Differences in Macromolecular Structure Evolution during the Pyrolysis of Vitrinite and Inertinite Based on In Situ FTIR and XRD Measurements
An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was taken as the research subject, and vitrinite and inertinite samples were stripped from coal using a hand picking and sink–float separation p...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 15; p. 5334 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was taken as the research subject, and vitrinite and inertinite samples were stripped from coal using a hand picking and sink–float separation process. In situ Fourier transform infrared (FTIR) spectroscopy and in situ X-ray diffraction (XRD) were performed to compare the macromolecular structure changes between vitrinite and inertinite during pyrolysis. The results show that the aromaticity (I), the polycondensation degree of aromatic rings (DOC), the average lateral sizes (La) of basic structure unit (BSU), and the stacking heights (Lc) of BSU in both vitrinite and inertinite during pyrolysis increase continuously with increasing temperature. The values of these parameters for inertinite are higher than those of vitrinite, suggesting that the aromatization degree of inertinite has always been higher than that of vitrinite. In situ FTIR spectroscopy shows that the macromolecular structure evolution of vitrinite and inertinite could be divided into three stages based on temperature: 30–200 °C, 200–300 °C, and 300–500 °C. The content of C–O–C, aromatic C=O, O–H groups, and aromatic ring C=C gradually decreases, while that of the CH2 in aliphatic hydrocarbons increases between 30 °C and 200 °C. The 200–300 °C stage is mainly filled by the synergistic effects of aliphatic and aromatic groups. The content of aliphatic groups, C–O–C groups, aromatic C=O, and aromatic ring C=C of both vitrinite and inertinite decreases greatly. The 300–500 °C stage is dominated by the aromatization and condensation of macromolecules. The substituents of the aromatic system gradually detach, leading to an increase in I and DOC. From 30 °C to 1000 °C, in situ XRD results reveal a difference in macromolecular structural evolution between vitrinite and inertinite. The arrangement of aromatic layers in vitrinite tends to be ordered during pyrolysis, whereas there are no significant changes in the inertinite. However, the aromatic layers of inertinite are always more compact than that of vitrinite. In addition, the aliphatic side chains of inertinite are more stable than that of vitrinite during the pyrolysis process. |
---|---|
AbstractList | An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was taken as the research subject, and vitrinite and inertinite samples were stripped from coal using a hand picking and sink–float separation process. In situ Fourier transform infrared (FTIR) spectroscopy and in situ X-ray diffraction (XRD) were performed to compare the macromolecular structure changes between vitrinite and inertinite during pyrolysis. The results show that the aromaticity (I), the polycondensation degree of aromatic rings (DOC), the average lateral sizes (La) of basic structure unit (BSU), and the stacking heights (Lc) of BSU in both vitrinite and inertinite during pyrolysis increase continuously with increasing temperature. The values of these parameters for inertinite are higher than those of vitrinite, suggesting that the aromatization degree of inertinite has always been higher than that of vitrinite. In situ FTIR spectroscopy shows that the macromolecular structure evolution of vitrinite and inertinite could be divided into three stages based on temperature: 30–200 °C, 200–300 °C, and 300–500 °C. The content of C–O–C, aromatic C=O, O–H groups, and aromatic ring C=C gradually decreases, while that of the CH2 in aliphatic hydrocarbons increases between 30 °C and 200 °C. The 200–300 °C stage is mainly filled by the synergistic effects of aliphatic and aromatic groups. The content of aliphatic groups, C–O–C groups, aromatic C=O, and aromatic ring C=C of both vitrinite and inertinite decreases greatly. The 300–500 °C stage is dominated by the aromatization and condensation of macromolecules. The substituents of the aromatic system gradually detach, leading to an increase in I and DOC. From 30 °C to 1000 °C, in situ XRD results reveal a difference in macromolecular structural evolution between vitrinite and inertinite. The arrangement of aromatic layers in vitrinite tends to be ordered during pyrolysis, whereas there are no significant changes in the inertinite. However, the aromatic layers of inertinite are always more compact than that of vitrinite. In addition, the aliphatic side chains of inertinite are more stable than that of vitrinite during the pyrolysis process. |
Author | Zhao, Meng Wei, Yingchun Cao, Daiyong Ding, Liqi Wang, Anmin |
Author_xml | – sequence: 1 givenname: Meng surname: Zhao fullname: Zhao, Meng – sequence: 2 givenname: Anmin surname: Wang fullname: Wang, Anmin – sequence: 3 givenname: Daiyong orcidid: 0000-0003-3065-426X surname: Cao fullname: Cao, Daiyong – sequence: 4 givenname: Yingchun orcidid: 0000-0002-8900-8951 surname: Wei fullname: Wei, Yingchun – sequence: 5 givenname: Liqi surname: Ding fullname: Ding, Liqi |
BookMark | eNptUV1rFTEQXaQFa9sXf0HAN-Fqcmc3u3nUfuhCi9JW8S3MTSY1l71JTbLC_RH-Z9NeRSkNA5lJzjlzmHnR7IUYqGleCv4GQPG3FEQnug6gfdYcCKXkQvAe9v7LnzfHOa95PQACAA6aX6feOUoUDGXmA7tEk-ImTmTmCRO7Lmk2ZU7Ezn7GaS4-Bmbn5MMtK9-Jfd6mOG2zzyw69tWX-uELMQyWjYFS2ZXvMZNllTkGdu3LzM5vxqsH0LerU3ZJmGuDDYWSj5p9h1Om4z_3YfPl_Ozm5OPi4tOH8eTdxcKAFGXhVnKoocxKdlIai0vLV2SVgkG5JfF2cGD6wfbCyZbL3gI3Ei0qZ9qBuIHDZtzp2ohrfZf8BtNWR_T64SGmW43VvZlIt6CwG4wkMMsW2toAEJxTitC1ZKBqvdpp3aX4Y6Zc9DrOKVT7etlz3ikBoq8ovkPV8eacyGnjC97PsyT0kxZc3-9Q_9thpbx-RPlr9Anwb-3vn8w |
CitedBy_id | crossref_primary_10_1038_s41598_023_48373_1 crossref_primary_10_1016_j_fuel_2023_129519 crossref_primary_10_1016_j_fuproc_2024_108066 crossref_primary_10_1016_j_cej_2023_144810 crossref_primary_10_1002_smll_202409313 |
Cites_doi | 10.1016/j.fuel.2020.117038 10.1021/acs.energyfuels.1c00435 10.1016/j.combustflame.2020.03.007 10.1007/978-3-642-96446-6 10.1021/op300318k 10.1166/jnn.2017.14403 10.3390/molecules25112661 10.1016/j.fuel.2018.11.057 10.1016/S0008-6223(00)00318-3 10.1016/j.fuproc.2018.05.011 10.1016/j.coal.2010.07.003 10.1016/j.fuel.2009.07.020 10.1016/j.gexplo.2019.03.018 10.1016/j.energy.2020.118494 10.1007/s12040-007-0052-0 10.1016/0146-6380(96)00063-0 10.3390/en13246618 10.1021/ef900304v 10.1021/acs.energyfuels.8b04434 10.1016/j.coal.2008.08.014 10.1016/j.marpetgeo.2017.06.028 10.1016/j.coal.2012.09.001 10.1016/j.fuel.2007.02.021 10.1021/ef401276h 10.1021/jp511891f 10.1021/ef970100z 10.1021/ef020029j 10.1016/j.saa.2021.119724 10.1177/0144598720910507 10.1259/arr.1915.0160 10.1021/acs.energyfuels.0c03586 10.1016/0016-2361(95)98356-J 10.1016/S0166-5162(97)00044-X 10.1016/j.apsusc.2022.153748 10.1177/0144598720950479 10.1016/S0016-2361(97)00260-3 10.1016/j.jngse.2020.103289 10.1016/0016-2361(85)90223-6 10.1021/acs.energyfuels.5b01517 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en15155334 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_439a58c6e3c243489f3a3ff99eaf4ec3 10_3390_en15155334 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-fb68b689cb6566cda2d0bed99389f2e048f3c78d71f64067d30c6ada9fc48e0c3 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:29:31 EDT 2025 Mon Jun 30 07:30:32 EDT 2025 Tue Jul 01 01:28:11 EDT 2025 Thu Apr 24 23:12:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-fb68b689cb6566cda2d0bed99389f2e048f3c78d71f64067d30c6ada9fc48e0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3065-426X 0000-0002-8900-8951 |
OpenAccessLink | https://www.proquest.com/docview/2700591317?pq-origsite=%requestingapplication% |
PQID | 2700591317 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_439a58c6e3c243489f3a3ff99eaf4ec3 proquest_journals_2700591317 crossref_citationtrail_10_3390_en15155334 crossref_primary_10_3390_en15155334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_20) 2017; 86 Louw (ref_2) 2016; 30 Wang (ref_23) 2020; 38 Zhao (ref_16) 2008; 87 Wu (ref_25) 2013; 27 Wang (ref_11) 2022; 10 Wang (ref_46) 1985; 64 Mathews (ref_8) 2010; 89 Saikia (ref_40) 2007; 116 ref_12 Zhou (ref_6) 2021; 35 Lu (ref_32) 2001; 39 Debye (ref_31) 1916; 1916 Tay (ref_19) 2009; 23 Gabrienko (ref_22) 2015; 119 Zhu (ref_33) 2020; 216 Chen (ref_41) 1998; 12 Jiang (ref_13) 2021; 255 Kidena (ref_7) 2002; 16 Yan (ref_14) 2020; 268 Cao (ref_28) 2017; 17 Liu (ref_34) 2019; 202 Mastalerz (ref_27) 1995; 74 Wang (ref_24) 2020; 78 ref_45 Yu (ref_18) 2020; 34 ref_42 Zhao (ref_39) 2020; 209 Cao (ref_1) 2021; 49 Taulbee (ref_9) 1998; 77 Zhang (ref_44) 1990; 3 (ref_21) 2013; 17 Morga (ref_47) 2010; 84 Pugmire (ref_10) 2008; 76 ref_29 Gao (ref_4) 2018; 178 Wang (ref_5) 2022; 597 Jiang (ref_15) 2019; 239 Bragg (ref_30) 1915; Volume 215 Ibarra (ref_37) 1996; 24 Qu (ref_43) 1980; 2 Wang (ref_17) 2021; 35 Chen (ref_35) 2012; 104 Qin (ref_36) 2020; 38 Gao (ref_3) 2019; 33 Guo (ref_26) 1998; 36 Manoj (ref_38) 2009; 8 |
References_xml | – volume: 268 start-page: 117038 year: 2020 ident: ref_14 article-title: Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy publication-title: Fuel doi: 10.1016/j.fuel.2020.117038 – volume: 35 start-page: 8711 year: 2021 ident: ref_17 article-title: Macromolecular Structure Changes of Tectonically Deformed Coal: Evidence from Coal Pyrolysis, 13C NMR, and XRD Experiments publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c00435 – volume: 3 start-page: 42 year: 1990 ident: ref_44 article-title: X-ray analysis of coal structure publication-title: J. Xi’an Inst. Min. Technol. – volume: 216 start-page: 354 year: 2020 ident: ref_33 article-title: Investigation into the thermal behavior and FTIR micro-characteristics of re-oxidation coal publication-title: Combust Flame doi: 10.1016/j.combustflame.2020.03.007 – ident: ref_45 doi: 10.1007/978-3-642-96446-6 – volume: 17 start-page: 127 year: 2013 ident: ref_21 article-title: Biodiesel synthesis evaluated by using real-time ATR-FTIR publication-title: Org. Process. Res. Dev. doi: 10.1021/op300318k – volume: 17 start-page: 6276 year: 2017 ident: ref_28 article-title: Nanoscale Microscopic Features and Evolution Sequence of Coal-Based Graphite publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2017.14403 – volume: 1916 start-page: 1 year: 1916 ident: ref_31 article-title: Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I publication-title: Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. – ident: ref_42 doi: 10.3390/molecules25112661 – volume: 2 start-page: 33 year: 1980 ident: ref_43 article-title: X-ray analysis of coal publication-title: Coal Geol. Explor. – volume: 239 start-page: 559 year: 2019 ident: ref_15 article-title: Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification publication-title: Fuel doi: 10.1016/j.fuel.2018.11.057 – volume: 39 start-page: 1821 year: 2001 ident: ref_32 article-title: Quantitative X-ray diffraction analysis and its application to various coals publication-title: Carbon doi: 10.1016/S0008-6223(00)00318-3 – volume: 178 start-page: 197 year: 2018 ident: ref_4 article-title: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.05.011 – volume: 84 start-page: 1 year: 2010 ident: ref_47 article-title: Chemical structure of semifusinite and fusinite of steam and coking coal from the Upper Silesian Coal Basin (Poland) and its changes during heating as inferred from micro-FTIR analysis publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2010.07.003 – volume: 34 start-page: 2058 year: 2020 ident: ref_18 article-title: In-situ X-ray Diffraction Analysis on the Role of Hardening Accelerator in Early Hydration of Cement publication-title: Mater. Rep. – volume: 89 start-page: 73 year: 2010 ident: ref_8 article-title: Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals publication-title: Fuel doi: 10.1016/j.fuel.2009.07.020 – volume: 10 start-page: 93 year: 2022 ident: ref_11 article-title: Comparison of nanopore structure evolution in vitrinite and inertinite of tectonically deformed coals: A case study in the Wutongzhuang coal mine of Hebei province, North China publication-title: Front. Earth Sci. – volume: 202 start-page: 77 year: 2019 ident: ref_34 article-title: The differences of element geochemical characteristics of the main coal seams in the Ningdong coalfield, Ordos Basin publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2019.03.018 – volume: 209 start-page: 118494 year: 2020 ident: ref_39 article-title: Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR publication-title: Energy doi: 10.1016/j.energy.2020.118494 – volume: 116 start-page: 575 year: 2007 ident: ref_40 article-title: FT-IR and XRD analysis of coal from Makum coalfield of Assam publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-007-0052-0 – volume: 24 start-page: 725 year: 1996 ident: ref_37 article-title: FTIR study of the evolution of coal structure during the coalification process publication-title: Org. Geochem. doi: 10.1016/0146-6380(96)00063-0 – ident: ref_12 doi: 10.3390/en13246618 – volume: 23 start-page: 4059 year: 2009 ident: ref_19 article-title: Study of petroleum heat-exchanger deposits with ATR-FTIR spectroscopic imaging publication-title: Energy Fuels doi: 10.1021/ef900304v – volume: 33 start-page: 2848 year: 2019 ident: ref_3 article-title: Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b04434 – volume: 76 start-page: 290 year: 2008 ident: ref_10 article-title: Structural characterization of vitrinite-rich and inertinite-rich Permian-aged South African bituminous coals publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2008.08.014 – volume: Volume 215 start-page: 253 year: 1915 ident: ref_30 article-title: IX Bakerian Lecture—X-rays and crystal structure publication-title: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character – volume: 86 start-page: 675 year: 2017 ident: ref_20 article-title: Coalbed methane reservoirs’ pore-structure characterization of different macrolithotypes in the southern Junggar Basin of Northwest China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2017.06.028 – volume: 49 start-page: 12 year: 2021 ident: ref_1 article-title: The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals: Research status and prospect publication-title: Coal Geol. Explor. – volume: 104 start-page: 22 year: 2012 ident: ref_35 article-title: Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2012.09.001 – volume: 87 start-page: 565 year: 2008 ident: ref_16 article-title: Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals publication-title: Fuel doi: 10.1016/j.fuel.2007.02.021 – volume: 27 start-page: 5823 year: 2013 ident: ref_25 article-title: Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction publication-title: Energy Fuels doi: 10.1021/ef401276h – volume: 119 start-page: 2646 year: 2015 ident: ref_22 article-title: Chemical visualization of asphaltenes aggregation processes studied in situ with ATR-FTIR spectroscopic imaging and NMR imaging publication-title: J. Phys. Chem. C doi: 10.1021/jp511891f – volume: 12 start-page: 446 year: 1998 ident: ref_41 article-title: Observation of the type of hydrogen bonds in coal by FTIR publication-title: Energy Fuels doi: 10.1021/ef970100z – volume: 16 start-page: 1231 year: 2002 ident: ref_7 article-title: Study on plasticity of maceral concentrates in terms of their structural features publication-title: Energy Fuels doi: 10.1021/ef020029j – volume: 255 start-page: 119724 year: 2021 ident: ref_13 article-title: Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2021.119724 – volume: 38 start-page: 989 year: 2020 ident: ref_23 article-title: Gas migration for terrestrial gas hydrates in the Juhugeng mining area of Muli basin, Qilian Mountains, Northwest China publication-title: Energy Explor. Exploit. doi: 10.1177/0144598720910507 – ident: ref_29 doi: 10.1259/arr.1915.0160 – volume: 35 start-page: 1322 year: 2021 ident: ref_6 article-title: Research on molecular structure characteristics of vitrinite and inertinite from bituminous coal with FTIR, micro-Raman, and XRD spectroscopy publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c03586 – volume: 74 start-page: 536 year: 1995 ident: ref_27 article-title: Application of reflectance micro-Fourier transform infrared spectrometry in studying coal macerals: Comparison with other Fourier transform infrared techniques publication-title: Fuel doi: 10.1016/0016-2361(95)98356-J – volume: 36 start-page: 259 year: 1998 ident: ref_26 article-title: Micro-FTIR spectroscopy of liptinite macerals in coal publication-title: Int. J. Coal Geol. doi: 10.1016/S0166-5162(97)00044-X – volume: 597 start-page: 153748 year: 2022 ident: ref_5 article-title: Effect of different functional groups on CH4 adsorption heat and surface free energy of vitrinite during coalification publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153748 – volume: 8 start-page: 821 year: 2009 ident: ref_38 article-title: Chemical leaching of low rank coal and its characterization using SEM/EDAX and FTIR publication-title: J. Miner. Mater. Charact. Eng. – volume: 38 start-page: 1484 year: 2020 ident: ref_36 article-title: Effect of peat mire evolution on pore structure characteristics in thick coal seam: Examples from Xishanyao Formation (Middle Jurassic), Yili Basin, China publication-title: Energy Explor. Exploit. doi: 10.1177/0144598720950479 – volume: 77 start-page: 805 year: 1998 ident: ref_9 article-title: Quantitative 13C NMR study of structural variations within the vitrinite and inertinite maceral groups for a semifusinite-rich bituminous coal publication-title: Fuel doi: 10.1016/S0016-2361(97)00260-3 – volume: 78 start-page: 103289 year: 2020 ident: ref_24 article-title: Comparison of nanopore evolution in vitrinite and inertinite in coalbed methane reservoirs during coalification publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103289 – volume: 64 start-page: 229 year: 1985 ident: ref_46 article-title: Resolution enhancement of diffuse reflectance ir spectra of coals by Fourier self-deconvolution: 1. CH stretching and bending modes publication-title: Fuel doi: 10.1016/0016-2361(85)90223-6 – volume: 30 start-page: 112 year: 2016 ident: ref_2 article-title: Constitution of drop-tube-generated coal chars from vitrinite-and inertinite-rich South African coals publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01517 |
SSID | ssj0000331333 |
Score | 2.372306 |
Snippet | An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5334 |
SubjectTerms | Carbon clean utilization Coal Experiments Fourier transforms Heat Hydrocarbons macromolecular structure Molecular structure pyrolysis Spectrum analysis Vibration vitrinite and inertinite X-rays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXA3rxUGybNNseXdfFFVbEF3srySSBBemKVsEf4X92klZdUfAi9NIyoSUzyTfTzHzD2EGGOSY-U011pY5ElmCkCQgiI9LEcKmLvPAFzqMLeXYrzsfZeKbVl88Ja-iBm4k7IsBUWY7SckwFFzSUK-5cUVjlhMXA80mYNxNMhT2Ycwq-eMNHyimuP7KVh25fePoNgQJR_499OIDLYJkttV4hHDdfs8LmbLXKFme4AtfYW79tZUILGyYVjFTIpGub28J14IF9frRw-tJaEzQliEAuHly-Pk4D-QhMHdxNan9uU1tQlYFh5VOrw22PIM0AjRxWcD2pn2FwM7wKQuOrPoy-fic-rbPbwenNyVnU9lKIkMukjpyWOV0Fau_AoVGpibU15J3QjKaW1rHj2M1NN3GSML5reIxSGVU4FLmNkW-w-Wpa2U0GtkAXG6ekVkokVmgjFEqdGkxIOTHvsMOP-S2xJRr3_S7uSwo4vC7KL1102P6n7ENDr_GrVM-r6VPCU2KHB2QoZWso5V-G0mE7H0ou23X6VPpj96xIyIna-o93bLOF1JdHhATBHTZPqre75LTUei_Y5ztbte2J priority: 102 providerName: Directory of Open Access Journals |
Title | Differences in Macromolecular Structure Evolution during the Pyrolysis of Vitrinite and Inertinite Based on In Situ FTIR and XRD Measurements |
URI | https://www.proquest.com/docview/2700591317 https://doaj.org/article/439a58c6e3c243489f3a3ff99eaf4ec3 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdr-7I9jH2ydl0QbC97MLUsWbGeSrMmbQYpJW1H3ox0kkZg2G3iDvZH9H_uSVGSjY1BMMQ-g-3Tferud4R8KqECFirVdF-aTJQMMoOGILOiYJZLoyoVGpwnF_L8RnydlbOUcFumssq1ToyK2rYQcuRHYYO0VAzN3fHtXRamRoXd1TRCY4fsoQquMPjaGwwvLqebLEvOOQZhfIVLyjG-P3JNMOGhAfUPSxQB-__Sx9HIjF6Q58k7pCcrdr4kT1zzijz7DTPwNXk4TSNNUMDpvKETHSvq0pBbehXxYO8Xjg5_plVFV62IFF09evlr0UYQEtp6-m3ehf2bzlHdWDpuQol1_DtA02Yp3jlu6NW8u6ej6_E0Es2mp3SyTSsu35Cb0fD6y3mWZipkwCXrMm9khT8FJjhyYHVhc-MseinIlMKhPHsO_cr2mZdo6_uW5yC11cqDqFwO_C3ZbdrGvSPUKfC59VoarQVzwlihQZrCAlMeLeM--bz-vjUkwPEw9-JHjYFH4EW95cU--bihvV3BbPyTahDYtKEI0NjxRLv4XidJq9HD0mUF0nEoBBf4Wlxz75Vy2gsH-FiHaybXSV6X9XZ1Hfz_8nvytAgNELEE8JDsIlPdB3RLOtMjO9XorJdWYC8G93g8m7FH0vPojA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMUClgCDhyiJrHjjQ8ItWyXDe1WqN2ivQU_0UooKbspqD-Cv9LfyIyT7IJA3CrlkngSOZ7xfGN7HoS8zExuEvRUUwOhI54lJtIABJHlaWKZ0DKXGOA8ORLjU_5hls02yGUfC4Nulb1ODIra1gb3yHfwgDSTCcDd27NvEVaNwtPVvoRGKxYH7uIHLNmWb4oh8PdVmo72p-_GUVdVIDJMJE3ktcjhkkajKWOsSm2snQWchm6lDiTaMzPI7SDxAtBuYFlshLJKesNzFxsG371GrnPGJM6ofPR-tacTMwZLPtZmQYX2eMdVaDBguOsfuBfKA_yl_QOkje6Q250tSndb4blLNlx1j9z6LUPhffJz2BVQAXVC5xWdqOC_15XUpSch--z5wtH9750M0zbwkYJhST9eLOqQ8oTWnn6aN3ha1DiqKkuLCh26w-0eAKml8GZR0ZN5c05H0-I4EM2Oh3Sy3sRcPiCnVzLWD8lmVVfuEaFOGh9br4RWiieOa8uVETq1JpEecHiLvO7HtzRdenOssvG1hGUO8qJc82KLvFjRnrVJPf5JtYdsWlFgIu7woF58Kbt5XYI9p7LcCMdMyhmH32KKeS-lU547A93a7plcdtphWa5l-fH_m5-TG-Pp5LA8LI4OnpCbKYZeBOfDbbIJDHZPwSBq9LMghZR8vmqx_wWlNiJt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWroTggHiKhQUsAQcOUZPYdeIDQpS22rC0qrq7qLfgJ6qEkqXNgvZH8If4dYwdpwWBuK2US5JJ5Hgm883Y80DoxUDlKnGRaiJjMqKDREUSgCDSNE00YZLn3CU4T2fs6Iy-Xw6We-hnlwvjwio7negVta6VWyPvuw3SAU8A7vo2hEXMR5M3518j10HK7bR27TRaETk2l9_Bfdu8LkbA65dpOhmfvjuKQoeBSBGWNJGVLIeDK-nMGqVFqmNpNGA2DDE1IN2WqCzXWWIZIF-mSayY0IJbRXMTKwLvvYb2M_CK4h7aH45n88V2hScmBBxA0tZEJYTHfVM588Elv_6Bgr5ZwF9Y4AFuchvdCpYpftuK0h20Z6q76OZv9QrvoR-j0E4FlAteVXgqfDRfaLCLT3wt2ou1weNvQaJxmwaJwczE88t17Qug4Nrij6vG7R01BotK46Jy4d3-dAiwqjE8WVT4ZNVc4MlpsfBEy8UIT3dLmpv76OxKZvsB6lV1ZR4ibLiysbaCSSFoYqjUVCgmU60SbgGVD9Crbn5LFYqdu54bX0pwehwvyh0vDtDzLe15W-Ljn1RDx6YthSvL7S_U689l-MtLsO7EIFfMEJVSQuGziCDWcm6EpUbBsA47JpdBV2zKnWQ_-v_tZ-g6iHz5oZgdP0Y3UpeH4SMRD1EP-GuegHXUyKdBDDH6dNWS_wuXRif_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differences+in+Macromolecular+Structure+Evolution+during+the+Pyrolysis+of+Vitrinite+and+Inertinite+Based+on+In+Situ+FTIR+and+XRD+Measurements&rft.jtitle=Energies+%28Basel%29&rft.au=Zhao%2C+Meng&rft.au=Wang%2C+Anmin&rft.au=Cao%2C+Daiyong&rft.au=Wei%2C+Yingchun&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=15&rft.spage=5334&rft_id=info:doi/10.3390%2Fen15155334&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |