson Med. 2011 Sep;66(3):846-58 – reference: 16237248 - Phys Med Biol. 2005 Nov 7;50(21):5175-87 – reference: 17605363 - IEEE Trans Biomed Eng. 2007 Jul;54(7):1321-7 – reference: 2918822 - Magn Reson Imaging. 1989 Jan-Feb;7(1):89-94 – reference: 16270333 - Magn Reson Med. 2005 Dec;54(6):1503-18 – reference: 22374804 - Magn Reson Med. 2012 Dec;68(6):1911-8 – reference: 18384179 - NMR Biomed. 2009 Nov;22(9):919-26 – reference: 20432302 - Magn Reson Med. 2010 May;63(5):1315-22 – reference: 21990329 - IEEE Trans Med Imaging. 2012 Feb;31(2):430-7 – reference: 22692921 - Magn Reson Med. 2013 May;69(5):1285-96 – reference: 18295258 - J Urol. 2008 Apr;179(4):1580-6 – reference: 10372147 - Ann N Y Acad Sci. 1999 Apr 20;873:30-41 – reference: 16686411 - IEEE Trans Biomed Eng. 2006 May;53(5):885-95 – reference: 22252850 - Magn Reson Med. 2012 Nov;68(5):1517-26 – reference: 21773985 - Magn Reson Med. 2011 Aug;66(2):456-66 – reference: 19233292 - Neuroimage. 2009 Jun;46(2):432-46 – reference: 12148820 - IEEE Trans Biomed Eng. 2002 Aug;49(8):812-22 – reference: 10372181 - Ann N Y Acad Sci. 1999 Apr 20;873:335-45 – reference: 21710613 - Magn Reson Med. 2012 Feb;67(2):552-61 – reference: 8058021 - Med Phys. 1994 Apr;21(4):547-50 – reference: 17191242 - Magn Reson Med. 2007 Jan;57(1):192-200 – reference: 15837985 - J Clin Oncol. 2005 Apr 20;23(12):2703-15 – reference: 8505878 - Magn Reson Imaging. 1993;11(3):437-41 – reference: 2651001 - Crit Rev Biomed Eng. 1989;17(1):25-104 – reference: 12352458 - J Urol. 2002 Oct;168(4 Pt 1):1563-7 – reference: 23599691 - Concepts Magn Reson Part B Magn Reson Eng. 2012 Feb 1;41B(1):13-21 – reference: 17278589 - IEEE Trans Biomed Eng. 2007 Feb;54(2):323-30 – reference: 8938024 - Phys Med Biol. 1996 Nov;41(11):2231-49 – reference: 19165885 - Magn Reson Med. 2009 Feb;61(2):315-34 – reference: 15605856 - IEEE Trans Biomed Eng. 2004 Dec;51(12):2097-102 – reference: 17400760 - Radiology. 2007 May;243(2):350-9 – reference: 1461122 - Magn Reson Med. 1992 Dec;28(2):186-201 – reference: 22213053 - Magn Reson Med. 2012 Oct;68(4):1117-26 – reference: 19683745 - J Urol. 2009 Oct;182(4):1600-7 – reference: 19353666 - Magn Reson Med. 2009 Jun;61(6):1480-8 – reference: 8567009 - IEEE Trans Biomed Eng. 1996 Jan;43(1):88-94 – reference: 23508259 - IEEE Trans Med Imaging. 2013 Jun;32(6):1058-67 – reference: 15112317 - J Magn Reson Imaging. 2004 May;19(5):650-6 – reference: 20129847 - IEEE Trans Med Imaging. 2010 Feb;29(2):474-81 – reference: 18440899 - IEEE Trans Biomed Eng. 2008 May;55(5):1530-8 – reference: 18219635 - Magn Reson Med. 2008 Mar;59(3):590-7 – reference: 9581064 - IEEE Trans Biomed Eng. 1998 May;45(5):650-9 – reference: 12538062 - Med Eng Phys. 2003 Mar;25(2):79-90 – reference: 21381106 - Magn Reson Med. 2011 May;65(5):1470-82 – reference: 12066883 - IEEE Trans Biomed Eng. 2002 Feb;49(2):160-7 – reference: 2834285 - IEEE Trans Biomed Eng. 1988 Apr;35(4):257-63 – reference: 8938026 - Phys Med Biol. 1996 Nov;41(11):2271-93 |
