Target Strength of Juvenile Salmon, Oncorhynchus keta, for Acoustic Monitoring

It is well known that juvenile salmon tend to swim near the surface, and it is difficult to detect them using echo sounders whose beams are directed vertically downwards. Thus, an upwards looking transducer might be effective. In this case, it is vital to investigate the characteristics of ventral a...

Full description

Saved in:
Bibliographic Details
Published inKaiyou Onkyuo Gakkaishi Vol. 49; no. 2; pp. 46 - 67
Main Authors MATSUURA, Tomohiko, FUKUDA, Yoshiaki, SAWADA, Kouichi
Format Journal Article
LanguageEnglish
Published The Marine Acoustics Society of Japan 01.04.2022
Subjects
Online AccessGet full text
ISSN0916-5835
1881-6819
DOI10.3135/jmasj.49.46

Cover

Abstract It is well known that juvenile salmon tend to swim near the surface, and it is difficult to detect them using echo sounders whose beams are directed vertically downwards. Thus, an upwards looking transducer might be effective. In this case, it is vital to investigate the characteristics of ventral aspect target strength (TS). Here, we examined the relation of TS to length, as well as variations of average TS for juvenile salmon (Oncorhynchus keta). TS was predicted at four frequencies (38, 70, 120, and 200 kHz) using a prolate spheroid modal-series scattering model that described the swimbladder as a vacant prolate spheroid. The fish morphological parameters required for model calculations were obtained by digitizing soft X-ray images of fish. Model predictions were verified by TS measurements in a laboratory indoor tank. Averaged TS on different tilt-angle distribution was calculated. Normalized ventral TS by the squared standard length were predicted as -64.5 dB at 38 kHz, -65.2 dB at 70 kHz, -66.0 dB at 120 kHz, and -66.6 dB at 200 kHz, assuming normal tilt-angle distribution with a mean 0 deg and standard deviation of 20 deg. The variation of average TS decreased, and the average TS increased, with decreasing frequency. Among the four frequencies, it is advantageous to use 38 kHz for the acoustic survey of juvenile salmon due to high signal-to-noise ratio and insensitivity to the variation of tilt-angle distribution.
AbstractList It is well known that juvenile salmon tend to swim near the surface, and it is difficult to detect them using echo sounders whose beams are directed vertically downwards. Thus, an upwards looking transducer might be effective. In this case, it is vital to investigate the characteristics of ventral aspect target strength (TS). Here, we examined the relation of TS to length, as well as variations of average TS for juvenile salmon (Oncorhynchus keta). TS was predicted at four frequencies (38, 70, 120, and 200 kHz) using a prolate spheroid modal-series scattering model that described the swimbladder as a vacant prolate spheroid. The fish morphological parameters required for model calculations were obtained by digitizing soft X-ray images of fish. Model predictions were verified by TS measurements in a laboratory indoor tank. Averaged TS on different tilt-angle distribution was calculated. Normalized ventral TS by the squared standard length were predicted as -64.5 dB at 38 kHz, -65.2 dB at 70 kHz, -66.0 dB at 120 kHz, and -66.6 dB at 200 kHz, assuming normal tilt-angle distribution with a mean 0 deg and standard deviation of 20 deg. The variation of average TS decreased, and the average TS increased, with decreasing frequency. Among the four frequencies, it is advantageous to use 38 kHz for the acoustic survey of juvenile salmon due to high signal-to-noise ratio and insensitivity to the variation of tilt-angle distribution.
Author FUKUDA, Yoshiaki
SAWADA, Kouichi
MATSUURA, Tomohiko
Author_xml – sequence: 1
  fullname: MATSUURA, Tomohiko
  organization: National Research Institute of Fisheries Engineering, Japan Fisheries Research and Education Agency, Japan
– sequence: 1
  fullname: FUKUDA, Yoshiaki
  organization: Hokkaido University
– sequence: 1
  fullname: SAWADA, Kouichi
  organization: National Research Institute of Fisheries Engineering, Japan Fisheries Research and Education Agency, Japan
BookMark eNp1kMtOwzAQRS1UJErpih_wnqbY8SPxBqmqeKrQRcs6chwncUltZDtI_XsKRUVCYjWLOedq5p6DgXVWA3CJ0ZRgwq43Wxk2UyqmlJ-AIc5znPAciwEYIoF5wnLCzsA4BFMixATCuRBD8LKWvtERrqLXtoktdDV86j-0NZ2GK9ltnZ3ApVXOtzur2j7ANx3lBNbOw5lyfYhGwWdnTXTe2OYCnNayC3r8M0fg9e52PX9IFsv7x_lskSjCU55wikpU768mWZZrokpV0oohrDLMCMaUpKhklKWCIS2QqKqcVzjLaMYrxsuMkhHAh1zlXQhe14UyUUbjbPTSdAVGxVcnxXcnBRUF5Xvn6o_z7s1W-t0_9M2B3oQoG31kpd9_3OlfNj0Ix4VqpS-0JZ8hM3xH
CitedBy_id crossref_primary_10_1016_j_seares_2025_102566
Cites_doi 10.1109/OCEANS.2004.1402945
10.1016/j.fishres.2020.105536
10.1016/j.fishres.2008.01.013
10.3135/jmasj.45.183
10.1002/9780470995303
10.3135/jmasj.37.46
10.1121/1.419650
10.1016/j.fishres.2015.10.017
10.2331/fishsci.65.193
10.1250/ast.9.13
10.1121/1.4937607
10.1016/j.icesjms.2004.01.005
10.51400/2709-6998.2196
10.1111/j.1467-9868.2010.00749.x
10.2331/suisan.51.749
10.1121/1.1913258
10.1121/1.384452
10.1109/ICARCV.2008.4795884
10.1016/j.fishres.2004.05.008
10.1139/f82-130
ContentType Journal Article
Copyright 2022 Marine Acoustics Society of Japan
Copyright_xml – notice: 2022 Marine Acoustics Society of Japan
DBID AAYXX
CITATION
DOI 10.3135/jmasj.49.46
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1881-6819
EndPage 67
ExternalDocumentID 10_3135_jmasj_49_46
article_jmasj_49_2_49_46_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c3626-640b0f3133778e3cbcb4d501c7153114320b5452950e909dd86d177476d56b743
ISSN 0916-5835
IngestDate Tue Jul 01 03:56:00 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Wed Sep 03 06:31:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3626-640b0f3133778e3cbcb4d501c7153114320b5452950e909dd86d177476d56b743
OpenAccessLink https://www.jstage.jst.go.jp/article/jmasj/49/2/49_46/_article/-char/en
PageCount 22
ParticipantIDs crossref_citationtrail_10_3135_jmasj_49_46
crossref_primary_10_3135_jmasj_49_46
jstage_primary_article_jmasj_49_2_49_46_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220400
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationTitle Kaiyou Onkyuo Gakkaishi
PublicationTitleAlternate J. Marine Acoust. Soc. Jpn.
PublicationYear 2022
Publisher The Marine Acoustics Society of Japan
Publisher_xml – name: The Marine Acoustics Society of Japan
References 13) K., Sawada, K. Uchikawa, T. Matsuura, H. Sugisaki, K. Amakasu and K. Abe,. “In situ and ex situ target strength measurement of mesopelagic lanternfish, Diaphus Theta (Family Myctophidae),” J. Mar. Sci. Tech. Taiwan, 19, 302–311 (2011).
27) K. Amakasu, K. Sadayasu, K. Abe, Y. Takao, K. Sawada and K. Ishii, “Swimbladder shape and relationship between target strength and body length of Japaneseanchovy (Engraulis japonicus),” J. Mar. Acoust. Soc. Jpn., 37, 46–59 (2010).
4) M. C. Healey, “Timing and relative intensity of size-selective mortality of juvenile chum salmon (Oncorhynchus keta) during early sea life,” Can. J. Fish. Aquat. Sci., 39, 952–957 (1982).
20) J. Simmonds and D. MacLennan, Fisheries Acoustics: Theory and Practice, (Blackwell Science, Oxford, 2005), Chap. 6, p. 243–245.
23) S. N. Wood, “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models,” J. Royal Stat. Soc., 73, (B), 3–36 (2011).
18) K. Abe, K. Sadayasu, K. Sawada, K. Ishii and Y. Takao, “Precise target strength measurement and morphological observation of juvenile walleye pollock (Theragra chalcogramma),” OCEANS’04 MTS/IEEE TECHNO-OCEAN’04, November 9–12, Kobe, Japan, 370–374 (2004).
12) K. Sawada, Z. Ye, R. Kieser, G. A. McFarlane, Y. Miyanohana and M. Furusawa, “Target strength measurements of walleye pollock and Pacific hake,” Fish. Sci., 65, 193–205(1999).
24) H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic Press, San Diego), Chap. 2, p. 31.
5) T. Irie, “Occurrence and distribution of offshore migrating juvenile chum salmon along the Pacific coast of northern Japan,” Bull. Jpn. Soc. Sci. Fish., 51, 749–754(1985), (in Japanese).
6) L. L. Moulton, “Early marine residence, growth, and feeding by juvenile salmon in northern Cook Inlet, Alaska,” Alaska Fish. Res. Bull. 4, 154–177 (1997).
14) J. M. Jech, J. K. Horne, D. Chu, D. Demer, D. Francis, N. Gorska, B. Jones, A. C. Lavery, T. K. Stanton, G. J. Macaulay, D. B. Reeder and K. Sawada, “Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research,” J. Acoust. Soc. Am. 138, 3742–3764 (2015).
28) F. Mosca, G. Matte, O. Lerde, and F. Naud, “Scientific potential of a new 3D multibeam echosounder in fisheries and ecosystem research,” Fish. Res., 178, 130–141 (2016).
21) R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).
26) F. R. Knudsen, J. E. Fosseidengen, F. Oppedal, Ø. Karlsen and E. Ona, “Hydroacoustic monitoring of fish in sea cages: Target strength (TS) measurements on Atlantic salmon (Salmo salar),” Fish. Res., 69, 205–220 (2004).
8) E. Hazen and J. K. Horne, “Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma,” ICES J. Mar. Sci. 61, 363–377 (2004).
10) M. Furusawa, “Prolate-spheroid models for predicting general trends of fish target strength,” J. Acoust. Soc. Jpn., 9, 13–24 (1988).
3) S. Urawa, Y. Ueno, Y. Ishida, L. W. Seeb, P. A. Crane, S. Abe and N. D. Davis, “A migration model of Japanese chun salmon during early ocean life,” NPAFC Tech. Rep. 2, 1–2 (2001).
7) S. Rousseau, S. Gauthier, C. Neville, S. Johnson and M. Trudel, “A multi-frequency acoustic method to estimate mean standard length of juvenile salmon in the Discovery Islands, British Columbia,” Fish. Res., 227, (2020) .
11) Z. Ye, E. Hoskinson, R. K. Dewey, L. Ding and D. Farmer, “A method for acoustic scattering by slender bodies. I. Theory and verification,” J. Acoust. Soc. Am., 102, 1964–1976 (1997).
2) Y. Miyakoshi Y., D. Ando, M. Fujiwara, H. Hayano, and M. Nagata, “Downstream migration of chum salmon released in the Abashiri river,” Sci. Rep. Hokkaido Fish. Res. Inst., 83, 19–26 (2012), (in Japanese).
22) RStudio Team RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2021).
1) J. Seki, “Study on characteristic of feeding habitat of Japanese chum salmon and their food environment in the Pacific coastal waters, central part of Hokkaido,” Bull. Nat. Salmon Res. Center 7, 1–104 (2005), (in Japanese).
15) M. Furusawa and K. Amakasu, “Proposal to use fish-length-to-wavelength ratio characteristics of backscatter from fish for species identification,” J. Mar. Acoust. Soc. Jpn., 45, 183–196 (2018).
9) K. G. Foote, “Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths,” J. Acoust. Soc. Am., 67, 2084–2089 (1980).
19) V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am., 52, 1442–1446 (1972).
16) K. Sawada, T. Matsuura, H. Aono and A. Hashiba, “Target strength pattern measurement of juvenile chum salmon (Oncorhynchus keta) in a tank by the controlled method,” IEICE Tech. Rep., 105–110 (2012).
17) K. Ishii and K. Sawada, “Transducer positioning system with sights of multiple optical beams for target strength measurements of marine organisms,” 2008 10th International Conference on Control, Automation, Robotics and Vision, 2261–2265 (2008).
25) S. M. M. Fässler, N. Gorska, E. Ona and P. G. Fernandes, “Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength,” Fish. Res., 92, 314–321(2008).
22
23
24
25
26
27
28
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 9) K. G. Foote, “Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths,” J. Acoust. Soc. Am., 67, 2084–2089 (1980).
– reference: 14) J. M. Jech, J. K. Horne, D. Chu, D. Demer, D. Francis, N. Gorska, B. Jones, A. C. Lavery, T. K. Stanton, G. J. Macaulay, D. B. Reeder and K. Sawada, “Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research,” J. Acoust. Soc. Am. 138, 3742–3764 (2015).
– reference: 7) S. Rousseau, S. Gauthier, C. Neville, S. Johnson and M. Trudel, “A multi-frequency acoustic method to estimate mean standard length of juvenile salmon in the Discovery Islands, British Columbia,” Fish. Res., 227, (2020) .
– reference: 26) F. R. Knudsen, J. E. Fosseidengen, F. Oppedal, Ø. Karlsen and E. Ona, “Hydroacoustic monitoring of fish in sea cages: Target strength (TS) measurements on Atlantic salmon (Salmo salar),” Fish. Res., 69, 205–220 (2004).
– reference: 8) E. Hazen and J. K. Horne, “Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma,” ICES J. Mar. Sci. 61, 363–377 (2004).
– reference: 16) K. Sawada, T. Matsuura, H. Aono and A. Hashiba, “Target strength pattern measurement of juvenile chum salmon (Oncorhynchus keta) in a tank by the controlled method,” IEICE Tech. Rep., 105–110 (2012).
– reference: 12) K. Sawada, Z. Ye, R. Kieser, G. A. McFarlane, Y. Miyanohana and M. Furusawa, “Target strength measurements of walleye pollock and Pacific hake,” Fish. Sci., 65, 193–205(1999).
– reference: 22) RStudio Team RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2021).
– reference: 13) K., Sawada, K. Uchikawa, T. Matsuura, H. Sugisaki, K. Amakasu and K. Abe,. “In situ and ex situ target strength measurement of mesopelagic lanternfish, Diaphus Theta (Family Myctophidae),” J. Mar. Sci. Tech. Taiwan, 19, 302–311 (2011).
– reference: 27) K. Amakasu, K. Sadayasu, K. Abe, Y. Takao, K. Sawada and K. Ishii, “Swimbladder shape and relationship between target strength and body length of Japaneseanchovy (Engraulis japonicus),” J. Mar. Acoust. Soc. Jpn., 37, 46–59 (2010).
– reference: 4) M. C. Healey, “Timing and relative intensity of size-selective mortality of juvenile chum salmon (Oncorhynchus keta) during early sea life,” Can. J. Fish. Aquat. Sci., 39, 952–957 (1982).
– reference: 20) J. Simmonds and D. MacLennan, Fisheries Acoustics: Theory and Practice, (Blackwell Science, Oxford, 2005), Chap. 6, p. 243–245.
– reference: 24) H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic Press, San Diego), Chap. 2, p. 31.
– reference: 6) L. L. Moulton, “Early marine residence, growth, and feeding by juvenile salmon in northern Cook Inlet, Alaska,” Alaska Fish. Res. Bull. 4, 154–177 (1997).
– reference: 1) J. Seki, “Study on characteristic of feeding habitat of Japanese chum salmon and their food environment in the Pacific coastal waters, central part of Hokkaido,” Bull. Nat. Salmon Res. Center 7, 1–104 (2005), (in Japanese).
– reference: 5) T. Irie, “Occurrence and distribution of offshore migrating juvenile chum salmon along the Pacific coast of northern Japan,” Bull. Jpn. Soc. Sci. Fish., 51, 749–754(1985), (in Japanese).
– reference: 18) K. Abe, K. Sadayasu, K. Sawada, K. Ishii and Y. Takao, “Precise target strength measurement and morphological observation of juvenile walleye pollock (Theragra chalcogramma),” OCEANS’04 MTS/IEEE TECHNO-OCEAN’04, November 9–12, Kobe, Japan, 370–374 (2004).
– reference: 10) M. Furusawa, “Prolate-spheroid models for predicting general trends of fish target strength,” J. Acoust. Soc. Jpn., 9, 13–24 (1988).
– reference: 28) F. Mosca, G. Matte, O. Lerde, and F. Naud, “Scientific potential of a new 3D multibeam echosounder in fisheries and ecosystem research,” Fish. Res., 178, 130–141 (2016).
– reference: 17) K. Ishii and K. Sawada, “Transducer positioning system with sights of multiple optical beams for target strength measurements of marine organisms,” 2008 10th International Conference on Control, Automation, Robotics and Vision, 2261–2265 (2008).
– reference: 11) Z. Ye, E. Hoskinson, R. K. Dewey, L. Ding and D. Farmer, “A method for acoustic scattering by slender bodies. I. Theory and verification,” J. Acoust. Soc. Am., 102, 1964–1976 (1997).
– reference: 3) S. Urawa, Y. Ueno, Y. Ishida, L. W. Seeb, P. A. Crane, S. Abe and N. D. Davis, “A migration model of Japanese chun salmon during early ocean life,” NPAFC Tech. Rep. 2, 1–2 (2001).
– reference: 2) Y. Miyakoshi Y., D. Ando, M. Fujiwara, H. Hayano, and M. Nagata, “Downstream migration of chum salmon released in the Abashiri river,” Sci. Rep. Hokkaido Fish. Res. Inst., 83, 19–26 (2012), (in Japanese).
– reference: 25) S. M. M. Fässler, N. Gorska, E. Ona and P. G. Fernandes, “Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength,” Fish. Res., 92, 314–321(2008).
– reference: 15) M. Furusawa and K. Amakasu, “Proposal to use fish-length-to-wavelength ratio characteristics of backscatter from fish for species identification,” J. Mar. Acoust. Soc. Jpn., 45, 183–196 (2018).
– reference: 19) V. A. Del Grosso and C. W. Mader, “Speed of Sound in Pure Water,” J. Acoust. Soc. Am., 52, 1442–1446 (1972).
– reference: 23) S. N. Wood, “Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models,” J. Royal Stat. Soc., 73, (B), 3–36 (2011).
– reference: 21) R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).
– ident: 2
– ident: 18
  doi: 10.1109/OCEANS.2004.1402945
– ident: 7
  doi: 10.1016/j.fishres.2020.105536
– ident: 25
  doi: 10.1016/j.fishres.2008.01.013
– ident: 15
  doi: 10.3135/jmasj.45.183
– ident: 20
  doi: 10.1002/9780470995303
– ident: 16
– ident: 27
  doi: 10.3135/jmasj.37.46
– ident: 11
  doi: 10.1121/1.419650
– ident: 24
– ident: 28
  doi: 10.1016/j.fishres.2015.10.017
– ident: 22
– ident: 3
– ident: 12
  doi: 10.2331/fishsci.65.193
– ident: 10
  doi: 10.1250/ast.9.13
– ident: 14
  doi: 10.1121/1.4937607
– ident: 1
– ident: 8
  doi: 10.1016/j.icesjms.2004.01.005
– ident: 13
  doi: 10.51400/2709-6998.2196
– ident: 23
  doi: 10.1111/j.1467-9868.2010.00749.x
– ident: 5
  doi: 10.2331/suisan.51.749
– ident: 19
  doi: 10.1121/1.1913258
– ident: 6
– ident: 9
  doi: 10.1121/1.384452
– ident: 17
  doi: 10.1109/ICARCV.2008.4795884
– ident: 21
– ident: 26
  doi: 10.1016/j.fishres.2004.05.008
– ident: 4
  doi: 10.1139/f82-130
SSID ssib005901899
ssj0069107
ssib002809432
ssib001128826
ssib006158318
ssib003115993
Score 1.8695433
Snippet It is well known that juvenile salmon tend to swim near the surface, and it is difficult to detect them using echo sounders whose beams are directed vertically...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 46
SubjectTerms Juvenile salmon
Oncorhynchus keta
Prolate spheroid modal-series scattering model
Swimbladder
Target strength pattern
Title Target Strength of Juvenile Salmon, Oncorhynchus keta, for Acoustic Monitoring
URI https://www.jstage.jst.go.jp/article/jmasj/49/2/49_46/_article/-char/en
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of the Marine Acoustics Society of Japan, 2022/04/01, Vol.49(2), pp.46-67
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaggMQFsYqyyYeeaDNkcZzkGLFVHbUImIhyGsWOw2TSiVFnchh-Pc9LllZzKFyiUWInmbzPz9_zW4zQgYhp6YP979AiDMBAiXInD4hwBHD_nAK_TUKVjXx6Ro8zcnIeng-xqjq7ZMMm_M_OvJL_kSqcA7mqLNl_kGx_UzgBv0G-cAQJw_FmMtZh3Nqz3PzaLBTxO2lBe1UqQDC_WBmP-hdVqnKxbfiiXR_WwtBFFV2Ycqn38rID-7KbxSxXnebVVrbQvd628vBzXtdqq-aqX5NJf6QfUq0oZFvx4cJpOvueZd_0pZlcyUVVyx4m2TQznX5KuBfQ1_GyA1isQ7SKXT_0qErZMi5pYbRnHHsOja0OtOrVVCS1MPJHutIuPZpZ1-zJcV2fB16gSl8sV_l6OSHJhOyomn1tNutjDMG6Ud3nuvOcJHNCb6M7fhRpb_7068hZCHP0FSsrVuGWo6pqwJqTsRoDDjV2lgIpjIPBeUWBgeks_e4LmbRQ9TLvRv_kChG6uwRboIsj1NRm9hA9sDYJTg3AHqFbonmM7unYYL5-gs4MzHAHMyxL3MEMG5gd4THIsALZEQaI4Q5ieIDYU5R9-jh7f-zYbTgcrmoVOZS4zC3h9YMoikXAGWekCF2PRzBbgjkd-C5TO9UnoSsSNymKmBYeWBURDH_KgKE-Q3uNbMRzhDktuee7PHJzn5SMJ6UXC8Y5sESWCxLuo7fdN5lzW6NebZVyMd8hzX100Df-bUqz7G4WmY_bN7LjdWjkm5b9BZXwCPrlxc0e8BLdHwbIK7S3uWzFa2CqG_ZG4-wv1OCNnw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+Strength+of+Juvenile+Salmon%2C+Oncorhynchus+keta%2C+for+Acoustic+Monitoring&rft.jtitle=Kaiyou+Onkyuo+Gakkaishi&rft.au=SAWADA%2C+Kouichi&rft.au=MATSUURA%2C+Tomohiko&rft.au=FUKUDA%2C+Yoshiaki&rft.date=2022-04-01&rft.issn=0916-5835&rft.eissn=1881-6819&rft.volume=49&rft.issue=2&rft.spage=46&rft.epage=67&rft_id=info:doi/10.3135%2Fjmasj.49.46&rft.externalDBID=n%2Fa&rft.externalDocID=10_3135_jmasj_49_46
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-5835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-5835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-5835&client=summon