Target Strength of Juvenile Salmon, Oncorhynchus keta, for Acoustic Monitoring
It is well known that juvenile salmon tend to swim near the surface, and it is difficult to detect them using echo sounders whose beams are directed vertically downwards. Thus, an upwards looking transducer might be effective. In this case, it is vital to investigate the characteristics of ventral a...
Saved in:
Published in | Kaiyou Onkyuo Gakkaishi Vol. 49; no. 2; pp. 46 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Marine Acoustics Society of Japan
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0916-5835 1881-6819 |
DOI | 10.3135/jmasj.49.46 |
Cover
Abstract | It is well known that juvenile salmon tend to swim near the surface, and it is difficult to detect them using echo sounders whose beams are directed vertically downwards. Thus, an upwards looking transducer might be effective. In this case, it is vital to investigate the characteristics of ventral aspect target strength (TS). Here, we examined the relation of TS to length, as well as variations of average TS for juvenile salmon (Oncorhynchus keta). TS was predicted at four frequencies (38, 70, 120, and 200 kHz) using a prolate spheroid modal-series scattering model that described the swimbladder as a vacant prolate spheroid. The fish morphological parameters required for model calculations were obtained by digitizing soft X-ray images of fish. Model predictions were verified by TS measurements in a laboratory indoor tank. Averaged TS on different tilt-angle distribution was calculated. Normalized ventral TS by the squared standard length were predicted as -64.5 dB at 38 kHz, -65.2 dB at 70 kHz, -66.0 dB at 120 kHz, and -66.6 dB at 200 kHz, assuming normal tilt-angle distribution with a mean 0 deg and standard deviation of 20 deg. The variation of average TS decreased, and the average TS increased, with decreasing frequency. Among the four frequencies, it is advantageous to use 38 kHz for the acoustic survey of juvenile salmon due to high signal-to-noise ratio and insensitivity to the variation of tilt-angle distribution. |
---|---|
AbstractList | It is well known that juvenile salmon tend to swim near the surface, and it is difficult to detect them using echo sounders whose beams are directed vertically downwards. Thus, an upwards looking transducer might be effective. In this case, it is vital to investigate the characteristics of ventral aspect target strength (TS). Here, we examined the relation of TS to length, as well as variations of average TS for juvenile salmon (Oncorhynchus keta). TS was predicted at four frequencies (38, 70, 120, and 200 kHz) using a prolate spheroid modal-series scattering model that described the swimbladder as a vacant prolate spheroid. The fish morphological parameters required for model calculations were obtained by digitizing soft X-ray images of fish. Model predictions were verified by TS measurements in a laboratory indoor tank. Averaged TS on different tilt-angle distribution was calculated. Normalized ventral TS by the squared standard length were predicted as -64.5 dB at 38 kHz, -65.2 dB at 70 kHz, -66.0 dB at 120 kHz, and -66.6 dB at 200 kHz, assuming normal tilt-angle distribution with a mean 0 deg and standard deviation of 20 deg. The variation of average TS decreased, and the average TS increased, with decreasing frequency. Among the four frequencies, it is advantageous to use 38 kHz for the acoustic survey of juvenile salmon due to high signal-to-noise ratio and insensitivity to the variation of tilt-angle distribution. |
Author | FUKUDA, Yoshiaki SAWADA, Kouichi MATSUURA, Tomohiko |
Author_xml | – sequence: 1 fullname: MATSUURA, Tomohiko organization: National Research Institute of Fisheries Engineering, Japan Fisheries Research and Education Agency, Japan – sequence: 1 fullname: FUKUDA, Yoshiaki organization: Hokkaido University – sequence: 1 fullname: SAWADA, Kouichi organization: National Research Institute of Fisheries Engineering, Japan Fisheries Research and Education Agency, Japan |
BookMark | eNp1kMtOwzAQRS1UJErpih_wnqbY8SPxBqmqeKrQRcs6chwncUltZDtI_XsKRUVCYjWLOedq5p6DgXVWA3CJ0ZRgwq43Wxk2UyqmlJ-AIc5znPAciwEYIoF5wnLCzsA4BFMixATCuRBD8LKWvtERrqLXtoktdDV86j-0NZ2GK9ltnZ3ApVXOtzur2j7ANx3lBNbOw5lyfYhGwWdnTXTe2OYCnNayC3r8M0fg9e52PX9IFsv7x_lskSjCU55wikpU768mWZZrokpV0oohrDLMCMaUpKhklKWCIS2QqKqcVzjLaMYrxsuMkhHAh1zlXQhe14UyUUbjbPTSdAVGxVcnxXcnBRUF5Xvn6o_z7s1W-t0_9M2B3oQoG31kpd9_3OlfNj0Ix4VqpS-0JZ8hM3xH |
CitedBy_id | crossref_primary_10_1016_j_seares_2025_102566 |
Cites_doi | 10.1109/OCEANS.2004.1402945 10.1016/j.fishres.2020.105536 10.1016/j.fishres.2008.01.013 10.3135/jmasj.45.183 10.1002/9780470995303 10.3135/jmasj.37.46 10.1121/1.419650 10.1016/j.fishres.2015.10.017 10.2331/fishsci.65.193 10.1250/ast.9.13 10.1121/1.4937607 10.1016/j.icesjms.2004.01.005 10.51400/2709-6998.2196 10.1111/j.1467-9868.2010.00749.x 10.2331/suisan.51.749 10.1121/1.1913258 10.1121/1.384452 10.1109/ICARCV.2008.4795884 10.1016/j.fishres.2004.05.008 10.1139/f82-130 |
ContentType | Journal Article |
Copyright | 2022 Marine Acoustics Society of Japan |
Copyright_xml | – notice: 2022 Marine Acoustics Society of Japan |
DBID | AAYXX CITATION |
DOI | 10.3135/jmasj.49.46 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1881-6819 |
EndPage | 67 |
ExternalDocumentID | 10_3135_jmasj_49_46 article_jmasj_49_2_49_46_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT AAYXX CITATION |
ID | FETCH-LOGICAL-c3626-640b0f3133778e3cbcb4d501c7153114320b5452950e909dd86d177476d56b743 |
ISSN | 0916-5835 |
IngestDate | Tue Jul 01 03:56:00 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Wed Sep 03 06:31:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3626-640b0f3133778e3cbcb4d501c7153114320b5452950e909dd86d177476d56b743 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jmasj/49/2/49_46/_article/-char/en |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_3135_jmasj_49_46 crossref_primary_10_3135_jmasj_49_46 jstage_primary_article_jmasj_49_2_49_46_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220400 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220400 |
PublicationDecade | 2020 |
PublicationTitle | Kaiyou Onkyuo Gakkaishi |
PublicationTitleAlternate | J. Marine Acoust. Soc. Jpn. |
PublicationYear | 2022 |
Publisher | The Marine Acoustics Society of Japan |
Publisher_xml | – name: The Marine Acoustics Society of Japan |
References | 13) K., Sawada, K. Uchikawa, T. Matsuura, H. Sugisaki, K. Amakasu and K. Abe,. “In situ and ex situ target strength measurement of mesopelagic lanternfish, Diaphus Theta (Family Myctophidae),” J. Mar. Sci. Tech. Taiwan, 19, 302–311 (2011). 27) K. Amakasu, K. Sadayasu, K. Abe, Y. Takao, K. Sawada and K. Ishii, “Swimbladder shape and relationship between target strength and body length of Japaneseanchovy (Engraulis japonicus),” J. Mar. Acoust. Soc. Jpn., 37, 46–59 (2010). 4) M. C. Healey, “Timing and relative intensity of size-selective mortality of juvenile chum salmon (Oncorhynchus keta) during early sea life,” Can. J. Fish. Aquat. Sci., 39, 952–957 (1982). 20) J. Simmonds and D. MacLennan, Fisheries Acoustics: Theory and Practice, (Blackwell Science, Oxford, 2005), Chap. 6, p. 243–245. 23) S. N. Wood, “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models,” J. Royal Stat. Soc., 73, (B), 3–36 (2011). 18) K. Abe, K. Sadayasu, K. Sawada, K. Ishii and Y. Takao, “Precise target strength measurement and morphological observation of juvenile walleye pollock (Theragra chalcogramma),” OCEANS’04 MTS/IEEE TECHNO-OCEAN’04, November 9–12, Kobe, Japan, 370–374 (2004). 12) K. Sawada, Z. Ye, R. Kieser, G. A. McFarlane, Y. Miyanohana and M. Furusawa, “Target strength measurements of walleye pollock and Pacific hake,” Fish. Sci., 65, 193–205(1999). 24) H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic Press, San Diego), Chap. 2, p. 31. 5) T. Irie, “Occurrence and distribution of offshore migrating juvenile chum salmon along the Pacific coast of northern Japan,” Bull. Jpn. Soc. Sci. Fish., 51, 749–754(1985), (in Japanese). 6) L. L. Moulton, “Early marine residence, growth, and feeding by juvenile salmon in northern Cook Inlet, Alaska,” Alaska Fish. Res. Bull. 4, 154–177 (1997). 14) J. M. Jech, J. K. Horne, D. Chu, D. Demer, D. Francis, N. Gorska, B. Jones, A. C. Lavery, T. K. Stanton, G. J. Macaulay, D. B. Reeder and K. Sawada, “Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research,” J. Acoust. Soc. Am. 138, 3742–3764 (2015). 28) F. Mosca, G. Matte, O. Lerde, and F. Naud, “Scientific potential of a new 3D multibeam echosounder in fisheries and ecosystem research,” Fish. Res., 178, 130–141 (2016). 21) R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021). 26) F. R. Knudsen, J. E. Fosseidengen, F. Oppedal, Ø. Karlsen and E. Ona, “Hydroacoustic monitoring of fish in sea cages: Target strength (TS) measurements on Atlantic salmon (Salmo salar),” Fish. Res., 69, 205–220 (2004). 8) E. Hazen and J. K. Horne, “Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma,” ICES J. Mar. Sci. 61, 363–377 (2004). 10) M. Furusawa, “Prolate-spheroid models for predicting general trends of fish target strength,” J. Acoust. Soc. Jpn., 9, 13–24 (1988). 3) S. Urawa, Y. Ueno, Y. Ishida, L. W. Seeb, P. A. Crane, S. Abe and N. D. Davis, “A migration model of Japanese chun salmon during early ocean life,” NPAFC Tech. Rep. 2, 1–2 (2001). 7) S. Rousseau, S. Gauthier, C. Neville, S. Johnson and M. Trudel, “A multi-frequency acoustic method to estimate mean standard length of juvenile salmon in the Discovery Islands, British Columbia,” Fish. Res., 227, (2020) . 11) Z. Ye, E. Hoskinson, R. K. Dewey, L. Ding and D. Farmer, “A method for acoustic scattering by slender bodies. I. Theory and verification,” J. Acoust. Soc. Am., 102, 1964–1976 (1997). 2) Y. Miyakoshi Y., D. Ando, M. Fujiwara, H. Hayano, and M. Nagata, “Downstream migration of chum salmon released in the Abashiri river,” Sci. Rep. Hokkaido Fish. Res. Inst., 83, 19–26 (2012), (in Japanese). 22) RStudio Team RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2021). 1) J. Seki, “Study on characteristic of feeding habitat of Japanese chum salmon and their food environment in the Pacific coastal waters, central part of Hokkaido,” Bull. Nat. Salmon Res. Center 7, 1–104 (2005), (in Japanese). 15) M. Furusawa and K. Amakasu, “Proposal to use fish-length-to-wavelength ratio characteristics of backscatter from fish for species identification,” J. Mar. Acoust. Soc. Jpn., 45, 183–196 (2018). 9) K. G. Foote, “Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths,” J. Acoust. Soc. Am., 67, 2084–2089 (1980). 19) V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am., 52, 1442–1446 (1972). 16) K. Sawada, T. Matsuura, H. Aono and A. Hashiba, “Target strength pattern measurement of juvenile chum salmon (Oncorhynchus keta) in a tank by the controlled method,” IEICE Tech. Rep., 105–110 (2012). 17) K. Ishii and K. Sawada, “Transducer positioning system with sights of multiple optical beams for target strength measurements of marine organisms,” 2008 10th International Conference on Control, Automation, Robotics and Vision, 2261–2265 (2008). 25) S. M. M. Fässler, N. Gorska, E. Ona and P. G. Fernandes, “Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength,” Fish. Res., 92, 314–321(2008). 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 9) K. G. Foote, “Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths,” J. Acoust. Soc. Am., 67, 2084–2089 (1980). – reference: 14) J. M. Jech, J. K. Horne, D. Chu, D. Demer, D. Francis, N. Gorska, B. Jones, A. C. Lavery, T. K. Stanton, G. J. Macaulay, D. B. Reeder and K. Sawada, “Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research,” J. Acoust. Soc. Am. 138, 3742–3764 (2015). – reference: 7) S. Rousseau, S. Gauthier, C. Neville, S. Johnson and M. Trudel, “A multi-frequency acoustic method to estimate mean standard length of juvenile salmon in the Discovery Islands, British Columbia,” Fish. Res., 227, (2020) . – reference: 26) F. R. Knudsen, J. E. Fosseidengen, F. Oppedal, Ø. Karlsen and E. Ona, “Hydroacoustic monitoring of fish in sea cages: Target strength (TS) measurements on Atlantic salmon (Salmo salar),” Fish. Res., 69, 205–220 (2004). – reference: 8) E. Hazen and J. K. Horne, “Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma,” ICES J. Mar. Sci. 61, 363–377 (2004). – reference: 16) K. Sawada, T. Matsuura, H. Aono and A. Hashiba, “Target strength pattern measurement of juvenile chum salmon (Oncorhynchus keta) in a tank by the controlled method,” IEICE Tech. Rep., 105–110 (2012). – reference: 12) K. Sawada, Z. Ye, R. Kieser, G. A. McFarlane, Y. Miyanohana and M. Furusawa, “Target strength measurements of walleye pollock and Pacific hake,” Fish. Sci., 65, 193–205(1999). – reference: 22) RStudio Team RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2021). – reference: 13) K., Sawada, K. Uchikawa, T. Matsuura, H. Sugisaki, K. Amakasu and K. Abe,. “In situ and ex situ target strength measurement of mesopelagic lanternfish, Diaphus Theta (Family Myctophidae),” J. Mar. Sci. Tech. Taiwan, 19, 302–311 (2011). – reference: 27) K. Amakasu, K. Sadayasu, K. Abe, Y. Takao, K. Sawada and K. Ishii, “Swimbladder shape and relationship between target strength and body length of Japaneseanchovy (Engraulis japonicus),” J. Mar. Acoust. Soc. Jpn., 37, 46–59 (2010). – reference: 4) M. C. Healey, “Timing and relative intensity of size-selective mortality of juvenile chum salmon (Oncorhynchus keta) during early sea life,” Can. J. Fish. Aquat. Sci., 39, 952–957 (1982). – reference: 20) J. Simmonds and D. MacLennan, Fisheries Acoustics: Theory and Practice, (Blackwell Science, Oxford, 2005), Chap. 6, p. 243–245. – reference: 24) H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic Press, San Diego), Chap. 2, p. 31. – reference: 6) L. L. Moulton, “Early marine residence, growth, and feeding by juvenile salmon in northern Cook Inlet, Alaska,” Alaska Fish. Res. Bull. 4, 154–177 (1997). – reference: 1) J. Seki, “Study on characteristic of feeding habitat of Japanese chum salmon and their food environment in the Pacific coastal waters, central part of Hokkaido,” Bull. Nat. Salmon Res. Center 7, 1–104 (2005), (in Japanese). – reference: 5) T. Irie, “Occurrence and distribution of offshore migrating juvenile chum salmon along the Pacific coast of northern Japan,” Bull. Jpn. Soc. Sci. Fish., 51, 749–754(1985), (in Japanese). – reference: 18) K. Abe, K. Sadayasu, K. Sawada, K. Ishii and Y. Takao, “Precise target strength measurement and morphological observation of juvenile walleye pollock (Theragra chalcogramma),” OCEANS’04 MTS/IEEE TECHNO-OCEAN’04, November 9–12, Kobe, Japan, 370–374 (2004). – reference: 10) M. Furusawa, “Prolate-spheroid models for predicting general trends of fish target strength,” J. Acoust. Soc. Jpn., 9, 13–24 (1988). – reference: 28) F. Mosca, G. Matte, O. Lerde, and F. Naud, “Scientific potential of a new 3D multibeam echosounder in fisheries and ecosystem research,” Fish. Res., 178, 130–141 (2016). – reference: 17) K. Ishii and K. Sawada, “Transducer positioning system with sights of multiple optical beams for target strength measurements of marine organisms,” 2008 10th International Conference on Control, Automation, Robotics and Vision, 2261–2265 (2008). – reference: 11) Z. Ye, E. Hoskinson, R. K. Dewey, L. Ding and D. Farmer, “A method for acoustic scattering by slender bodies. I. Theory and verification,” J. Acoust. Soc. Am., 102, 1964–1976 (1997). – reference: 3) S. Urawa, Y. Ueno, Y. Ishida, L. W. Seeb, P. A. Crane, S. Abe and N. D. Davis, “A migration model of Japanese chun salmon during early ocean life,” NPAFC Tech. Rep. 2, 1–2 (2001). – reference: 2) Y. Miyakoshi Y., D. Ando, M. Fujiwara, H. Hayano, and M. Nagata, “Downstream migration of chum salmon released in the Abashiri river,” Sci. Rep. Hokkaido Fish. Res. Inst., 83, 19–26 (2012), (in Japanese). – reference: 25) S. M. M. Fässler, N. Gorska, E. Ona and P. G. Fernandes, “Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength,” Fish. Res., 92, 314–321(2008). – reference: 15) M. Furusawa and K. Amakasu, “Proposal to use fish-length-to-wavelength ratio characteristics of backscatter from fish for species identification,” J. Mar. Acoust. Soc. Jpn., 45, 183–196 (2018). – reference: 19) V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am., 52, 1442–1446 (1972). – reference: 23) S. N. Wood, “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models,” J. Royal Stat. Soc., 73, (B), 3–36 (2011). – reference: 21) R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021). – ident: 2 – ident: 18 doi: 10.1109/OCEANS.2004.1402945 – ident: 7 doi: 10.1016/j.fishres.2020.105536 – ident: 25 doi: 10.1016/j.fishres.2008.01.013 – ident: 15 doi: 10.3135/jmasj.45.183 – ident: 20 doi: 10.1002/9780470995303 – ident: 16 – ident: 27 doi: 10.3135/jmasj.37.46 – ident: 11 doi: 10.1121/1.419650 – ident: 24 – ident: 28 doi: 10.1016/j.fishres.2015.10.017 – ident: 22 – ident: 3 – ident: 12 doi: 10.2331/fishsci.65.193 – ident: 10 doi: 10.1250/ast.9.13 – ident: 14 doi: 10.1121/1.4937607 – ident: 1 – ident: 8 doi: 10.1016/j.icesjms.2004.01.005 – ident: 13 doi: 10.51400/2709-6998.2196 – ident: 23 doi: 10.1111/j.1467-9868.2010.00749.x – ident: 5 doi: 10.2331/suisan.51.749 – ident: 19 doi: 10.1121/1.1913258 – ident: 6 – ident: 9 doi: 10.1121/1.384452 – ident: 17 doi: 10.1109/ICARCV.2008.4795884 – ident: 21 – ident: 26 doi: 10.1016/j.fishres.2004.05.008 – ident: 4 doi: 10.1139/f82-130 |
SSID | ssib005901899 ssj0069107 ssib002809432 ssib001128826 ssib006158318 ssib003115993 |
Score | 1.8695433 |
Snippet | It is well known that juvenile salmon tend to swim near the surface, and it is difficult to detect them using echo sounders whose beams are directed vertically... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 46 |
SubjectTerms | Juvenile salmon Oncorhynchus keta Prolate spheroid modal-series scattering model Swimbladder Target strength pattern |
Title | Target Strength of Juvenile Salmon, Oncorhynchus keta, for Acoustic Monitoring |
URI | https://www.jstage.jst.go.jp/article/jmasj/49/2/49_46/_article/-char/en |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of the Marine Acoustics Society of Japan, 2022/04/01, Vol.49(2), pp.46-67 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaggMQFsYqyyYeeaDNkcZzkGLFVHbUImIhyGsWOw2TSiVFnchh-Pc9LllZzKFyiUWInmbzPz9_zW4zQgYhp6YP979AiDMBAiXInD4hwBHD_nAK_TUKVjXx6Ro8zcnIeng-xqjq7ZMMm_M_OvJL_kSqcA7mqLNl_kGx_UzgBv0G-cAQJw_FmMtZh3Nqz3PzaLBTxO2lBe1UqQDC_WBmP-hdVqnKxbfiiXR_WwtBFFV2Ycqn38rID-7KbxSxXnebVVrbQvd628vBzXtdqq-aqX5NJf6QfUq0oZFvx4cJpOvueZd_0pZlcyUVVyx4m2TQznX5KuBfQ1_GyA1isQ7SKXT_0qErZMi5pYbRnHHsOja0OtOrVVCS1MPJHutIuPZpZ1-zJcV2fB16gSl8sV_l6OSHJhOyomn1tNutjDMG6Ud3nuvOcJHNCb6M7fhRpb_7068hZCHP0FSsrVuGWo6pqwJqTsRoDDjV2lgIpjIPBeUWBgeks_e4LmbRQ9TLvRv_kChG6uwRboIsj1NRm9hA9sDYJTg3AHqFbonmM7unYYL5-gs4MzHAHMyxL3MEMG5gd4THIsALZEQaI4Q5ieIDYU5R9-jh7f-zYbTgcrmoVOZS4zC3h9YMoikXAGWekCF2PRzBbgjkd-C5TO9UnoSsSNymKmBYeWBURDH_KgKE-Q3uNbMRzhDktuee7PHJzn5SMJ6UXC8Y5sESWCxLuo7fdN5lzW6NebZVyMd8hzX100Df-bUqz7G4WmY_bN7LjdWjkm5b9BZXwCPrlxc0e8BLdHwbIK7S3uWzFa2CqG_ZG4-wv1OCNnw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+Strength+of+Juvenile+Salmon%2C+Oncorhynchus+keta%2C+for+Acoustic+Monitoring&rft.jtitle=Kaiyou+Onkyuo+Gakkaishi&rft.au=SAWADA%2C+Kouichi&rft.au=MATSUURA%2C+Tomohiko&rft.au=FUKUDA%2C+Yoshiaki&rft.date=2022-04-01&rft.issn=0916-5835&rft.eissn=1881-6819&rft.volume=49&rft.issue=2&rft.spage=46&rft.epage=67&rft_id=info:doi/10.3135%2Fjmasj.49.46&rft.externalDBID=n%2Fa&rft.externalDocID=10_3135_jmasj_49_46 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-5835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-5835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-5835&client=summon |