SSID | ssj0000547180 |
Score | 2.273343 |
SecondaryResourceType | review_article |
Snippet | Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor... Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | Algorithms B_{1} mapping Bioimpedance Biomedical measurement Brain - anatomy & histology Brain - physiology Electric Impedance electrical properties tomography (EPT) Humans Image reconstruction Magnetic field measurement Magnetic fields Magnetic resonance imaging magnetic resonance imaging (MRI) Magnetic Resonance Imaging - methods Medical imaging NMR Nuclear magnetic resonance R&D Radio frequency Research & development Specific absorption rate specific absorption rate (SAR) Tomography Tomography - methods |
Title | Magnetic-Resonance-Based Electrical Properties Tomography: A Review |
URI | https://ieeexplore.ieee.org/document/6701123 https://www.ncbi.nlm.nih.gov/pubmed/24803104 https://www.proquest.com/docview/1564632485 https://www.proquest.com/docview/1522681571 https://pubmed.ncbi.nlm.nih.gov/PMC4113345 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAh4k9MAYMymDqJJ4QPfJ5bXkDdAhN6oQQSLxVSZpuCOghdveyvx67zVUcQog-VYobJbHdOHb8M8CeEMYrU6GmMcMSZWqTGFk5PKqQE5KSF1s_ZPF7eH6tft3omwU46HNhvPft5TM_oNc2ll-N3ZRcZYfDFKVRyEVYxINbl6vV-1PQ9MDfLOuCyKg3-IQgJmf54eVJMaJ7XHIgRJ4KRpWLhMoIF1PN7UhtiZW3rM3XlyZf7EJnX6CYjb-7fHI3mE7swP1_Be340QmuwkowR-PjTn6-woJv1uDzC5DCNfhUhPD7OpwW5k9DWY8Jef0JqsMnJ7gNVvGoraZDDI8vyL3_RDit8dX4ISBiH8XHcReG2IDrs9HV6XkSqjAkjqBqEu-sptgrN7auWJ3VUlhJZsqwktoZUzljhc0kV57l1lae6pdnZHbW2qRo8HyDpWbc-C2IsUNlpJaeq1RlludOasu9RDlBWVI6AjbjROkCRDlVyrgv26MKy0viY0l8LAMfI9jvP3ns8DneI16nNe8Jw3JHsDNjdxk0-F9JIDoEZZ_hqH72zah7FFAxjR9PiQaN14zrlEew2UlH3_dMuiJI5-SmJyBc7_mW5vZvi--tOJdS6e23R_sdlnFOqnMD7cDS5Gnqd9EwmtgfrUY8A3oUBeQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGJsF44GMfUBhQJJ4QveXz2vK2TTcdsE4I3aS9VUmabtO2Hhp3L_z12G2u2k0TWp8qJY2S2K4dO_4Z4JMQxitToaQxwxJlapMYWTk8qpATkpIXWz9kcTwcn6jvp_p0Bb70uTDe-_bymR_QaxvLr6ZuTq6y3WGK3CjkI1hDva95l63Ve1TQ-MAfLevCyCg5-IQwJmf57q_9YkQ3ueRAiDwVjGoXCZURMqZa0kltkZX77M271yZv6aHD51AsVtBdP7kczGd24P7eAXd86BJfwLNgkMZ7HQe9hBXfbMDTWzCFG_C4CAH4TTgozFlDeY8J-f0JrMMn-6gIq3jU1tMhksc_ycF_Q0it8WR6HTCxv8Z7cReI2IKTw9HkYJyEOgyJI7CaxDurKfrKja0rVme1FFaSoTKspHbGVM5YYTPJlWe5tZWnCuYZGZ61NimaPNuw2kwb_xpiHFAZqaXnKlWZ5bmT2nIvkVOQm5SOgC0oUboAUk61Mq7K9rDC8pLoWBIdy0DHCD73n_zuEDr-13mT9rzvGLY7gp0Fucsgw39KgtEhMPsMZ_Wxb0bpo5CKafx0Tn3QfM24TnkErzru6MdecFcE6RLf9B0I2Xu5pbk4bxG-FedSKv3m_tl-gCfjSXFUHn07_vEW1nF9qnMK7cDq7Gbu36GZNLPvW-n4B0VSCS0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic-resonance-based+electrical+properties+tomography%3A+a+review&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Zhang%2C+Xiaotong&rft.au=Liu%2C+Jiaen&rft.au=He%2C+Bin&rft.date=2014&rft.eissn=1941-1189&rft.volume=7&rft.spage=87&rft_id=info:doi/10.1109%2FRBME.2013.2297206&rft_id=info%3Apmid%2F24803104&rft.externalDocID=24803104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon |