On the foaming properties of plant proteins: Current status and future opportunities
Aerated food products are becoming increasingly popular among consumers due to their visual appeal and peculiar sensory properties. Foam formation and stabilization are typically achieved using clean label surface-active molecules such as proteins. In recent years, the need to address pressing globa...
Saved in:
Published in | Trends in food science & technology Vol. 118; pp. 261 - 272 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Ltd
01.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aerated food products are becoming increasingly popular among consumers due to their visual appeal and peculiar sensory properties. Foam formation and stabilization are typically achieved using clean label surface-active molecules such as proteins. In recent years, the need to address pressing global challenges like food security and sustainability has steered the attention of food companies towards the replacement of animal proteins with plant-based ones. This trend has promoted the development and commercialization of a variety of plant protein-enriched ingredients that differ widely in their techno-functionality.
The aim of this study was to provide a review of the foaming properties of selected plant proteins and to describe how these are influenced by the extraction processes as well as by physical, chemical and enzymatic treatments.
The characterization of the foaming properties of plant proteins has been the subject of extensive research over the past couple of decades. However, drawing general conclusions based on the outcomes of different studies is a complex endeavor, even for protein ingredients derived from the same plant species. This is not only due to differences in terms of cultivars, environmental factors, farming practices and extraction processes, but also in the methods and conditions used to generate and analyze foams. Nevertheless, this review highlights the potential of different approaches to improve the foaming properties of plant proteins, including the optimization of extraction conditions, the use of physical, chemical and enzymatic treatments, and the modulation of their interactions with other food components.
•Foaming properties of plant proteins have been extensively investigated in recent years.•A review of the foaming properties of selected plant proteins is provided.•Differences in cultivars and extraction processes complicate comparison between studies.•Foaming performance is closely related to the protein profile of the protein source.•The influence of physical, chemical and enzymatic treatments on foaming is described. |
---|---|
AbstractList | Background Aerated food products are becoming increasingly popular among consumers due to their visual appeal and peculiar sensory properties. Foam formation and stabilization are typically achieved using clean label surface-active molecules such as proteins. In recent years, the need to address pressing global challenges like food security and sustainability has steered the attention of food companies towards the replacement of animal proteins with plant-based ones. This trend has promoted the development and commercialization of a variety of plant protein-enriched ingredients that differ widely in their techno-functionality. Scope and approach The aim of this study was to provide a review of the foaming properties of selected plant proteins and to describe how these are influenced by the extraction processes as well as by physical, chemical and enzymatic treatments. Key findings and conclusions The characterization of the foaming properties of plant proteins has been the subject of extensive research over the past couple of decades. However, drawing general conclusions based on the outcomes of different studies is a complex endeavor, even for protein ingredients derived from the same plant species. This is not only due to differences in terms of cultivars, environmental factors, farming practices and extraction processes, but also in the methods and conditions used to generate and analyze foams. Nevertheless, this review highlights the potential of different approaches to improve the foaming properties of plant proteins, including the optimization of extraction conditions, the use of physical, chemical and enzymatic treatments, and the modulation of their interactions with other food components. Aerated food products are becoming increasingly popular among consumers due to their visual appeal and peculiar sensory properties. Foam formation and stabilization are typically achieved using clean label surface-active molecules such as proteins. In recent years, the need to address pressing global challenges like food security and sustainability has steered the attention of food companies towards the replacement of animal proteins with plant-based ones. This trend has promoted the development and commercialization of a variety of plant protein-enriched ingredients that differ widely in their techno-functionality. The aim of this study was to provide a review of the foaming properties of selected plant proteins and to describe how these are influenced by the extraction processes as well as by physical, chemical and enzymatic treatments. The characterization of the foaming properties of plant proteins has been the subject of extensive research over the past couple of decades. However, drawing general conclusions based on the outcomes of different studies is a complex endeavor, even for protein ingredients derived from the same plant species. This is not only due to differences in terms of cultivars, environmental factors, farming practices and extraction processes, but also in the methods and conditions used to generate and analyze foams. Nevertheless, this review highlights the potential of different approaches to improve the foaming properties of plant proteins, including the optimization of extraction conditions, the use of physical, chemical and enzymatic treatments, and the modulation of their interactions with other food components. •Foaming properties of plant proteins have been extensively investigated in recent years.•A review of the foaming properties of selected plant proteins is provided.•Differences in cultivars and extraction processes complicate comparison between studies.•Foaming performance is closely related to the protein profile of the protein source.•The influence of physical, chemical and enzymatic treatments on foaming is described. Aerated food products are becoming increasingly popular among consumers due to their visual appeal and peculiar sensory properties. Foam formation and stabilization are typically achieved using clean label surface-active molecules such as proteins. In recent years, the need to address pressing global challenges like food security and sustainability has steered the attention of food companies towards the replacement of animal proteins with plant-based ones. This trend has promoted the development and commercialization of a variety of plant protein-enriched ingredients that differ widely in their techno-functionality.The aim of this study was to provide a review of the foaming properties of selected plant proteins and to describe how these are influenced by the extraction processes as well as by physical, chemical and enzymatic treatments.The characterization of the foaming properties of plant proteins has been the subject of extensive research over the past couple of decades. However, drawing general conclusions based on the outcomes of different studies is a complex endeavor, even for protein ingredients derived from the same plant species. This is not only due to differences in terms of cultivars, environmental factors, farming practices and extraction processes, but also in the methods and conditions used to generate and analyze foams. Nevertheless, this review highlights the potential of different approaches to improve the foaming properties of plant proteins, including the optimization of extraction conditions, the use of physical, chemical and enzymatic treatments, and the modulation of their interactions with other food components. |
Author | Amagliani, Luca Saffon, Maxime Dombrowski, Jannika Silva, Juliana V.C. |
Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0002-4643-9129 surname: Amagliani fullname: Amagliani, Luca email: luca.amagliani@rdls.nestle.com organization: Department of Chemistry, Nestlé Institute of Material Sciences, Nestlé Research, Lausanne, Switzerland – sequence: 2 givenname: Juliana V.C. orcidid: 0000-0002-7206-0550 surname: Silva fullname: Silva, Juliana V.C. organization: Department of Science & Technology, Nestlé Product Technology Center Dairy, Konolfingen, Switzerland – sequence: 3 givenname: Maxime surname: Saffon fullname: Saffon, Maxime organization: Department of Science & Technology, Nestlé Product Technology Center Coffee, Marysville, Ohio, USA – sequence: 4 givenname: Jannika surname: Dombrowski fullname: Dombrowski, Jannika organization: Department of Chemistry, Nestlé Institute of Material Sciences, Nestlé Research, Lausanne, Switzerland |
BookMark | eNp9kM1KAzEURoMoWKsv4Crgxs3Um8wkk4obKf6B4EbXYSa90ZQ2GZOM4Nuboa5cuAp8nBMu54Qc-uCRkHMGCwZMXm0W2dm04MBZGRYA7IDMmGqXVQ2iPiQzWPKm4rxpjslJShuAMgsxI68vnuYPpDZ0O-ff6RDDgDE7TDRYOmw7n6cto_Ppmq7GGLEsKXd5TLTza2rHPEakYRhCzKN3k3pKjmy3TXj2-87J2_3d6-qxen55eFrdPlemlixXFm2jlIHlum0V1FYI6IUVfa26BhpmgRnWAlvyXjRcGVnXvcBWGmX6Flsu6zm53P9bLvwcMWW9c8ngtlyNYUy6IFJKJpgq6MUfdBPG6Mt1heJMArSyKRTfUyaGlCJaPUS36-K3ZqCn0Hqjp9B6Cj1tJXSR1B_JuNLHBZ9j57b_qzd7FUulL4dRJ-PQG1y7iCbrdXD_6T9yq5rq |
CitedBy_id | crossref_primary_10_1007_s11947_024_03547_1 crossref_primary_10_3390_beverages11010024 crossref_primary_10_3390_molecules27165354 crossref_primary_10_3390_foods10123037 crossref_primary_10_1016_j_lwt_2023_114632 crossref_primary_10_1016_j_lwt_2024_116611 crossref_primary_10_1007_s10068_024_01705_x crossref_primary_10_1016_j_crfs_2025_100971 crossref_primary_10_3390_app14199150 crossref_primary_10_1073_pnas_2319019121 crossref_primary_10_1016_j_carbpol_2024_122202 crossref_primary_10_3390_foods13060968 crossref_primary_10_1016_j_foodhyd_2024_110583 crossref_primary_10_1016_j_foodhyd_2024_110223 crossref_primary_10_1016_j_foodhyd_2025_111154 crossref_primary_10_1016_j_procbio_2024_10_001 crossref_primary_10_3390_app14209155 crossref_primary_10_1016_j_foodhyd_2023_108942 crossref_primary_10_1016_j_foodres_2023_113061 crossref_primary_10_1016_j_foodhyd_2024_109758 crossref_primary_10_1016_j_fbio_2024_104712 crossref_primary_10_1016_j_fochx_2024_101596 crossref_primary_10_3390_foods14020198 crossref_primary_10_1016_j_ijbiomac_2024_135905 crossref_primary_10_3390_foods13223542 crossref_primary_10_1016_j_foodhyd_2024_110444 crossref_primary_10_1016_j_foodhyd_2025_111119 crossref_primary_10_1016_j_foodres_2023_112609 crossref_primary_10_1021_acs_jafc_3c02489 crossref_primary_10_1016_j_ifset_2024_103823 crossref_primary_10_1016_j_tifs_2024_104863 crossref_primary_10_1002_cche_10847 crossref_primary_10_1016_j_foodres_2023_113775 crossref_primary_10_1016_j_tifs_2024_104743 crossref_primary_10_1021_acsfoodscitech_3c00640 crossref_primary_10_3390_foods12040775 crossref_primary_10_3390_foods14060978 crossref_primary_10_1007_s12649_023_02270_w crossref_primary_10_1016_j_cis_2025_103447 crossref_primary_10_1016_j_foodhyd_2022_108414 crossref_primary_10_2139_ssrn_4784568 crossref_primary_10_1016_j_lwt_2022_114016 crossref_primary_10_1007_s12649_024_02614_0 crossref_primary_10_3390_antiox11030509 crossref_primary_10_1016_j_ijbiomac_2024_133315 crossref_primary_10_3390_fermentation9070635 crossref_primary_10_1002_cche_10662 crossref_primary_10_1016_j_crfs_2024_100876 crossref_primary_10_1016_j_cocis_2024_101823 crossref_primary_10_1016_j_foodhyd_2024_110313 crossref_primary_10_1016_j_foodhyd_2024_110754 crossref_primary_10_1016_j_lwt_2024_115948 crossref_primary_10_1016_j_cocis_2024_101821 crossref_primary_10_1016_j_molliq_2023_122487 crossref_primary_10_1016_j_ifset_2024_103833 crossref_primary_10_1016_j_tifs_2023_02_008 crossref_primary_10_3390_nu15061327 crossref_primary_10_1016_j_lwt_2025_117325 crossref_primary_10_1016_j_foodchem_2024_142182 crossref_primary_10_1016_j_ijbiomac_2024_138407 crossref_primary_10_3390_foods13010006 crossref_primary_10_1016_j_heliyon_2023_e21938 crossref_primary_10_3390_foods11203275 crossref_primary_10_15237_gida_GD23115 crossref_primary_10_1111_1541_4337_70095 crossref_primary_10_1016_j_colsurfa_2022_129783 crossref_primary_10_1016_j_ijbiomac_2023_125103 crossref_primary_10_1016_j_foohum_2024_100301 crossref_primary_10_1016_j_foodchem_2024_141848 crossref_primary_10_1016_j_cis_2024_103280 crossref_primary_10_1007_s43938_023_00025_6 crossref_primary_10_1016_j_ijbiomac_2024_135845 crossref_primary_10_1016_j_jcis_2023_12_068 crossref_primary_10_1080_10408398_2024_2315448 crossref_primary_10_1016_j_foodhyd_2024_110821 crossref_primary_10_1016_j_foodhyd_2024_110550 crossref_primary_10_1016_j_foodhyd_2025_111224 crossref_primary_10_3390_app13074469 crossref_primary_10_1016_j_fufo_2022_100119 crossref_primary_10_3390_foods13152328 crossref_primary_10_1111_1750_3841_16320 crossref_primary_10_1016_j_ijgfs_2022_100623 crossref_primary_10_1016_j_afres_2024_100459 crossref_primary_10_1016_j_ijbiomac_2025_142235 crossref_primary_10_1016_j_foodhyd_2024_109922 crossref_primary_10_1016_j_fbp_2024_12_012 crossref_primary_10_1016_j_fufo_2024_100359 crossref_primary_10_1016_j_foodhyd_2023_109309 |
Cites_doi | 10.1016/j.foodchem.2017.03.114 10.1016/j.foodres.2018.04.044 10.1016/j.lwt.2020.110415 10.1016/j.foodhyd.2020.105981 10.1016/S0308-8146(00)00314-9 10.1016/j.foodchem.2008.09.025 10.1016/j.ifset.2020.102582 10.1002/jsfa.4552 10.1016/j.foodhyd.2011.02.006 10.1016/j.ifset.2017.10.014 10.1016/j.foodres.2013.06.009 10.1016/j.colsurfa.2016.12.045 10.1016/j.crhy.2014.09.009 10.1111/j.1365-2621.2005.tb07150.x 10.1021/jp050990g 10.1016/j.molliq.2019.04.126 10.1016/j.foodhyd.2020.106270 10.1016/j.foodres.2009.07.022 10.1016/j.lwt.2020.109348 10.1111/1541-4337.12209 10.1016/j.jfoodeng.2019.109697 10.1016/j.jfoodeng.2020.109937 10.1007/s10068-015-0155-3 10.1002/jsfa.9228 10.1016/j.jtice.2017.05.027 10.1016/j.foodhyd.2019.04.030 10.1016/j.foodres.2015.05.053 10.1021/jf980034e 10.1016/j.foodchem.2020.126998 10.1016/j.tifs.2013.05.005 10.1021/acs.jpcb.8b06481 10.1016/j.lwt.2019.108275 10.1111/nbu.12450 10.1080/07373937.2013.829490 10.1016/j.foodres.2019.01.025 10.1016/j.foodhyd.2014.01.013 10.1016/j.foodhyd.2020.106008 10.1016/j.foodhyd.2020.106345 10.1016/j.cocis.2010.05.017 10.1016/j.colsurfb.2019.110707 10.1016/j.foodhyd.2009.03.003 10.2174/1874091X00802010016 10.1016/j.cocis.2007.07.010 10.1016/j.lwt.2015.09.016 10.1016/j.foodres.2012.12.009 10.1016/j.foodchem.2010.03.121 10.1016/j.foodhyd.2017.07.032 10.1016/j.cis.2015.04.001 10.1016/j.foodhyd.2014.07.024 10.1016/j.foodhyd.2018.05.020 10.1016/j.foodres.2009.09.003 10.1016/j.lwt.2012.07.023 10.1007/s00217-018-3118-0 10.1016/j.jcs.2014.01.013 10.1016/j.tifs.2015.04.013 10.1016/j.colsurfa.2013.12.037 10.1016/j.foodres.2008.10.011 10.1002/cphc.200700675 10.1111/j.1750-3841.2010.01930.x 10.1016/j.cofs.2020.08.003 10.1111/jfq.12241 10.1016/j.foodchem.2019.125274 10.1016/j.tifs.2020.01.011 10.1016/j.foodchem.2011.03.116 10.1016/j.foodchem.2006.01.011 10.1016/j.foodhyd.2020.105949 10.1111/j.1365-2621.2005.tb07172.x 10.1016/j.foodres.2017.07.022 10.1080/10408398.2010.504902 10.1002/1097-0010(200010)80:13<1964::AID-JSFA737>3.0.CO;2-J 10.1094/CCHEM-11-10-0154 10.1016/j.foodres.2009.07.021 10.1021/la034868p 10.1016/S0963-9969(02)00067-4 10.1016/S0268-005X(09)80088-X 10.1016/j.colsurfa.2007.01.030 10.1016/j.foodhyd.2019.105626 10.1016/j.tifs.2017.07.013 10.1016/j.foodhyd.2011.02.023 10.1016/j.jclepro.2009.10.016 10.1080/87559129.2016.1242135 10.1016/j.foodres.2011.01.030 10.1146/annurev-food-030216-030009 10.1051/ocl/2013038 10.1016/j.colsurfa.2018.09.015 10.1016/S0924-2244(00)00008-X 10.1016/j.foodhyd.2020.105764 10.1021/la301368v 10.1007/s13205-017-0691-z 10.1007/s13197-018-3311-y 10.1016/j.idairyj.2016.09.012 10.1016/j.ijbiomac.2017.11.135 10.1016/j.ultsonch.2018.02.007 10.1016/S0011-9164(02)00338-7 10.1039/C9SM02372K 10.1016/j.indcrop.2020.112986 10.1080/10408398.2012.687418 10.1016/j.tifs.2017.01.008 10.1002/1521-3803(20001201)44:6<403::AID-FOOD403>3.0.CO;2-H 10.1016/j.ifset.2020.102449 10.1016/j.seppur.2017.03.066 10.1016/j.tifs.2010.11.002 10.1111/1750-3841.14734 10.1016/j.jcs.2019.04.002 10.1016/j.foodhyd.2005.03.014 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2021 |
DBID | AAYXX CITATION 7QO 7QR 7ST 7T7 8FD C1K F28 FR3 P64 SOI 7S9 L.6 |
DOI | 10.1016/j.tifs.2021.10.001 |
DatabaseName | CrossRef Biotechnology Research Abstracts Chemoreception Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-3053 |
EndPage | 272 |
ExternalDocumentID | 10_1016_j_tifs_2021_10_001 S0924224421005574 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K WH7 WUQ XFK Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QO 7QR 7ST 7T7 8FD C1K EFKBS F28 FR3 P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c361t-fef488c09d77803f550b5f5b38a4041f01c170192b5428c633b5e76c8cb7e7263 |
IEDL.DBID | .~1 |
ISSN | 0924-2244 |
IngestDate | Fri Jul 11 05:29:10 EDT 2025 Wed Aug 13 08:12:26 EDT 2025 Tue Jul 01 04:02:41 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Fri Feb 23 02:46:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Plant proteins Protein modifications Foaming properties Extraction processes Physicochemical properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-fef488c09d77803f550b5f5b38a4041f01c170192b5428c633b5e76c8cb7e7263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7206-0550 0000-0002-4643-9129 |
PQID | 2621600764 |
PQPubID | 2045388 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2636661518 proquest_journals_2621600764 crossref_primary_10_1016_j_tifs_2021_10_001 crossref_citationtrail_10_1016_j_tifs_2021_10_001 elsevier_sciencedirect_doi_10_1016_j_tifs_2021_10_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Trends in food science & technology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Langevin (bib48) 2008; 9 Husband, Wilde, Clark, Rawel, Muschiolik (bib41) 1994; 8 Nivala, Makinen, Kruus, Nordlund, Ercili-Cura (bib70) 2017; 231 Wouters, Rombouts, Fierens, Brijs, Delcour (bib108) 2016; 15 Mäkinen, Sozer, Ercili-Cura, Poutanen (bib59) 2017 Li, Cui, Wang, Liu, Chen, Wang, Wang, Jiang (bib50) 2019; 95 Wierenga, Meinders, Egmond, Voragen, De Jongh (bib106) 2003; 19 Hood-Niefer, Warkentin, Chibbar, Vandenberg, Tyler (bib40) 2012; 92 Foegeding, Luck, Davis (bib34) 2006; 20 Damodaran (bib21) 2005; 70 Zhang, He, Liu, Sun, Ye, Cao, Wu, Sun (bib115) 2020; 327 Day (bib22) 2013; 32 Ivanova, Kalaydzhiev, Dessev, Silva, Rustad, Chalova (bib42) 2018; 55 O'Mahony, Drapala, Mulcahy, Mulvihill (bib71) 2017; 67 Dachmann, Nobis, Kulozik, Dombrowski (bib20) 2020; 107 Tan, Mailer, Blanchard, Agboola (bib95) 2011; 76 van der Linden, Venema (bib51) 2007; 12 Richert, Garcia Rey, Braunschweig (bib77) 2018; 122 Yust, Pedroche, Millán-Linares, Alcaide-Hidalgo, Millán (bib112) 2010; 122 Adebiyi, Aluko (bib2) 2011; 128 Warnakulasuriya, Nickerson (bib103) 2018; 98 Dombrowski, Gschwendtner, Saalfeld, Kulozik (bib27) 2018; 558 Zhao, Xiong, Chen, Zhu, Wang (bib117) 2020; 103 Martinez-Velasco, Lobato-Calleros, Hernandez-Rodriguez, Roman-Guerrero, Alvarez-Ramirez, Vernon-Carter (bib61) 2018; 44 Sá, Moreno, Carciofi (bib81) 2020; 97 Graetz, Dombrowski, Eggert, Rack, Kulozik, Hinrichs, Hanke, Zabler (bib37) 2020 Kaukonen, Sontag-Strohm, Salovaara, Lampi, Sibakov, Loponen (bib43) 2011; 88 Stone, Cheung, Chang, Nickerson (bib91) 2013; 54 Yang, Liu, Zeng, Chen (bib111) 2018; 83 Ren, Li, Yang, Huang, Huang, Zhang, Yan (bib76) 2020; 265 Osborne (bib72) 1924 Nicolai, Britten, Schmitt (bib67) 2011; 25 Rodríguez Patino, Pilosof (bib78) 2011; 25 Wang, Wang, Wang, Chen (bib101) 2016; 65 Campbell, Mougeot (bib15) 1999; 10 Dombrowski, Gschwendtner, Kulozik (bib26) 2017; 516 Lu, Quillien, Popineau (bib58) 2000; 80 Ruíz-Henestrosa, Sánchez, Escobar, Jiménez, Rodríguez, Patino (bib79) 2007; 309 Tontul, Kasimoglu, Asik, Atbakan, Topuz (bib97) 2018; 109 Liu, Zhang, Lv, Tian, Li, Wu (bib55) 2017; 78 Klose, Arendt (bib44) 2012; 52 De Jongh, Broersen (bib23) 2012 Rachwa-Rosiak, Nebesny, Budryn (bib75) 2015; 55 Zhan, Shi, Wang, Li, Chen (bib116) 2019; 285 Shewry, Casey (bib87) 1999 Guan, Yao, Chen, Shan, Zhang (bib38) 2007; 101 Schweiggert-Weisz, Eisner, Bader-Mittermaier, Osen (bib84) 2020; 32 García Arteaga, Apéstegui Guardia, Muranyi, Eisner, Schweiggert-Weisz (bib35) 2020; 65 Sorgentini, Wagner (bib89) 2002; 35 Djemaoune, Cases, Saurel (bib25) 2019; 84 Nadathur, Wanasundara, Scanlin (bib65) 2016 Boye, Zare, Pletch (bib12) 2010; 43 Amagliani, O'Regan, Kelly, O'Mahony (bib4) 2017; 64 Sirison, Ishii, Matsumiya, Samoto, Kohno, Matsumura (bib88) 2021; 112 Tanger, Engel, Kulozik (bib94) 2020; 107 Pots, de Jongh, Gruppen, Hessing, Voragen (bib73) 1998; 46 El Fiel, El Tinay, Elsheikh (bib29) 2002; 76 Li, Shi, Scanlon, Xue, Lu (bib52) 2021; 137 Fetzer, Müller, Schmid, Eisner (bib32) 2020; 158 Nisov, Ercili-Cura, Nordlund (bib69) 2020; 302 Xiong, Xiong, Ge, Xia, Li, Chen (bib109) 2018; 109 Asioli, Aschemann-Witzel, Caputo, Vecchio, Annunziata, Naes, Varela (bib8) 2017; 99 Von Der Haar, Müller, Bader-Mittermaier, Eisner (bib99) 2014; 21 Loveday (bib56) 2020; 45 Liu, Wu, Hou, Li, Sha, Tian (bib54) 2017; 7 Wierenga, Gruppen (bib105) 2010; 15 Arntfield, Maskus (bib7) 2011 Amagliani, O'Regan, Schmitt, Kelly, O'Mahony (bib5) 2019; 88 Campbell (bib14) 2008 Brückner-Gühmann, Heiden-Hecht, Sözer, Drusch (bib13) 2018; 244 Shevkani, Singh, Kaur, Rana (bib86) 2015; 43 Nishinari, Fang, Guo, Phillips (bib68) 2014; 39 Achouri, Boye, Yaylayan, Yeboah (bib1) 2005; 70 Aider, Barbana (bib3) 2011; 22 Gochev, Retzlaff, Exerowa, Miller (bib36) 2014; 460 Mirmoghtadaie, Kadivar, Shahedi (bib62) 2009; 114 Wang, Zhang, Xu, Ma (bib102) 2020; 127 Qiao, Miller, Schneck, Sun (bib74) 2020; 16 Zeng, Adhikari, He, Qin, Huang, Chen (bib114) 2013; 31 Vogelsang-O'Dwyer, Petersen, Joehnke, Sorensen, Bez, Detzel, Busch, Krueger, O'Mahony, Arendt, Zannini (bib98) 2020; 9 Liang, Chen, Qie, Zeng, Qin, He, Chen (bib49) 2020; 105 Shao, Lin, Kao (bib85) 2016; 39 Mohamed, Biresaw, Xu, Hojilla-Evangelista, Rayas-Duarte (bib63) 2009; 42 Zayas (bib113) 1997 Marinova, Basheva, Nenova, Temelska, Mirarefi, Campbell, Ivanov (bib60) 2009; 23 Waglay, Achouri, Karboune, Zareifard, L'Hocine (bib100) 2019; 113 Konak, Ercili-Cura, Sibakov, Sontag-Strohm, Certel, Loponen (bib45) 2014; 60 Krause, Dudek, Schwenke (bib46) 2000; 44 Engelhardt, Rumpel, Walter, Dombrowski, Kulozik, Braunschweig, Peukert (bib30) 2012; 28 Amagliani, Schmitt (bib6) 2017; 67 Flores-Jimenez, Ulloa, Silvas, Ramirez, Ulloa, Rosales, Carrillo, Leyva (bib33) 2019; 121 Boye, Aksay, Roufik, Ribéreau, Mondor, Farnworth, Rajamohamed (bib11) 2010; 43 Wierenga, Meinders, Egmond, Voragen, De Jongh (bib107) 2005; 109 Whitehurst (bib104) 2008 Taherian, Mondor, Labranche, Drolet, Ippersiel, Lamarche (bib93) 2011; 44 Souza, Sbardelotto, Ziegler, Pinto, Ramos, Marczak, Tessaro (bib90) 2017; 183 Liu, Elmer, Low, Nickerson (bib53) 2010; 43 Narsimhan, Xiang (bib66) 2018; 9 Cassini, Tessaro, Marczak, Pertile (bib16) 2010; 18 Aydemir, Yemenicioğlu (bib9) 2013; 50 Moreno, Clemente (bib64) 2008; 2 Yang, Faber, Berton-Carabin, Nikiforidis, van der Linden, Sagis (bib110) 2021; 112 Baier, Knorr (bib10) 2015; 77 Chao, Jung, Aluko (bib17) 2018; 45 Lam, Can Karaca, Tyler, Nickerson (bib47) 2018; 34 Zwijnenberg, Kemperman, Boerrigter, Lotz, Dijksterhuis, Poulsen, Koops (bib119) 2002; 144 Fameau, Salonen (bib31) 2014; 15 Stone, Teymurova, Chang, Cheung, Nickerson (bib92) 2015; 24 Zhu, Yin, Xie, Liu, Yang, Wang, Li, Liu (bib118) 2020; 186 Cui, Bandillo, Wang, Ohm, Chen, Rao (bib19) 2020; 108 Toews, Wang (bib96) 2013; 52 Drenckhan, Saint-Jalmes (bib28) 2015; 222 Schmidt, Damgaard, Greve-Poulsen, Larsen, Hammershøj (bib82) 2018; 74 He, Chen, He, Feng, Li, Liu, Dai, Liu (bib39) 2021; 67 Schutyser, Pelgrom, van der Goot, Boom (bib83) 2015; 45 Lu, He, Zhang, Bing (bib57) 2020 Deotale, Dutta, Moses, Balasubramaniam, Anandharamakrishnan (bib24) 2020 Chen, Sheng, Gouda, Ma (bib18) 2019 Saldanha do Carmo, Silventoinen, Nordgård, Poudroux, Dessev, Zobel, Holtekjølen, Draget, Holopainen-Mantila, Knutsen, Sahlstrøm (bib80) 2020; 278 Foegeding (10.1016/j.tifs.2021.10.001_bib34) 2006; 20 Kaukonen (10.1016/j.tifs.2021.10.001_bib43) 2011; 88 Tan (10.1016/j.tifs.2021.10.001_bib95) 2011; 76 Amagliani (10.1016/j.tifs.2021.10.001_bib6) 2017; 67 Baier (10.1016/j.tifs.2021.10.001_bib10) 2015; 77 Drenckhan (10.1016/j.tifs.2021.10.001_bib28) 2015; 222 Shewry (10.1016/j.tifs.2021.10.001_bib87) 1999 Li (10.1016/j.tifs.2021.10.001_bib50) 2019; 95 El Fiel (10.1016/j.tifs.2021.10.001_bib29) 2002; 76 Nisov (10.1016/j.tifs.2021.10.001_bib69) 2020; 302 Schmidt (10.1016/j.tifs.2021.10.001_bib82) 2018; 74 Fetzer (10.1016/j.tifs.2021.10.001_bib32) 2020; 158 Moreno (10.1016/j.tifs.2021.10.001_bib64) 2008; 2 Sá (10.1016/j.tifs.2021.10.001_bib81) 2020; 97 Guan (10.1016/j.tifs.2021.10.001_bib38) 2007; 101 Yust (10.1016/j.tifs.2021.10.001_bib112) 2010; 122 Liang (10.1016/j.tifs.2021.10.001_bib49) 2020; 105 Shao (10.1016/j.tifs.2021.10.001_bib85) 2016; 39 Hood-Niefer (10.1016/j.tifs.2021.10.001_bib40) 2012; 92 O'Mahony (10.1016/j.tifs.2021.10.001_bib71) 2017; 67 Nicolai (10.1016/j.tifs.2021.10.001_bib67) 2011; 25 Pots (10.1016/j.tifs.2021.10.001_bib73) 1998; 46 Qiao (10.1016/j.tifs.2021.10.001_bib74) 2020; 16 Lam (10.1016/j.tifs.2021.10.001_bib47) 2018; 34 Warnakulasuriya (10.1016/j.tifs.2021.10.001_bib103) 2018; 98 Souza (10.1016/j.tifs.2021.10.001_bib90) 2017; 183 Mohamed (10.1016/j.tifs.2021.10.001_bib63) 2009; 42 Zeng (10.1016/j.tifs.2021.10.001_bib114) 2013; 31 Narsimhan (10.1016/j.tifs.2021.10.001_bib66) 2018; 9 Ruíz-Henestrosa (10.1016/j.tifs.2021.10.001_bib79) 2007; 309 Yang (10.1016/j.tifs.2021.10.001_bib110) 2021; 112 Vogelsang-O'Dwyer (10.1016/j.tifs.2021.10.001_bib98) 2020; 9 Konak (10.1016/j.tifs.2021.10.001_bib45) 2014; 60 Chao (10.1016/j.tifs.2021.10.001_bib17) 2018; 45 Boye (10.1016/j.tifs.2021.10.001_bib12) 2010; 43 Adebiyi (10.1016/j.tifs.2021.10.001_bib2) 2011; 128 Li (10.1016/j.tifs.2021.10.001_bib52) 2021; 137 Saldanha do Carmo (10.1016/j.tifs.2021.10.001_bib80) 2020; 278 Wierenga (10.1016/j.tifs.2021.10.001_bib106) 2003; 19 Nadathur (10.1016/j.tifs.2021.10.001_bib65) 2016 Deotale (10.1016/j.tifs.2021.10.001_bib24) 2020 Stone (10.1016/j.tifs.2021.10.001_bib91) 2013; 54 Damodaran (10.1016/j.tifs.2021.10.001_bib21) 2005; 70 Martinez-Velasco (10.1016/j.tifs.2021.10.001_bib61) 2018; 44 Amagliani (10.1016/j.tifs.2021.10.001_bib4) 2017; 64 Amagliani (10.1016/j.tifs.2021.10.001_bib5) 2019; 88 Sorgentini (10.1016/j.tifs.2021.10.001_bib89) 2002; 35 Lu (10.1016/j.tifs.2021.10.001_bib58) 2000; 80 Graetz (10.1016/j.tifs.2021.10.001_bib37) 2020 Lu (10.1016/j.tifs.2021.10.001_bib57) 2020 Achouri (10.1016/j.tifs.2021.10.001_bib1) 2005; 70 Husband (10.1016/j.tifs.2021.10.001_bib41) 1994; 8 Djemaoune (10.1016/j.tifs.2021.10.001_bib25) 2019; 84 Liu (10.1016/j.tifs.2021.10.001_bib55) 2017; 78 Ivanova (10.1016/j.tifs.2021.10.001_bib42) 2018; 55 Engelhardt (10.1016/j.tifs.2021.10.001_bib30) 2012; 28 He (10.1016/j.tifs.2021.10.001_bib39) 2021; 67 Chen (10.1016/j.tifs.2021.10.001_bib18) 2019 Marinova (10.1016/j.tifs.2021.10.001_bib60) 2009; 23 Klose (10.1016/j.tifs.2021.10.001_bib44) 2012; 52 Aydemir (10.1016/j.tifs.2021.10.001_bib9) 2013; 50 Osborne (10.1016/j.tifs.2021.10.001_bib72) 1924 García Arteaga (10.1016/j.tifs.2021.10.001_bib35) 2020; 65 Nishinari (10.1016/j.tifs.2021.10.001_bib68) 2014; 39 Mäkinen (10.1016/j.tifs.2021.10.001_bib59) 2017 Zhu (10.1016/j.tifs.2021.10.001_bib118) 2020; 186 Waglay (10.1016/j.tifs.2021.10.001_bib100) 2019; 113 Richert (10.1016/j.tifs.2021.10.001_bib77) 2018; 122 De Jongh (10.1016/j.tifs.2021.10.001_bib23) 2012 Toews (10.1016/j.tifs.2021.10.001_bib96) 2013; 52 Zhao (10.1016/j.tifs.2021.10.001_bib117) 2020; 103 Flores-Jimenez (10.1016/j.tifs.2021.10.001_bib33) 2019; 121 Brückner-Gühmann (10.1016/j.tifs.2021.10.001_bib13) 2018; 244 Fameau (10.1016/j.tifs.2021.10.001_bib31) 2014; 15 Cassini (10.1016/j.tifs.2021.10.001_bib16) 2010; 18 Yang (10.1016/j.tifs.2021.10.001_bib111) 2018; 83 Zwijnenberg (10.1016/j.tifs.2021.10.001_bib119) 2002; 144 van der Linden (10.1016/j.tifs.2021.10.001_bib51) 2007; 12 Krause (10.1016/j.tifs.2021.10.001_bib46) 2000; 44 Ren (10.1016/j.tifs.2021.10.001_bib76) 2020; 265 Dombrowski (10.1016/j.tifs.2021.10.001_bib27) 2018; 558 Tanger (10.1016/j.tifs.2021.10.001_bib94) 2020; 107 Xiong (10.1016/j.tifs.2021.10.001_bib109) 2018; 109 Langevin (10.1016/j.tifs.2021.10.001_bib48) 2008; 9 Cui (10.1016/j.tifs.2021.10.001_bib19) 2020; 108 Wierenga (10.1016/j.tifs.2021.10.001_bib105) 2010; 15 Wierenga (10.1016/j.tifs.2021.10.001_bib107) 2005; 109 Zhan (10.1016/j.tifs.2021.10.001_bib116) 2019; 285 Day (10.1016/j.tifs.2021.10.001_bib22) 2013; 32 Taherian (10.1016/j.tifs.2021.10.001_bib93) 2011; 44 Whitehurst (10.1016/j.tifs.2021.10.001_bib104) 2008 Campbell (10.1016/j.tifs.2021.10.001_bib15) 1999; 10 Schutyser (10.1016/j.tifs.2021.10.001_bib83) 2015; 45 Loveday (10.1016/j.tifs.2021.10.001_bib56) 2020; 45 Rachwa-Rosiak (10.1016/j.tifs.2021.10.001_bib75) 2015; 55 Asioli (10.1016/j.tifs.2021.10.001_bib8) 2017; 99 Wang (10.1016/j.tifs.2021.10.001_bib101) 2016; 65 Dachmann (10.1016/j.tifs.2021.10.001_bib20) 2020; 107 Sirison (10.1016/j.tifs.2021.10.001_bib88) 2021; 112 Aider (10.1016/j.tifs.2021.10.001_bib3) 2011; 22 Schweiggert-Weisz (10.1016/j.tifs.2021.10.001_bib84) 2020; 32 Arntfield (10.1016/j.tifs.2021.10.001_bib7) 2011 Boye (10.1016/j.tifs.2021.10.001_bib11) 2010; 43 Von Der Haar (10.1016/j.tifs.2021.10.001_bib99) 2014; 21 Zhang (10.1016/j.tifs.2021.10.001_bib115) 2020; 327 Shevkani (10.1016/j.tifs.2021.10.001_bib86) 2015; 43 Wang (10.1016/j.tifs.2021.10.001_bib102) 2020; 127 Nivala (10.1016/j.tifs.2021.10.001_bib70) 2017; 231 Liu (10.1016/j.tifs.2021.10.001_bib53) 2010; 43 Gochev (10.1016/j.tifs.2021.10.001_bib36) 2014; 460 Mirmoghtadaie (10.1016/j.tifs.2021.10.001_bib62) 2009; 114 Zayas (10.1016/j.tifs.2021.10.001_bib113) 1997 Tontul (10.1016/j.tifs.2021.10.001_bib97) 2018; 109 Stone (10.1016/j.tifs.2021.10.001_bib92) 2015; 24 Wouters (10.1016/j.tifs.2021.10.001_bib108) 2016; 15 Rodríguez Patino (10.1016/j.tifs.2021.10.001_bib78) 2011; 25 Liu (10.1016/j.tifs.2021.10.001_bib54) 2017; 7 Dombrowski (10.1016/j.tifs.2021.10.001_bib26) 2017; 516 Campbell (10.1016/j.tifs.2021.10.001_bib14) 2008 |
References_xml | – year: 2008 ident: bib104 article-title: Emulsifiers in food technology – start-page: 105 year: 2017 end-page: 119 ident: bib59 article-title: Protein from oat: Structure, processes, functionality, and nutrition publication-title: Sustainable protein sources – volume: 23 start-page: 1864 year: 2009 end-page: 1876 ident: bib60 article-title: Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates publication-title: Food Hydrocolloids – volume: 50 start-page: 686 year: 2013 end-page: 694 ident: bib9 article-title: Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 92 start-page: 141 year: 2012 end-page: 150 ident: bib40 article-title: Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean publication-title: Journal of the Science of Food and Agriculture – volume: 64 start-page: 1 year: 2017 end-page: 12 ident: bib4 article-title: The composition, extraction, functionality and applications of rice proteins: A review publication-title: Trends in Food Science & Technology – volume: 45 start-page: 179 year: 2018 end-page: 185 ident: bib17 article-title: Physicochemical and functional properties of high pressure-treated isolated pea protein publication-title: Innovative Food Science & Emerging Technologies – year: 2016 ident: bib65 article-title: Sustainable protein sources – year: 2012 ident: bib23 article-title: Application potential of food protein modification publication-title: Advances in chemical engineering – volume: 103 year: 2020 ident: bib117 article-title: Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure publication-title: Food Hydrocolloids – volume: 80 start-page: 1964 year: 2000 end-page: 1972 ident: bib58 article-title: Foaming and emulsifying properties of pea albumin fractions and partial characterisation of surface active components publication-title: Journal of the Science of Food and Agriculture – volume: 21 year: 2014 ident: bib99 article-title: Rapeseed proteins – production methods and possible application ranges publication-title: Ocl – volume: 302 year: 2020 ident: bib69 article-title: Limited hydrolysis of rice endosperm protein for improved techno-functional properties publication-title: Food Chemistry – volume: 10 start-page: 283 year: 1999 end-page: 296 ident: bib15 article-title: Creation and characterisation of aerated food products publication-title: Trends in Food Science & Technology – volume: 113 year: 2019 ident: bib100 article-title: Pilot plant extraction of potato proteins and their structural and functional properties publication-title: LWT-Food Science and Technology – volume: 98 start-page: 5559 year: 2018 end-page: 5571 ident: bib103 article-title: Review on plant protein-polysaccharide complex coacervation, and the functionality and applicability of formed complexes publication-title: Journal of the Science of Food and Agriculture – volume: 99 start-page: 58 year: 2017 end-page: 71 ident: bib8 article-title: Making sense of the "clean label" trends: A review of consumer food choice behavior and discussion of industry implications publication-title: Food Research International – volume: 121 start-page: 947 year: 2019 end-page: 956 ident: bib33 article-title: Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate publication-title: Food Research International – volume: 44 start-page: 403 year: 2000 end-page: 406 ident: bib46 article-title: Changes in interfacial behaviour, emulsifying and foaming properties of faba bean legumin after modification with dimethylsuberimidate publication-title: Nahrung – volume: 309 start-page: 202 year: 2007 end-page: 215 ident: bib79 article-title: Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 70 start-page: R54 year: 2005 end-page: R66 ident: bib21 article-title: Protein stabilization of emulsions and foams publication-title: Journal of Food Science – year: 1997 ident: bib113 article-title: Functionality of proteins in food – volume: 32 start-page: 156 year: 2020 end-page: 162 ident: bib84 article-title: Food proteins from plants and fungi publication-title: Current Opinion in Food Science – volume: 122 start-page: 10377 year: 2018 end-page: 10383 ident: bib77 article-title: Charge-controlled surface properties of native and fluorophore-labeled bovine serum albumin at the air-water interface publication-title: The Journal of Physical Chemistry B – volume: 2 start-page: 16 year: 2008 end-page: 28 ident: bib64 article-title: 2S albumin storage proteins: What makes them food allergens? publication-title: The Open Biochemistry Journal – volume: 107 year: 2020 ident: bib94 article-title: Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour publication-title: Food Hydrocolloids – volume: 35 start-page: 721 year: 2002 end-page: 729 ident: bib89 article-title: Comparative study on foaming properties of whey and isolate soybean proteins publication-title: Food Research International – volume: 43 start-page: 414 year: 2010 end-page: 431 ident: bib12 article-title: Pulse proteins: Processing, characterization, functional properties and applications in food and feed publication-title: Food Research International – start-page: 582 year: 2019 ident: bib18 article-title: Studies on foaming and physicochemical properties of egg white during cold storage publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 70 start-page: C269 year: 2005 end-page: C274 ident: bib1 article-title: Functional properties of glycated soy 11S glycinin publication-title: Journal of Food Science – volume: 45 start-page: 321 year: 2020 end-page: 327 ident: bib56 article-title: Plant protein ingredients with food functionality potential publication-title: Nutrition Bulletin – volume: 52 start-page: 445 year: 2013 end-page: 451 ident: bib96 article-title: Physicochemical and functional properties of protein concentrates from pulses publication-title: Food Research International – volume: 128 start-page: 902 year: 2011 end-page: 908 ident: bib2 article-title: Functional properties of protein fractions obtained from commercial yellow field pea ( publication-title: Food Chemistry – volume: 39 start-page: 695 year: 2016 end-page: 706 ident: bib85 article-title: Modification of foaming properties of commercial soy protein isolates and concentrates by heat treatments publication-title: Journal of Food Quality – volume: 558 start-page: 455 year: 2018 end-page: 462 ident: bib27 article-title: Salt-dependent interaction behavior of β-Lactoglobulin molecules in relation to their surface and foaming properties publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 231 start-page: 87 year: 2017 end-page: 95 ident: bib70 article-title: Structuring colloidal oat and faba bean protein particles via enzymatic modification publication-title: Food Chemistry – volume: 95 start-page: 349 year: 2019 end-page: 357 ident: bib50 article-title: Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates publication-title: Food Hydrocolloids – volume: 122 start-page: 1212 year: 2010 end-page: 1217 ident: bib112 article-title: Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase publication-title: Food Chemistry – volume: 78 start-page: 39 year: 2017 end-page: 44 ident: bib55 article-title: Foam fractionation for recovering whey soy protein from whey wastewater: Strengthening foam drainage using a novel internal component with superhydrophobic surface publication-title: Journal of the Taiwan Institute of Chemical Engineers – volume: 97 start-page: 170 year: 2020 end-page: 184 ident: bib81 article-title: Plant proteins as high-quality nutritional source for human diet publication-title: Trends in Food Science & Technology – volume: 54 start-page: 195 year: 2013 end-page: 202 ident: bib91 article-title: Formation and functionality of soluble and insoluble electrostatic complexes within mixtures of canola protein isolate and (κ-, ι- and λ-type) carrageenan publication-title: Food Research International – volume: 88 start-page: 16 year: 2019 end-page: 23 ident: bib5 article-title: Characterisation of the physicochemical properties of intact and hydrolysed rice protein ingredients publication-title: Journal of Cereal Science – volume: 43 start-page: 537 year: 2010 end-page: 546 ident: bib11 article-title: Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques publication-title: Food Research International – volume: 43 start-page: 679 year: 2015 end-page: 689 ident: bib86 article-title: Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study publication-title: Food Hydrocolloids – year: 1999 ident: bib87 article-title: Seed proteins – volume: 460 start-page: 272 year: 2014 end-page: 279 ident: bib36 article-title: Electrostatic stabilization of foam films from β-lactoglobulin solutions publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 137 year: 2021 ident: bib52 article-title: Effects of pretreatments on physicochemical and structural properties of proteins isolated from canola seeds after oil extraction by supercritical-CO2 process publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 285 start-page: 658 year: 2019 end-page: 667 ident: bib116 article-title: Effect of freeze-drying on interaction and functional properties of pea protein isolate/soy soluble polysaccharides complexes publication-title: Journal of Molecular Liquids – volume: 9 start-page: 510 year: 2008 end-page: 522 ident: bib48 article-title: Aqueous foams: A field of investigation at the frontier between chemistry and physics publication-title: ChemPhysChem – volume: 42 start-page: 107 year: 2009 end-page: 114 ident: bib63 article-title: Oats protein isolate: Thermal, rheological, surface and functional properties publication-title: Food Research International – volume: 39 start-page: 301 year: 2014 end-page: 318 ident: bib68 article-title: Soy proteins: A review on composition, aggregation and emulsification publication-title: Food Hydrocolloids – volume: 28 start-page: 7780 year: 2012 end-page: 7787 ident: bib30 article-title: Protein adsorption at the electrified air-water interface: Implications on foam stability publication-title: Langmuir – volume: 108 year: 2020 ident: bib19 article-title: Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH publication-title: Food Hydrocolloids – volume: 44 start-page: 2505 year: 2011 end-page: 2514 ident: bib93 article-title: Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates publication-title: Food Research International – volume: 22 start-page: 21 year: 2011 end-page: 39 ident: bib3 article-title: Canola proteins: Composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity – a practical and critical review publication-title: Trends in Food Science & Technology – volume: 34 start-page: 126 year: 2018 end-page: 147 ident: bib47 article-title: Pea protein isolates: Structure, extraction, and functionality publication-title: Food Reviews International – volume: 265 year: 2020 ident: bib76 article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality publication-title: Journal of Food Engineering – volume: 55 start-page: 1137 year: 2015 end-page: 1145 ident: bib75 article-title: Chickpeas-composition, nutritional value, health benefits, application to bread and snacks: A review publication-title: Critical Reviews in Food Science and Nutrition – volume: 25 start-page: 1925 year: 2011 end-page: 1937 ident: bib78 article-title: Protein–polysaccharide interactions at fluid interfaces publication-title: Food Hydrocolloids – volume: 52 start-page: 629 year: 2012 end-page: 639 ident: bib44 article-title: Proteins in oats; their synthesis and changes during germination: A review publication-title: Critical Reviews in Food Science and Nutrition – volume: 7 start-page: 74 year: 2017 ident: bib54 article-title: Structure and function of seed storage proteins in faba bean (Vicia faba L.) publication-title: 3 Biotech – volume: 183 start-page: 279 year: 2017 end-page: 292 ident: bib90 article-title: Obtaining and purification of a highly soluble hydrolyzed rice endosperm protein publication-title: Separation and Purification Technology – volume: 105 year: 2020 ident: bib49 article-title: Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties publication-title: Food Hydrocolloids – volume: 46 start-page: 2546 year: 1998 end-page: 2553 ident: bib73 article-title: The pH dependence of the structural stability of patatin publication-title: Journal of Agricultural and Food Chemistry – volume: 44 start-page: 97 year: 2018 end-page: 105 ident: bib61 article-title: High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes publication-title: Ultrasonics Sonochemistry – volume: 222 start-page: 228 year: 2015 end-page: 259 ident: bib28 article-title: The science of foaming publication-title: Advances in Colloid and Interface Science – start-page: 1 year: 2020 end-page: 13 ident: bib57 article-title: Composition, physicochemical properties of pea protein and its application in functional foods publication-title: Critical Reviews in Food Science and Nutrition – volume: 9 year: 2020 ident: bib98 article-title: Comparison of faba bean protein ingredients produced using dry fractionation and isoelectric precipitation: Techno-functional, nutritional and environmental performance publication-title: Foods – year: 2020 ident: bib24 article-title: Foaming characteristics of beverages and its relevance to food processing publication-title: Food engineering reviews – volume: 12 start-page: 158 year: 2007 end-page: 165 ident: bib51 article-title: Self-assembly and aggregation of proteins publication-title: Current Opinion in Colloid & Interface Science – volume: 15 start-page: 786 year: 2016 end-page: 800 ident: bib108 article-title: Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 107 year: 2020 ident: bib20 article-title: Surface and foaming properties of potato proteins: Impact of protein concentration, pH value and ionic strength publication-title: Food Hydrocolloids – volume: 76 start-page: 219 year: 2002 end-page: 293 ident: bib29 article-title: Effect of nutritional status of faba bean (Vicia faba L.) on protein solubility profiles publication-title: Food Chemistry – volume: 84 start-page: 2242 year: 2019 end-page: 2249 ident: bib25 article-title: The effect of high-pressure microfluidization treatment on the foaming properties of pea albumin aggregates publication-title: Journal of Food Science – volume: 55 start-page: 3792 year: 2018 end-page: 3798 ident: bib42 article-title: Foaming properties of acid-soluble protein-rich ingredient obtained from industrial rapeseed meal publication-title: Journal of Food Science & Technology – start-page: 601 year: 2020 ident: bib37 article-title: Synchrotron micro-CT for studying coarsening in milk protein-stabilized foams in situ publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 278 year: 2020 ident: bib80 article-title: Is dehulling of peas and faba beans necessary prior to dry fractionation for the production of protein- and starch-rich fractions? Impact on physical properties, chemical composition and techno-functional properties publication-title: Journal of Food Engineering – volume: 144 start-page: 331 year: 2002 end-page: 334 ident: bib119 article-title: Native protein recovery from potato fruit juice by ultrafiltration publication-title: Desalination – volume: 112 year: 2021 ident: bib110 article-title: Foams and air-water interfaces stabilised by mildly purified rapeseed proteins after defatting publication-title: Food Hydrocolloids – volume: 88 start-page: 239 year: 2011 end-page: 244 ident: bib43 article-title: Foaming of differently processed oats: Role of nonpolar lipids and tryptophanin proteins publication-title: Cereal Chemistry Journal – volume: 112 year: 2021 ident: bib88 article-title: Comparison of surface and foaming properties of soy lipophilic protein with those of glycinin and β-conglycinin publication-title: Food Hydrocolloids – volume: 15 start-page: 748 year: 2014 end-page: 760 ident: bib31 article-title: Effect of particles and aggregated structures on the foam stability and aging publication-title: Comptes Rendus Physique – volume: 15 start-page: 365 year: 2010 end-page: 373 ident: bib105 article-title: New views on foams from protein solutions publication-title: Current Opinion in Colloid & Interface Science – volume: 16 start-page: 3695 year: 2020 end-page: 3704 ident: bib74 article-title: Influence of pH on the surface and foaming properties of aqueous silk fibroin solutions publication-title: Soft Matter – volume: 24 start-page: 1209 year: 2015 end-page: 1218 ident: bib92 article-title: Formation and functionality of canola protein isolate with both high- and low-methoxyl pectin under associative conditions publication-title: Food Science and Biotechnology – volume: 67 start-page: 248 year: 2017 end-page: 259 ident: bib6 article-title: Globular plant protein aggregates for stabilization of food foams and emulsions publication-title: Trends in Food Science & Technology – volume: 127 year: 2020 ident: bib102 article-title: An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 20 start-page: 284 year: 2006 end-page: 292 ident: bib34 article-title: Factors determining the physical properties of protein foams publication-title: Food Hydrocolloids – volume: 65 start-page: 832 year: 2016 end-page: 839 ident: bib101 article-title: Effects of freeze-milling on the physicochemical properties of rice protein isolates publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 32 start-page: 25 year: 2013 end-page: 42 ident: bib22 article-title: Proteins from land plants – potential resources for human nutrition and food security publication-title: Trends in Food Science & Technology – volume: 25 start-page: 1945 year: 2011 end-page: 1962 ident: bib67 article-title: β-Lactoglobulin and WPI aggregates: Formation, structure and applications publication-title: Food Hydrocolloids – volume: 186 year: 2020 ident: bib118 article-title: Interaction between soyasaponin and soy beta-conglycinin or glycinin: Air-water interfacial behavior and foaming property of their mixtures publication-title: Colloids and Surfaces B: Biointerfaces – volume: 60 start-page: 37 year: 2014 end-page: 41 ident: bib45 article-title: CO2-defatted oats: Solubility, emulsification and foaming properties publication-title: Journal of Cereal Science – volume: 83 start-page: 275 year: 2018 end-page: 286 ident: bib111 article-title: Effects of high pressure homogenization on faba bean protein aggregation in relation to solubility and interfacial properties publication-title: Food Hydrocolloids – volume: 109 start-page: 1253 year: 2018 end-page: 1259 ident: bib97 article-title: Functional properties of chickpea protein isolates dried by refractance window drying publication-title: International Journal of Biological Macromolecules – volume: 67 start-page: 16 year: 2017 end-page: 34 ident: bib71 article-title: Controlled glycation of milk proteins and peptides: Functional properties publication-title: International Dairy Journal – volume: 74 start-page: 367 year: 2018 end-page: 378 ident: bib82 article-title: Foam and emulsion properties of potato protein isolate and purified fractions publication-title: Food Hydrocolloids – volume: 77 start-page: 753 year: 2015 end-page: 761 ident: bib10 article-title: Influence of high isostatic pressure on structural and functional characteristics of potato protein publication-title: Food Research International – volume: 244 start-page: 2095 year: 2018 end-page: 2106 ident: bib13 article-title: Foaming characteristics of oat protein and modification by partial hydrolysis publication-title: European Food Research and Technology – volume: 114 start-page: 127 year: 2009 end-page: 131 ident: bib62 article-title: Effects of succinylation and deamidation on functional properties of oat protein isolate publication-title: Food Chemistry – volume: 18 start-page: 260 year: 2010 end-page: 265 ident: bib16 article-title: Ultrafiltration of wastewater from isolated soy protein production: A comparison of three UF membranes publication-title: Journal of Cleaner Production – volume: 109 start-page: 16946 year: 2005 end-page: 16952 ident: bib107 article-title: Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces publication-title: The Journal of Physical Chemistry B – start-page: 233 year: 2011 end-page: 266 ident: bib7 article-title: Peas and other legume proteins publication-title: Handbook of food proteins – volume: 101 start-page: 163 year: 2007 end-page: 170 ident: bib38 article-title: Some functional properties of oat bran protein concentrate modified by trypsin publication-title: Food Chemistry – volume: 31 start-page: 1545 year: 2013 end-page: 1552 ident: bib114 article-title: Improving the foaming properties of soy protein isolate through partial enzymatic hydrolysis publication-title: Drying Technology – volume: 109 start-page: 260 year: 2018 end-page: 267 ident: bib109 article-title: Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate publication-title: Food Research International – volume: 43 start-page: 489 year: 2010 end-page: 495 ident: bib53 article-title: Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes publication-title: Food Research International – volume: 516 start-page: 286 year: 2017 end-page: 295 ident: bib26 article-title: Evaluation of structural characteristics determining surface and foaming properties of β-lactoglobulin aggregates publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – year: 1924 ident: bib72 article-title: The vegetable proteins – volume: 45 start-page: 327 year: 2015 end-page: 335 ident: bib83 article-title: Dry fractionation for sustainable production of functional legume protein concentrates publication-title: Trends in Food Science & Technology – volume: 158 year: 2020 ident: bib32 article-title: Rapeseed proteins for technical applications: Processing, isolation, modification and functional properties – a review publication-title: Industrial Crops and Products – volume: 19 start-page: 8964 year: 2003 end-page: 8970 ident: bib106 article-title: Protein exposed hydrophobicity reduces the kinetic barrier for adsorption of ovalbumin to the air-water interface publication-title: Langmuir – volume: 67 year: 2021 ident: bib39 article-title: Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein publication-title: Innovative Food Science & Emerging Technologies – volume: 65 year: 2020 ident: bib35 article-title: Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates publication-title: Innovative Food Science & Emerging Technologies – volume: 8 start-page: 455 year: 1994 end-page: 468 ident: bib41 article-title: Foaming properties of modified fababean protein isolates publication-title: Food Hydrocolloids – volume: 9 start-page: 45 year: 2018 end-page: 63 ident: bib66 article-title: Role of proteins on formation, drainage, and stability of liquid food foams publication-title: Annual Review of Food Science and Technology – year: 2008 ident: bib14 article-title: A history of aerated foods publication-title: Bubbles in food 2 – volume: 76 start-page: R16 year: 2011 end-page: R28 ident: bib95 article-title: Canola proteins for human consumption: Extraction, profile, and functional properties publication-title: Journal of Food Science – volume: 327 year: 2020 ident: bib115 article-title: Effect of pH regulation on the components and functional properties of proteins isolated from cold-pressed rapeseed meal through alkaline extraction and acid precipitation publication-title: Food Chemistry – volume: 231 start-page: 87 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib70 article-title: Structuring colloidal oat and faba bean protein particles via enzymatic modification publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.03.114 – volume: 109 start-page: 260 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib109 article-title: Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate publication-title: Food Research International doi: 10.1016/j.foodres.2018.04.044 – volume: 137 year: 2021 ident: 10.1016/j.tifs.2021.10.001_bib52 article-title: Effects of pretreatments on physicochemical and structural properties of proteins isolated from canola seeds after oil extraction by supercritical-CO2 process publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2020.110415 – volume: 107 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib20 article-title: Surface and foaming properties of potato proteins: Impact of protein concentration, pH value and ionic strength publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105981 – volume: 76 start-page: 219 year: 2002 ident: 10.1016/j.tifs.2021.10.001_bib29 article-title: Effect of nutritional status of faba bean (Vicia faba L.) on protein solubility profiles publication-title: Food Chemistry doi: 10.1016/S0308-8146(00)00314-9 – start-page: 1 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib57 article-title: Composition, physicochemical properties of pea protein and its application in functional foods publication-title: Critical Reviews in Food Science and Nutrition – volume: 114 start-page: 127 issue: 1 year: 2009 ident: 10.1016/j.tifs.2021.10.001_bib62 article-title: Effects of succinylation and deamidation on functional properties of oat protein isolate publication-title: Food Chemistry doi: 10.1016/j.foodchem.2008.09.025 – volume: 67 year: 2021 ident: 10.1016/j.tifs.2021.10.001_bib39 article-title: Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2020.102582 – volume: 92 start-page: 141 issue: 1 year: 2012 ident: 10.1016/j.tifs.2021.10.001_bib40 article-title: Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.4552 – volume: 25 start-page: 1945 issue: 8 year: 2011 ident: 10.1016/j.tifs.2021.10.001_bib67 article-title: β-Lactoglobulin and WPI aggregates: Formation, structure and applications publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2011.02.006 – volume: 45 start-page: 179 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib17 article-title: Physicochemical and functional properties of high pressure-treated isolated pea protein publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2017.10.014 – volume: 54 start-page: 195 issue: 1 year: 2013 ident: 10.1016/j.tifs.2021.10.001_bib91 article-title: Formation and functionality of soluble and insoluble electrostatic complexes within mixtures of canola protein isolate and (κ-, ι- and λ-type) carrageenan publication-title: Food Research International doi: 10.1016/j.foodres.2013.06.009 – volume: 516 start-page: 286 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib26 article-title: Evaluation of structural characteristics determining surface and foaming properties of β-lactoglobulin aggregates publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2016.12.045 – volume: 15 start-page: 748 issue: 8–9 year: 2014 ident: 10.1016/j.tifs.2021.10.001_bib31 article-title: Effect of particles and aggregated structures on the foam stability and aging publication-title: Comptes Rendus Physique doi: 10.1016/j.crhy.2014.09.009 – volume: 70 start-page: R54 issue: 3 year: 2005 ident: 10.1016/j.tifs.2021.10.001_bib21 article-title: Protein stabilization of emulsions and foams publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.2005.tb07150.x – volume: 109 start-page: 16946 issue: 35 year: 2005 ident: 10.1016/j.tifs.2021.10.001_bib107 article-title: Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces publication-title: The Journal of Physical Chemistry B doi: 10.1021/jp050990g – volume: 285 start-page: 658 year: 2019 ident: 10.1016/j.tifs.2021.10.001_bib116 article-title: Effect of freeze-drying on interaction and functional properties of pea protein isolate/soy soluble polysaccharides complexes publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2019.04.126 – volume: 112 year: 2021 ident: 10.1016/j.tifs.2021.10.001_bib110 article-title: Foams and air-water interfaces stabilised by mildly purified rapeseed proteins after defatting publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106270 – year: 2008 ident: 10.1016/j.tifs.2021.10.001_bib14 article-title: A history of aerated foods – volume: 43 start-page: 489 issue: 2 year: 2010 ident: 10.1016/j.tifs.2021.10.001_bib53 article-title: Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes publication-title: Food Research International doi: 10.1016/j.foodres.2009.07.022 – volume: 127 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib102 article-title: An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2020.109348 – volume: 15 start-page: 786 issue: 4 year: 2016 ident: 10.1016/j.tifs.2021.10.001_bib108 article-title: Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12209 – year: 1999 ident: 10.1016/j.tifs.2021.10.001_bib87 – volume: 265 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib76 article-title: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2019.109697 – volume: 278 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib80 article-title: Is dehulling of peas and faba beans necessary prior to dry fractionation for the production of protein- and starch-rich fractions? Impact on physical properties, chemical composition and techno-functional properties publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2020.109937 – volume: 24 start-page: 1209 issue: 4 year: 2015 ident: 10.1016/j.tifs.2021.10.001_bib92 article-title: Formation and functionality of canola protein isolate with both high- and low-methoxyl pectin under associative conditions publication-title: Food Science and Biotechnology doi: 10.1007/s10068-015-0155-3 – volume: 98 start-page: 5559 issue: 15 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib103 article-title: Review on plant protein-polysaccharide complex coacervation, and the functionality and applicability of formed complexes publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.9228 – volume: 78 start-page: 39 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib55 article-title: Foam fractionation for recovering whey soy protein from whey wastewater: Strengthening foam drainage using a novel internal component with superhydrophobic surface publication-title: Journal of the Taiwan Institute of Chemical Engineers doi: 10.1016/j.jtice.2017.05.027 – volume: 95 start-page: 349 year: 2019 ident: 10.1016/j.tifs.2021.10.001_bib50 article-title: Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.04.030 – volume: 77 start-page: 753 year: 2015 ident: 10.1016/j.tifs.2021.10.001_bib10 article-title: Influence of high isostatic pressure on structural and functional characteristics of potato protein publication-title: Food Research International doi: 10.1016/j.foodres.2015.05.053 – volume: 46 start-page: 2546 year: 1998 ident: 10.1016/j.tifs.2021.10.001_bib73 article-title: The pH dependence of the structural stability of patatin publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf980034e – volume: 327 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib115 article-title: Effect of pH regulation on the components and functional properties of proteins isolated from cold-pressed rapeseed meal through alkaline extraction and acid precipitation publication-title: Food Chemistry doi: 10.1016/j.foodchem.2020.126998 – volume: 32 start-page: 25 issue: 1 year: 2013 ident: 10.1016/j.tifs.2021.10.001_bib22 article-title: Proteins from land plants – potential resources for human nutrition and food security publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2013.05.005 – year: 1924 ident: 10.1016/j.tifs.2021.10.001_bib72 – volume: 122 start-page: 10377 issue: 45 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib77 article-title: Charge-controlled surface properties of native and fluorophore-labeled bovine serum albumin at the air-water interface publication-title: The Journal of Physical Chemistry B doi: 10.1021/acs.jpcb.8b06481 – volume: 113 year: 2019 ident: 10.1016/j.tifs.2021.10.001_bib100 article-title: Pilot plant extraction of potato proteins and their structural and functional properties publication-title: LWT-Food Science and Technology doi: 10.1016/j.lwt.2019.108275 – volume: 45 start-page: 321 issue: 3 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib56 article-title: Plant protein ingredients with food functionality potential publication-title: Nutrition Bulletin doi: 10.1111/nbu.12450 – volume: 31 start-page: 1545 issue: 13–14 year: 2013 ident: 10.1016/j.tifs.2021.10.001_bib114 article-title: Improving the foaming properties of soy protein isolate through partial enzymatic hydrolysis publication-title: Drying Technology doi: 10.1080/07373937.2013.829490 – volume: 121 start-page: 947 year: 2019 ident: 10.1016/j.tifs.2021.10.001_bib33 article-title: Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate publication-title: Food Research International doi: 10.1016/j.foodres.2019.01.025 – volume: 39 start-page: 301 year: 2014 ident: 10.1016/j.tifs.2021.10.001_bib68 article-title: Soy proteins: A review on composition, aggregation and emulsification publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.01.013 – volume: 108 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib19 article-title: Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106008 – volume: 112 year: 2021 ident: 10.1016/j.tifs.2021.10.001_bib88 article-title: Comparison of surface and foaming properties of soy lipophilic protein with those of glycinin and β-conglycinin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.106345 – volume: 15 start-page: 365 issue: 5 year: 2010 ident: 10.1016/j.tifs.2021.10.001_bib105 article-title: New views on foams from protein solutions publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2010.05.017 – year: 1997 ident: 10.1016/j.tifs.2021.10.001_bib113 – volume: 186 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib118 article-title: Interaction between soyasaponin and soy beta-conglycinin or glycinin: Air-water interfacial behavior and foaming property of their mixtures publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2019.110707 – volume: 23 start-page: 1864 issue: 7 year: 2009 ident: 10.1016/j.tifs.2021.10.001_bib60 article-title: Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2009.03.003 – volume: 2 start-page: 16 year: 2008 ident: 10.1016/j.tifs.2021.10.001_bib64 article-title: 2S albumin storage proteins: What makes them food allergens? publication-title: The Open Biochemistry Journal doi: 10.2174/1874091X00802010016 – year: 2016 ident: 10.1016/j.tifs.2021.10.001_bib65 – volume: 12 start-page: 158 issue: 4–5 year: 2007 ident: 10.1016/j.tifs.2021.10.001_bib51 article-title: Self-assembly and aggregation of proteins publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2007.07.010 – volume: 65 start-page: 832 year: 2016 ident: 10.1016/j.tifs.2021.10.001_bib101 article-title: Effects of freeze-milling on the physicochemical properties of rice protein isolates publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2015.09.016 – volume: 52 start-page: 445 issue: 2 year: 2013 ident: 10.1016/j.tifs.2021.10.001_bib96 article-title: Physicochemical and functional properties of protein concentrates from pulses publication-title: Food Research International doi: 10.1016/j.foodres.2012.12.009 – volume: 122 start-page: 1212 issue: 4 year: 2010 ident: 10.1016/j.tifs.2021.10.001_bib112 article-title: Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase publication-title: Food Chemistry doi: 10.1016/j.foodchem.2010.03.121 – volume: 74 start-page: 367 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib82 article-title: Foam and emulsion properties of potato protein isolate and purified fractions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.07.032 – volume: 222 start-page: 228 year: 2015 ident: 10.1016/j.tifs.2021.10.001_bib28 article-title: The science of foaming publication-title: Advances in Colloid and Interface Science doi: 10.1016/j.cis.2015.04.001 – volume: 43 start-page: 679 year: 2015 ident: 10.1016/j.tifs.2021.10.001_bib86 article-title: Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.07.024 – volume: 83 start-page: 275 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib111 article-title: Effects of high pressure homogenization on faba bean protein aggregation in relation to solubility and interfacial properties publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.05.020 – volume: 43 start-page: 414 issue: 2 year: 2010 ident: 10.1016/j.tifs.2021.10.001_bib12 article-title: Pulse proteins: Processing, characterization, functional properties and applications in food and feed publication-title: Food Research International doi: 10.1016/j.foodres.2009.09.003 – volume: 50 start-page: 686 issue: 2 year: 2013 ident: 10.1016/j.tifs.2021.10.001_bib9 article-title: Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2012.07.023 – volume: 244 start-page: 2095 issue: 12 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib13 article-title: Foaming characteristics of oat protein and modification by partial hydrolysis publication-title: European Food Research and Technology doi: 10.1007/s00217-018-3118-0 – year: 2012 ident: 10.1016/j.tifs.2021.10.001_bib23 article-title: Application potential of food protein modification – volume: 60 start-page: 37 issue: 1 year: 2014 ident: 10.1016/j.tifs.2021.10.001_bib45 article-title: CO2-defatted oats: Solubility, emulsification and foaming properties publication-title: Journal of Cereal Science doi: 10.1016/j.jcs.2014.01.013 – volume: 45 start-page: 327 issue: 2 year: 2015 ident: 10.1016/j.tifs.2021.10.001_bib83 article-title: Dry fractionation for sustainable production of functional legume protein concentrates publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2015.04.013 – volume: 460 start-page: 272 year: 2014 ident: 10.1016/j.tifs.2021.10.001_bib36 article-title: Electrostatic stabilization of foam films from β-lactoglobulin solutions publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2013.12.037 – volume: 42 start-page: 107 issue: 1 year: 2009 ident: 10.1016/j.tifs.2021.10.001_bib63 article-title: Oats protein isolate: Thermal, rheological, surface and functional properties publication-title: Food Research International doi: 10.1016/j.foodres.2008.10.011 – volume: 9 start-page: 510 issue: 4 year: 2008 ident: 10.1016/j.tifs.2021.10.001_bib48 article-title: Aqueous foams: A field of investigation at the frontier between chemistry and physics publication-title: ChemPhysChem doi: 10.1002/cphc.200700675 – volume: 76 start-page: R16 issue: 1 year: 2011 ident: 10.1016/j.tifs.2021.10.001_bib95 article-title: Canola proteins for human consumption: Extraction, profile, and functional properties publication-title: Journal of Food Science doi: 10.1111/j.1750-3841.2010.01930.x – volume: 32 start-page: 156 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib84 article-title: Food proteins from plants and fungi publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2020.08.003 – volume: 39 start-page: 695 year: 2016 ident: 10.1016/j.tifs.2021.10.001_bib85 article-title: Modification of foaming properties of commercial soy protein isolates and concentrates by heat treatments publication-title: Journal of Food Quality doi: 10.1111/jfq.12241 – volume: 302 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib69 article-title: Limited hydrolysis of rice endosperm protein for improved techno-functional properties publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.125274 – volume: 97 start-page: 170 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib81 article-title: Plant proteins as high-quality nutritional source for human diet publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2020.01.011 – volume: 128 start-page: 902 issue: 4 year: 2011 ident: 10.1016/j.tifs.2021.10.001_bib2 article-title: Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate publication-title: Food Chemistry doi: 10.1016/j.foodchem.2011.03.116 – volume: 101 start-page: 163 issue: 1 year: 2007 ident: 10.1016/j.tifs.2021.10.001_bib38 article-title: Some functional properties of oat bran protein concentrate modified by trypsin publication-title: Food Chemistry doi: 10.1016/j.foodchem.2006.01.011 – volume: 107 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib94 article-title: Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105949 – volume: 70 start-page: C269 issue: 4 year: 2005 ident: 10.1016/j.tifs.2021.10.001_bib1 article-title: Functional properties of glycated soy 11S glycinin publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.2005.tb07172.x – volume: 99 start-page: 58 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib8 article-title: Making sense of the "clean label" trends: A review of consumer food choice behavior and discussion of industry implications publication-title: Food Research International doi: 10.1016/j.foodres.2017.07.022 – volume: 52 start-page: 629 issue: 7 year: 2012 ident: 10.1016/j.tifs.2021.10.001_bib44 article-title: Proteins in oats; their synthesis and changes during germination: A review publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2010.504902 – start-page: 105 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib59 article-title: Protein from oat: Structure, processes, functionality, and nutrition – volume: 80 start-page: 1964 year: 2000 ident: 10.1016/j.tifs.2021.10.001_bib58 article-title: Foaming and emulsifying properties of pea albumin fractions and partial characterisation of surface active components publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/1097-0010(200010)80:13<1964::AID-JSFA737>3.0.CO;2-J – volume: 88 start-page: 239 issue: 3 year: 2011 ident: 10.1016/j.tifs.2021.10.001_bib43 article-title: Foaming of differently processed oats: Role of nonpolar lipids and tryptophanin proteins publication-title: Cereal Chemistry Journal doi: 10.1094/CCHEM-11-10-0154 – volume: 43 start-page: 537 issue: 2 year: 2010 ident: 10.1016/j.tifs.2021.10.001_bib11 article-title: Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques publication-title: Food Research International doi: 10.1016/j.foodres.2009.07.021 – volume: 19 start-page: 8964 year: 2003 ident: 10.1016/j.tifs.2021.10.001_bib106 article-title: Protein exposed hydrophobicity reduces the kinetic barrier for adsorption of ovalbumin to the air-water interface publication-title: Langmuir doi: 10.1021/la034868p – volume: 35 start-page: 721 year: 2002 ident: 10.1016/j.tifs.2021.10.001_bib89 article-title: Comparative study on foaming properties of whey and isolate soybean proteins publication-title: Food Research International doi: 10.1016/S0963-9969(02)00067-4 – volume: 8 start-page: 455 issue: 5 year: 1994 ident: 10.1016/j.tifs.2021.10.001_bib41 article-title: Foaming properties of modified fababean protein isolates publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80088-X – volume: 309 start-page: 202 issue: 1–3 year: 2007 ident: 10.1016/j.tifs.2021.10.001_bib79 article-title: Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2007.01.030 – volume: 103 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib117 article-title: Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105626 – start-page: 582 year: 2019 ident: 10.1016/j.tifs.2021.10.001_bib18 article-title: Studies on foaming and physicochemical properties of egg white during cold storage publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 67 start-page: 248 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib6 article-title: Globular plant protein aggregates for stabilization of food foams and emulsions publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2017.07.013 – volume: 25 start-page: 1925 issue: 8 year: 2011 ident: 10.1016/j.tifs.2021.10.001_bib78 article-title: Protein–polysaccharide interactions at fluid interfaces publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2011.02.023 – start-page: 233 year: 2011 ident: 10.1016/j.tifs.2021.10.001_bib7 article-title: Peas and other legume proteins – volume: 18 start-page: 260 issue: 3 year: 2010 ident: 10.1016/j.tifs.2021.10.001_bib16 article-title: Ultrafiltration of wastewater from isolated soy protein production: A comparison of three UF membranes publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2009.10.016 – volume: 34 start-page: 126 issue: 2 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib47 article-title: Pea protein isolates: Structure, extraction, and functionality publication-title: Food Reviews International doi: 10.1080/87559129.2016.1242135 – volume: 44 start-page: 2505 issue: 8 year: 2011 ident: 10.1016/j.tifs.2021.10.001_bib93 article-title: Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates publication-title: Food Research International doi: 10.1016/j.foodres.2011.01.030 – volume: 9 start-page: 45 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib66 article-title: Role of proteins on formation, drainage, and stability of liquid food foams publication-title: Annual Review of Food Science and Technology doi: 10.1146/annurev-food-030216-030009 – volume: 9 issue: 3 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib98 article-title: Comparison of faba bean protein ingredients produced using dry fractionation and isoelectric precipitation: Techno-functional, nutritional and environmental performance publication-title: Foods – start-page: 601 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib37 article-title: Synchrotron micro-CT for studying coarsening in milk protein-stabilized foams in situ publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 21 issue: 1 year: 2014 ident: 10.1016/j.tifs.2021.10.001_bib99 article-title: Rapeseed proteins – production methods and possible application ranges publication-title: Ocl doi: 10.1051/ocl/2013038 – volume: 558 start-page: 455 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib27 article-title: Salt-dependent interaction behavior of β-Lactoglobulin molecules in relation to their surface and foaming properties publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2018.09.015 – volume: 10 start-page: 283 issue: 9 year: 1999 ident: 10.1016/j.tifs.2021.10.001_bib15 article-title: Creation and characterisation of aerated food products publication-title: Trends in Food Science & Technology doi: 10.1016/S0924-2244(00)00008-X – volume: 105 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib49 article-title: Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2020.105764 – volume: 28 start-page: 7780 issue: 20 year: 2012 ident: 10.1016/j.tifs.2021.10.001_bib30 article-title: Protein adsorption at the electrified air-water interface: Implications on foam stability publication-title: Langmuir doi: 10.1021/la301368v – year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib24 article-title: Foaming characteristics of beverages and its relevance to food processing – volume: 7 start-page: 74 issue: 1 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib54 article-title: Structure and function of seed storage proteins in faba bean (Vicia faba L.) publication-title: 3 Biotech doi: 10.1007/s13205-017-0691-z – volume: 55 start-page: 3792 issue: 9 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib42 article-title: Foaming properties of acid-soluble protein-rich ingredient obtained from industrial rapeseed meal publication-title: Journal of Food Science & Technology doi: 10.1007/s13197-018-3311-y – volume: 67 start-page: 16 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib71 article-title: Controlled glycation of milk proteins and peptides: Functional properties publication-title: International Dairy Journal doi: 10.1016/j.idairyj.2016.09.012 – volume: 109 start-page: 1253 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib97 article-title: Functional properties of chickpea protein isolates dried by refractance window drying publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2017.11.135 – volume: 44 start-page: 97 year: 2018 ident: 10.1016/j.tifs.2021.10.001_bib61 article-title: High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes publication-title: Ultrasonics Sonochemistry doi: 10.1016/j.ultsonch.2018.02.007 – volume: 144 start-page: 331 year: 2002 ident: 10.1016/j.tifs.2021.10.001_bib119 article-title: Native protein recovery from potato fruit juice by ultrafiltration publication-title: Desalination doi: 10.1016/S0011-9164(02)00338-7 – volume: 16 start-page: 3695 issue: 15 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib74 article-title: Influence of pH on the surface and foaming properties of aqueous silk fibroin solutions publication-title: Soft Matter doi: 10.1039/C9SM02372K – volume: 158 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib32 article-title: Rapeseed proteins for technical applications: Processing, isolation, modification and functional properties – a review publication-title: Industrial Crops and Products doi: 10.1016/j.indcrop.2020.112986 – volume: 55 start-page: 1137 issue: 8 year: 2015 ident: 10.1016/j.tifs.2021.10.001_bib75 article-title: Chickpeas-composition, nutritional value, health benefits, application to bread and snacks: A review publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2012.687418 – year: 2008 ident: 10.1016/j.tifs.2021.10.001_bib104 – volume: 64 start-page: 1 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib4 article-title: The composition, extraction, functionality and applications of rice proteins: A review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2017.01.008 – volume: 44 start-page: 403 issue: 6 year: 2000 ident: 10.1016/j.tifs.2021.10.001_bib46 article-title: Changes in interfacial behaviour, emulsifying and foaming properties of faba bean legumin after modification with dimethylsuberimidate publication-title: Nahrung doi: 10.1002/1521-3803(20001201)44:6<403::AID-FOOD403>3.0.CO;2-H – volume: 65 year: 2020 ident: 10.1016/j.tifs.2021.10.001_bib35 article-title: Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2020.102449 – volume: 183 start-page: 279 year: 2017 ident: 10.1016/j.tifs.2021.10.001_bib90 article-title: Obtaining and purification of a highly soluble hydrolyzed rice endosperm protein publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2017.03.066 – volume: 22 start-page: 21 issue: 1 year: 2011 ident: 10.1016/j.tifs.2021.10.001_bib3 article-title: Canola proteins: Composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity – a practical and critical review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2010.11.002 – volume: 84 start-page: 2242 issue: 8 year: 2019 ident: 10.1016/j.tifs.2021.10.001_bib25 article-title: The effect of high-pressure microfluidization treatment on the foaming properties of pea albumin aggregates publication-title: Journal of Food Science doi: 10.1111/1750-3841.14734 – volume: 88 start-page: 16 year: 2019 ident: 10.1016/j.tifs.2021.10.001_bib5 article-title: Characterisation of the physicochemical properties of intact and hydrolysed rice protein ingredients publication-title: Journal of Cereal Science doi: 10.1016/j.jcs.2019.04.002 – volume: 20 start-page: 284 issue: 2–3 year: 2006 ident: 10.1016/j.tifs.2021.10.001_bib34 article-title: Factors determining the physical properties of protein foams publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2005.03.014 |
SSID | ssj0005355 |
Score | 2.6316018 |
SecondaryResourceType | review_article |
Snippet | Aerated food products are becoming increasingly popular among consumers due to their visual appeal and peculiar sensory properties. Foam formation and... Background Aerated food products are becoming increasingly popular among consumers due to their visual appeal and peculiar sensory properties. Foam formation... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 261 |
SubjectTerms | Aeration Agricultural practices animals Commercialization Cultivars Environmental factors Extraction processes Foaming Foaming properties foams Food Food security Ingredients Optimization Physicochemical properties Plant proteins Plant species Protein modifications Proteins Sensory properties |
Title | On the foaming properties of plant proteins: Current status and future opportunities |
URI | https://dx.doi.org/10.1016/j.tifs.2021.10.001 https://www.proquest.com/docview/2621600764 https://www.proquest.com/docview/2636661518 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WPagH0VVxdZUI3qRuu0mb6k1EWV1U8IHeSpMmsLK2ZR9Xf7szbSoq6MFTaTKhZZLMo_3mC8BhlGWhMoQSFzLzML5NPYWe1bNSSyl9JbihauSb22jwJK5fwpcWnDe1MASrdLa_tumVtXYtPafNXjka9R58TB3QAQlMWohIijhBhZC0yo_fv8A8eHXyKQl7JO0KZ2qM12xkibK7HxxXCK_gN-f0w0xXvudyDVZd0MjO6vdah5bJ27DU1BRP27DyhVZwAx7vcoZxHbNF-oYNrKQP7hNiTmWFZeUYlckqfoZRPj1ljqGJUWnRfMrSPGM10QgrSgrO53lFuroJT5cXj-cDz52e4GkeBTPPGoubU_snmZSxzy2mIiq0oeJxKnwRWD_QFRd7X4U4RTriXIVGRjrWShrZj_gWLORFbraBmRijiliYQEjMB02Whlz5GZdoDbRUnHcgaNSWaEctTidcjJMGQ_aakKoTUjW1oao7cPQ5pqyJNf6UDpvZSL4tjwQt_5_jus3UJW5zYn_UD4iWPxIdOPjsxm1F_0rS3BRzkuGY2GE4FO_889G7sEx3NfSlCwuzydzsYQAzU_vVCt2HxbOr4eCWrsP75-EH5bPv7Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HAYHxFOMZ5C4obJ2SZvCDSHQeI0DQ-JWNWkiDUFbse3Kb8duUzSQ2IFr4qiVHb9a-zPAcZRloTJUJS5k5mF8m3oKPatnpZZS-kpwQ93ID_2o9yxuX8KXObhsemGorNLZ_tqmV9barXQcNzvlcNh58jF1QAckMGkhICkxD4sC1ZfGGJx-TtV58Gr0KVF7RO46Z-oir_HQEmZ3NzitSryCv7zTLztdOZ_rVVhxUSO7qF9sDeZMvg6tpql4tA7LU7iCGzB4zBkGdswW6TsusJK-uH8QdCorLCvfkJusAmgY5qNz5iCaGPUWTUYszTNWI42woqTofJJXqKub8Hx9NbjseW58gqd5FIw9ayxqp_bPMiljn1vMRVRoQ8XjVPgisH6gKzD2rgpRRjriXIVGRjrWShrZjfgWLORFbraBmRjDiliYQEhMCE2Whlz5GZdoDrRUnLchaNiWaIctTiMu3pKmiOw1IVYnxGpaQ1a34eT7TFkja8ykDhtpJD_uR4Kmf-a5vUZ0idNO3I-6AeHyR6INR9_bqFf0syTNTTEhGo6ZHcZD8c4_H30Ird7g4T65v-nf7cIS7dR1MHuwMP6YmH2MZsbqoLqtX-fz79g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+foaming+properties+of+plant+proteins%3A+Current+status+and+future+opportunities&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Amagliani%2C+Luca&rft.au=Silva%2C+Juliana+V.C.&rft.au=Saffon%2C+Maxime&rft.au=Dombrowski%2C+Jannika&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0924-2244&rft.eissn=1879-3053&rft.volume=118&rft.spage=261&rft.epage=272&rft_id=info:doi/10.1016%2Fj.tifs.2021.10.001&rft.externalDocID=S0924224421005574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon |