Towards low‐complexity state estimation for rigid bodies based on range difference measurements

The rigid body localization (RBL) technique is capable of estimating the state of a rigid body, including its translation and orientation, by utilizing the interactions between sensors and landmarks. The prevalent RBL methods employ precise time‐of‐flight measurements (or range measurements) to esti...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 59; no. 22
Main Authors Wang, Yuwei, Sun, Peng, Wang, Zhi
Format Journal Article
LanguageEnglish
Published Stevenage John Wiley & Sons, Inc 01.11.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rigid body localization (RBL) technique is capable of estimating the state of a rigid body, including its translation and orientation, by utilizing the interactions between sensors and landmarks. The prevalent RBL methods employ precise time‐of‐flight measurements (or range measurements) to estimate the state. However, the clock offsets in range measurements in asynchronous networks are unavoidable, leading to performance degradation for state estimators. Therefore, range difference measurements have been adopted to solve the RBL problem. However, existing approaches struggle to achieve desirable performance while maintaining computational efficiency. To address this issue, a new closed‐form state estimator for asynchronous networks is introduced. The proposed algorithm leverages the Taylor‐series expansion technique to enhance accuracy while keeping computational overhead low. Numerical experiments demonstrate that the proposed method achieves state‐of‐the‐art performance with high computational efficiency under small Gaussian noises. This paper proposes a lightweight rigid body localization algorithm to obtain reliable position and orientation estimators for rigid bodies. Simulations show that the closed‐form algorithm achieves the CRLB performance over a small noise region.
AbstractList The rigid body localization (RBL) technique is capable of estimating the state of a rigid body, including its translation and orientation, by utilizing the interactions between sensors and landmarks. The prevalent RBL methods employ precise time‐of‐flight measurements (or range measurements) to estimate the state. However, the clock offsets in range measurements in asynchronous networks are unavoidable, leading to performance degradation for state estimators. Therefore, range difference measurements have been adopted to solve the RBL problem. However, existing approaches struggle to achieve desirable performance while maintaining computational efficiency. To address this issue, a new closed‐form state estimator for asynchronous networks is introduced. The proposed algorithm leverages the Taylor‐series expansion technique to enhance accuracy while keeping computational overhead low. Numerical experiments demonstrate that the proposed method achieves state‐of‐the‐art performance with high computational efficiency under small Gaussian noises.
The rigid body localization (RBL) technique is capable of estimating the state of a rigid body, including its translation and orientation, by utilizing the interactions between sensors and landmarks. The prevalent RBL methods employ precise time‐of‐flight measurements (or range measurements) to estimate the state. However, the clock offsets in range measurements in asynchronous networks are unavoidable, leading to performance degradation for state estimators. Therefore, range difference measurements have been adopted to solve the RBL problem. However, existing approaches struggle to achieve desirable performance while maintaining computational efficiency. To address this issue, a new closed‐form state estimator for asynchronous networks is introduced. The proposed algorithm leverages the Taylor‐series expansion technique to enhance accuracy while keeping computational overhead low. Numerical experiments demonstrate that the proposed method achieves state‐of‐the‐art performance with high computational efficiency under small Gaussian noises.
Abstract The rigid body localization (RBL) technique is capable of estimating the state of a rigid body, including its translation and orientation, by utilizing the interactions between sensors and landmarks. The prevalent RBL methods employ precise time‐of‐flight measurements (or range measurements) to estimate the state. However, the clock offsets in range measurements in asynchronous networks are unavoidable, leading to performance degradation for state estimators. Therefore, range difference measurements have been adopted to solve the RBL problem. However, existing approaches struggle to achieve desirable performance while maintaining computational efficiency. To address this issue, a new closed‐form state estimator for asynchronous networks is introduced. The proposed algorithm leverages the Taylor‐series expansion technique to enhance accuracy while keeping computational overhead low. Numerical experiments demonstrate that the proposed method achieves state‐of‐the‐art performance with high computational efficiency under small Gaussian noises.
The rigid body localization (RBL) technique is capable of estimating the state of a rigid body, including its translation and orientation, by utilizing the interactions between sensors and landmarks. The prevalent RBL methods employ precise time‐of‐flight measurements (or range measurements) to estimate the state. However, the clock offsets in range measurements in asynchronous networks are unavoidable, leading to performance degradation for state estimators. Therefore, range difference measurements have been adopted to solve the RBL problem. However, existing approaches struggle to achieve desirable performance while maintaining computational efficiency. To address this issue, a new closed‐form state estimator for asynchronous networks is introduced. The proposed algorithm leverages the Taylor‐series expansion technique to enhance accuracy while keeping computational overhead low. Numerical experiments demonstrate that the proposed method achieves state‐of‐the‐art performance with high computational efficiency under small Gaussian noises. This paper proposes a lightweight rigid body localization algorithm to obtain reliable position and orientation estimators for rigid bodies. Simulations show that the closed‐form algorithm achieves the CRLB performance over a small noise region.
Author Wang, Zhi
Sun, Peng
Wang, Yuwei
Author_xml – sequence: 1
  givenname: Yuwei
  orcidid: 0000-0001-8099-8445
  surname: Wang
  fullname: Wang, Yuwei
  organization: Zhejiang University
– sequence: 2
  givenname: Peng
  surname: Sun
  fullname: Sun, Peng
  organization: Hunan University
– sequence: 3
  givenname: Zhi
  surname: Wang
  fullname: Wang, Zhi
  email: zjuwangzhi@zju.edu.cn
  organization: Zhejiang University
BookMark eNp9kcFqHDEMhk1IIZs0lzyBobfCpLI947GPJaRpYKGXFHoz9lhevMyOt_Ys2731EfKMfZI6mdJjTkLSp19C_yU5n9KEhNwwuGXQ6k84jvyWCeBwRlZMdNBoxn6ckxUAE03HdHtBLkvZ1pRr3a-IfUpHm32hYzr--f08pN1-xF9xPtEy2xkpljnu7BzTREPKNMdN9NQlH7FQZwt6WjvZThukPoaAGacB6Q5tOWTc4TSX9-RdsGPB63_xinz_cv9097VZf3t4vPu8bgYhOTTSgWZqgJYr3nPLuRzA8d4xr5TsJFivkEOvbMcC7zBYsIppQGld27d9EFfkcdH1yW7NPtez88kkG81rIeWNsXmOw4iGqTYIx3qmet9yJ52oCsL6TqHXyFXV-rBo7XP6eag_MNt0yFM93wjQXIHUICv1caGGnErJGP5vZWBe7DAvdphXOyrMFvgYRzy9QZr79ZovM38B2KqOlQ
Cites_doi 10.1109/TWC.2019.2938761
10.1109/IROS45743.2020.9340924
10.1109/TCOMM.2019.2930517
10.1109/78.301830
10.1109/LCOMM.2015.2486769
10.1109/TVT.2020.3034800
10.1007/s001380050048
10.1109/TSP.2015.2465356
10.1109/TSP.2014.2336621
10.1109/LSP.2019.2957674
10.1109/TWC.2018.2889051
10.1109/TSP.2017.2759098
10.1109/JIOT.2022.3150794
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1049/ell2.13020
DatabaseName Wiley-Blackwell Open Access Collection
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_184f3b17187d42b6b37473ad58ed9e28
10_1049_ell2_13020
ELL213020
Genre shortCommunication
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Key Research and Development Program of China
  funderid: 2021YFB3900800
GroupedDBID -4A
-~X
.DC
0R~
0ZK
1OC
24P
29G
2QL
3EH
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHJG
AAJGR
AAMMB
ABJCF
ABQXS
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADIYS
AEFGJ
AEGXH
AENEX
AFAZI
AFKRA
AGXDD
AI.
AIAGR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ELQJU
F5P
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IFBGX
IPLJI
ITC
K1G
K7-
L6V
LAI
LXO
M43
M7S
MCNEO
MS~
O9-
OK1
P0-
P2P
P62
PHGZM
PHGZT
PTHSS
QWB
R4Z
RIG
RNS
RUI
TN5
U5U
UNMZH
VH1
WH7
ZL0
~ZZ
AAYXX
CITATION
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c3620-6b0918c0428272a226c0b27b1d886560ad8e2078a51f25efa0a8190e6ab4747f3
IEDL.DBID 24P
ISSN 0013-5194
IngestDate Wed Aug 27 00:19:35 EDT 2025
Wed Aug 13 07:08:01 EDT 2025
Sun Jul 06 05:02:17 EDT 2025
Sun Jul 06 04:45:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3620-6b0918c0428272a226c0b27b1d886560ad8e2078a51f25efa0a8190e6ab4747f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8099-8445
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13020
PQID 3092806906
PQPubID 1936364
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_184f3b17187d42b6b37473ad58ed9e28
proquest_journals_3092806906
crossref_primary_10_1049_ell2_13020
wiley_primary_10_1049_ell2_13020_ELL213020
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle Electronics letters
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 10
2015; 19
2020
2017; 66
2015; 63
2019; 67
2006; 58
2019; 27
2008
2020; 69
2019; 18
1993
2014; 62
1997; 9
1994; 42
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_2_1
e_1_2_12_16_1
Spong M.W. (e_1_2_12_13_1) 2008
Diebel J. (e_1_2_12_6_1) 2006; 58
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
Kay S.M. (e_1_2_12_17_1) 1993
e_1_2_12_9_1
References_xml – start-page: 4477
  year: 2020
  end-page: 4484
  article-title: Pit30M: a benchmark for global localization in the age of self‐driving cars
– volume: 62
  start-page: 4911
  issue: 18
  year: 2014
  end-page: 4924
  article-title: Rigid body localization using sensor networks
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 2218
  issue: 12
  year: 2015
  end-page: 2221
  article-title: An improved algebraic solution for TDOA localization with sensor position errors
  publication-title: IEEE Commun. Lett.
– volume: 10
  start-page: 5747
  issue: 7
  year: 2023
  end-page: 5759
  article-title: CRB weighted source localization method based on deep neural networks in multi‐UAV network
  publication-title: IEEE Internet Things J.
– year: 2008
– volume: 69
  start-page: 14413
  issue: 12
  year: 2020
  end-page: 14423
  article-title: Voronoi‐based multi‐robot autonomous exploration in unknown environments via deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
– volume: 27
  start-page: 96
  year: 2019
  end-page: 100
  article-title: Three‐dimensional rigid body localization in the presence of clock offsets
  publication-title: IEEE Signal Process. Lett.
– volume: 9
  start-page: 272
  issue: 5‐6
  year: 1997
  end-page: 290
  article-title: Estimating 3‐D rigid body transformations: a comparison of four major algorithms
  publication-title: Mach. Vis. Appl.
– volume: 18
  start-page: 1011
  issue: 2
  year: 2019
  end-page: 1025
  article-title: Sensor network‐based rigid body localization via semi‐definite relaxation using arrival time and Doppler measurements
  publication-title: IEEE Trans. Wireless Commun.
– volume: 63
  start-page: 6459
  issue: 24
  year: 2015
  end-page: 6472
  article-title: Accurate localization of a rigid body using multiple sensors and landmarks
  publication-title: IEEE Trans. Signal Process.
– volume: 18
  start-page: 5734
  issue: 12
  year: 2019
  end-page: 5748
  article-title: Range‐based rigid body localization with a calibration emitter for mitigating anchor position uncertainties
  publication-title: IEEE Trans. Wireless Commun.
– volume: 67
  start-page: 6952
  issue: 10
  year: 2019
  end-page: 6965
  article-title: TOA‐based passive localization constructed over factor graphs: a unified framework
  publication-title: IEEE Trans. Commun
– volume: 42
  start-page: 1905
  issue: 8
  year: 1994
  end-page: 1915
  article-title: A simple and efficient estimator for hyperbolic location
  publication-title: IEEE Trans. Signal Process.
– year: 1993
– volume: 58
  start-page: 1
  issue: 15–16
  year: 2006
  end-page: 35
  article-title: Representing attitude: Euler angles, unit quaternions, and rotation vectors
  publication-title: Matrix
– volume: 66
  start-page: 757
  issue: 3
  year: 2017
  end-page: 772
  article-title: Cooperative network synchronization: asymptotic analysis
  publication-title: IEEE Trans. Signal Process
– ident: e_1_2_12_8_1
  doi: 10.1109/TWC.2019.2938761
– ident: e_1_2_12_4_1
  doi: 10.1109/IROS45743.2020.9340924
– ident: e_1_2_12_10_1
  doi: 10.1109/TCOMM.2019.2930517
– ident: e_1_2_12_14_1
  doi: 10.1109/78.301830
– ident: e_1_2_12_16_1
  doi: 10.1109/LCOMM.2015.2486769
– ident: e_1_2_12_2_1
  doi: 10.1109/TVT.2020.3034800
– ident: e_1_2_12_15_1
  doi: 10.1007/s001380050048
– ident: e_1_2_12_5_1
  doi: 10.1109/TSP.2015.2465356
– ident: e_1_2_12_7_1
  doi: 10.1109/TSP.2014.2336621
– volume-title: Fundamentals of statistical signal processing: estimation theory
  year: 1993
  ident: e_1_2_12_17_1
– ident: e_1_2_12_12_1
  doi: 10.1109/LSP.2019.2957674
– ident: e_1_2_12_9_1
  doi: 10.1109/TWC.2018.2889051
– ident: e_1_2_12_11_1
  doi: 10.1109/TSP.2017.2759098
– ident: e_1_2_12_3_1
  doi: 10.1109/JIOT.2022.3150794
– volume: 58
  start-page: 1
  issue: 15
  year: 2006
  ident: e_1_2_12_6_1
  article-title: Representing attitude: Euler angles, unit quaternions, and rotation vectors
  publication-title: Matrix
– volume-title: Robot dynamics and control
  year: 2008
  ident: e_1_2_12_13_1
SSID ssj0012997
Score 2.4152155
Snippet The rigid body localization (RBL) technique is capable of estimating the state of a rigid body, including its translation and orientation, by utilizing the...
Abstract The rigid body localization (RBL) technique is capable of estimating the state of a rigid body, including its translation and orientation, by...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms ad hoc networks
Algorithms
Clocks & watches
Computational efficiency
Localization
location based services
Performance degradation
Rigid structures
Sensors
Series expansion
signal processing
State estimation
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWWdCTEJp9JE2OKi1FqqcWelv2lVNtpVX06E_wN_pLnNkkGi968RbyYplJdr7Z2fk-Qi6SErIengFyY8zG0mKRMLM89i4TTKQ4HeJ6x919NprK21k6a0l94Z6wih64MlwPMpBSGIbPOMlNZgQAYKFdmntXeB7afCHmNclUXT-ASbbfaBcARpENMaksen4-56iBjArfrVAUGPt_wMw2WA3RZrhDtmuYSK-q4e2SDb_YI1st8sB9oidhx-uazpcvH2_vYW-4fwVQTUOTEEX6jKovkQIwpSiA5ahZ4q5BirHLUbiywt4C2qikWE8fvtcM1wdkOhxMbkZxLZgQW4hDkAYasERuMQ3ifa4BWdnE8L5hLs-RZEe73HPABDplJU99qRONgMBn2kiwaikOSWexXPgjQi1nlpnCO5fk0sB7hUttnhQanCC17UfkvLGdeqx4MVSoZ8tCoYVVsHBErtGsX3cgl3U4AR5WtYfVXx6OSLdxiqp_sLUSSYE14SLJInIZHPXLMNRgPObh6Pg_BnRCNlF0vupI7JLO0-rZnwI0eTJn4Sv8BGLM3bc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgPrG-WNCTEEw2m3RzEisVERURBW_LvuKlNrVV9OhP8Df6S5zZJrZevIUkLMs-Zr55fgCHcYlWD88RuSWJjYSlIGFueeRdniZpRuKQ_B3XN_nFg7h8zB5rh9u4TqtsZGIQ1K6y5CM_TuOCgoBFnJ8MXyJijaLoak2hMQ8LKIKlbMFCt3dze_cbR0Bh22k4DBCriKZBqSiOfb_PiQuZmL5nVFLo3P8Hbs6C1qB1zldguYaL7HSyv6sw5wdrsDTTRHAd9H3IfB2zfvX-_fkVcsT9B4JrFoqFGLXRmNQnMgSojIiwHDMVZQ8y0mGO4ZcR1Riwhi3FevY89R2ON-DhvHd_dhHVxAmRRX2E5qBBFCAtmUO8wzUiLBsb3jGJk5Ka7WgnPUdsoLOk5JkvdawJGPhcG4HmRZluQmtQDfwWMMsTm5jCOxdLYXDc1GVWxoV2ggttO204aNZODSf9MVSIa4tC0QqrsMJt6NKy_v5BPa3Di2r0pOorotDWLFOT0OnAwU1uUpxLql0mvSs8l23YbTZF1RdtrKbHog1HYaP-mYbqXV3x8LT9_1g7sEi08pOaw11ovY7e_B6Cj1ezX5-wH-Hd1y0
  priority: 102
  providerName: ProQuest
Title Towards low‐complexity state estimation for rigid bodies based on range difference measurements
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13020
https://www.proquest.com/docview/3092806906
https://doaj.org/article/184f3b17187d42b6b37473ad58ed9e28
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7EXvQgPrE-yoKehGKy2aQb8GKlVURFxIp4WfYVL7WVtqJHf4K_0V_izKapehG8JCHZLMvMzu43Oy-A_ahArYdniNzi2DaFJSNhZnnTuyyJk5SWQzrvuLzKznri_D69n4OjKhamzA8xO3AjyQjrNQm4NmUVEgS1xMR-n1MtY44Ke41ia8mhj4vrmQ0BF9pWVb8AcYqokpOK_PD731_bUcja_wtq_gSsYcfpLsPSFCqy45K3KzDnB6uw-COB4Bro2-D1Omb94evn-0fwD_dvCKxZCBRilEKjjE1kCE4ZFcFyzAzJc5DR_uUYfhlRfAGrKqVYz56-zw3H69Drdm5PzprToglNi3sRqoIGEYC0pArxFteIrmxkeMvETkpKtKOd9BxxgU7jgqe-0JEmUOAzbQSqFkWyAfOD4cBvArM8trHJvXORFAb7TVxqZZRrJ7jQtlWHvYp26rnMjaGCTVvkiiisAoXr0CayzlpQPuvwYjh6VFPxUKhnFomJaWZg5yYzCY4l0S6V3uWeyzrsVExRUyEbqyTKyS6cR1kdDgKj_hiG6lxc8PC09Z_G27BABebL6MMdmJ-MXvwuwpCJaYTZhlfZPW1A7fiu99DDe7tzdX3TCKr9F9Qx24g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5ReqA9VLRQEQp0pbYXJAt7d-3Yh6qihTQ0Cacgcdvun7mEmCZBaW88Ak_Sh-qTMLOOIb1w42bZ1mo1Ozvzzc7OfAAf4xKjHp4hcksSG0lLScLM8si7TCQiJXNI5x2D06x7Jn-cp-cr8LephaFrlY1NDIbaVZbOyA9EXFASsIizL1e_ImKNouxqQ6FRq0XP_5ljyDb9fHKE6_uJ887x8Fs3WrAKRBaNNcZKBl1kbilW4G2uEX7Y2PC2SVyeUyca7XLP0XHqNCl56ksda_KaPtNGIvYuBY77DJ5LgZ6cKtM73--zFmja2w1jAiIj2bRDlcWBH404MS8Tr_iSAww8Af-B22WIHHxcZx1eLcApO6y16TWs-PEbeLnUsnAD9DDcs52yUTX_d3MbbqT73wjlWShNYtS0o66GZAiHGdFuOWYquqvIyGM6hl8mVNHAGm4W69nlw0nldBPOnkSgb2F1XI39FjDLE5uYwjsX59LguMKlNo8L7SSX2rZb8KGRnbqqu3GokEWXhSIJqyDhFnwlsd7_QR20w4tqcqEWG1JhZFsKk5Au4uAmMwLnIrRLc-8Kz_MW7DSLohbbeqoelLAF-2GhHpmGOu73eXjafnys97DWHQ76qn9y2nsHL4jQvq523IHV2eTa7yLsmZm9oGsMfj61ct8BgwEQXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BkCp6qAoFEUphJdoLkhV7vX4dqopHIihphCqQuC37ci9pTBMQ7a0_ob-nP6e_hJm1DemFGzfLtlbW7Hjmm53HB_A-LDHq4SkitygygTCUJEwND5xN4yhOyBzSeceXUXp8IT5fJpcL8LfthaGyytYmekNtK0Nn5L04LCgJWIRpr2zKIs6OBp-ufwTEIEWZ1pZOo1aRU_frDsO32ceTI9zrD5wP-ueHx0HDMBAYNNwYN2l0l7mhuIFnXCEUMaHmmY5sntNUGmVzx9GJqiQqeeJKFSryoC5VWiAOL2NcdxGWMoqKOrB00B-dfX3IYaChz1r-BMRJoh2OKoqeG4858TATy_icO_SsAf9B3XnA7D3e4DW8aqAq2691awUW3GQVXs4NMHwD6txX3c7YuLr79_uPr093PxHYM9-oxGiER90byRAcMyLhskxXVLnIyH9ahk-m1N_AWqYW49j3x3PL2RpcPItI16EzqSZuA5jhkYl04awNc6Fx3dgmJg8LZQUXymRd2G1lJ6_r2RzS59RFIUnC0ku4Cwck1oc3aJ62v1FNv8nm95QY55axjkgzcXGd6hi_JVY2yZ0tHM-7sNVuimx-8pl8VMku7PmNeuIzZH845P5q8-m1duAFKrYcnoxO38IysdvXrY9b0LmZ3rp3iIFu9HajbAyunlu_7wHQGxXu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+low%E2%80%90complexity+state+estimation+for+rigid+bodies+based+on+range+difference+measurements&rft.jtitle=Electronics+letters&rft.au=Wang%2C+Yuwei&rft.au=Sun%2C+Peng&rft.au=Wang%2C+Zhi&rft.date=2023-11-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=59&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fell2.13020&rft.externalDBID=10.1049%252Fell2.13020&rft.externalDocID=ELL213020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon