Differences in Macromolecular Structure Evolution during the Pyrolysis of Vitrinite and Inertinite Based on In Situ FTIR and XRD Measurements

An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was taken as the research subject, and vitrinite and inertinite samples were stripped from coal using a hand picking and sink–float separation p...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 15; no. 15; p. 5334
Main Authors Zhao, Meng, Wang, Anmin, Cao, Daiyong, Wei, Yingchun, Ding, Liqi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was taken as the research subject, and vitrinite and inertinite samples were stripped from coal using a hand picking and sink–float separation process. In situ Fourier transform infrared (FTIR) spectroscopy and in situ X-ray diffraction (XRD) were performed to compare the macromolecular structure changes between vitrinite and inertinite during pyrolysis. The results show that the aromaticity (I), the polycondensation degree of aromatic rings (DOC), the average lateral sizes (La) of basic structure unit (BSU), and the stacking heights (Lc) of BSU in both vitrinite and inertinite during pyrolysis increase continuously with increasing temperature. The values of these parameters for inertinite are higher than those of vitrinite, suggesting that the aromatization degree of inertinite has always been higher than that of vitrinite. In situ FTIR spectroscopy shows that the macromolecular structure evolution of vitrinite and inertinite could be divided into three stages based on temperature: 30–200 °C, 200–300 °C, and 300–500 °C. The content of C–O–C, aromatic C=O, O–H groups, and aromatic ring C=C gradually decreases, while that of the CH2 in aliphatic hydrocarbons increases between 30 °C and 200 °C. The 200–300 °C stage is mainly filled by the synergistic effects of aliphatic and aromatic groups. The content of aliphatic groups, C–O–C groups, aromatic C=O, and aromatic ring C=C of both vitrinite and inertinite decreases greatly. The 300–500 °C stage is dominated by the aromatization and condensation of macromolecules. The substituents of the aromatic system gradually detach, leading to an increase in I and DOC. From 30 °C to 1000 °C, in situ XRD results reveal a difference in macromolecular structural evolution between vitrinite and inertinite. The arrangement of aromatic layers in vitrinite tends to be ordered during pyrolysis, whereas there are no significant changes in the inertinite. However, the aromatic layers of inertinite are always more compact than that of vitrinite. In addition, the aliphatic side chains of inertinite are more stable than that of vitrinite during the pyrolysis process.
AbstractList An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was taken as the research subject, and vitrinite and inertinite samples were stripped from coal using a hand picking and sink–float separation process. In situ Fourier transform infrared (FTIR) spectroscopy and in situ X-ray diffraction (XRD) were performed to compare the macromolecular structure changes between vitrinite and inertinite during pyrolysis. The results show that the aromaticity (I), the polycondensation degree of aromatic rings (DOC), the average lateral sizes (La) of basic structure unit (BSU), and the stacking heights (Lc) of BSU in both vitrinite and inertinite during pyrolysis increase continuously with increasing temperature. The values of these parameters for inertinite are higher than those of vitrinite, suggesting that the aromatization degree of inertinite has always been higher than that of vitrinite. In situ FTIR spectroscopy shows that the macromolecular structure evolution of vitrinite and inertinite could be divided into three stages based on temperature: 30–200 °C, 200–300 °C, and 300–500 °C. The content of C–O–C, aromatic C=O, O–H groups, and aromatic ring C=C gradually decreases, while that of the CH2 in aliphatic hydrocarbons increases between 30 °C and 200 °C. The 200–300 °C stage is mainly filled by the synergistic effects of aliphatic and aromatic groups. The content of aliphatic groups, C–O–C groups, aromatic C=O, and aromatic ring C=C of both vitrinite and inertinite decreases greatly. The 300–500 °C stage is dominated by the aromatization and condensation of macromolecules. The substituents of the aromatic system gradually detach, leading to an increase in I and DOC. From 30 °C to 1000 °C, in situ XRD results reveal a difference in macromolecular structural evolution between vitrinite and inertinite. The arrangement of aromatic layers in vitrinite tends to be ordered during pyrolysis, whereas there are no significant changes in the inertinite. However, the aromatic layers of inertinite are always more compact than that of vitrinite. In addition, the aliphatic side chains of inertinite are more stable than that of vitrinite during the pyrolysis process.
Author Zhao, Meng
Wei, Yingchun
Cao, Daiyong
Ding, Liqi
Wang, Anmin
Author_xml – sequence: 1
  givenname: Meng
  surname: Zhao
  fullname: Zhao, Meng
– sequence: 2
  givenname: Anmin
  surname: Wang
  fullname: Wang, Anmin
– sequence: 3
  givenname: Daiyong
  orcidid: 0000-0003-3065-426X
  surname: Cao
  fullname: Cao, Daiyong
– sequence: 4
  givenname: Yingchun
  orcidid: 0000-0002-8900-8951
  surname: Wei
  fullname: Wei, Yingchun
– sequence: 5
  givenname: Liqi
  surname: Ding
  fullname: Ding, Liqi
BookMark eNptUV1rFTEQXaQFa9sXf0HAN-Fqcmc3u3nUfuhCi9JW8S3MTSY1l71JTbLC_RH-Z9NeRSkNA5lJzjlzmHnR7IUYqGleCv4GQPG3FEQnug6gfdYcCKXkQvAe9v7LnzfHOa95PQACAA6aX6feOUoUDGXmA7tEk-ImTmTmCRO7Lmk2ZU7Ezn7GaS4-Bmbn5MMtK9-Jfd6mOG2zzyw69tWX-uELMQyWjYFS2ZXvMZNllTkGdu3LzM5vxqsH0LerU3ZJmGuDDYWSj5p9h1Om4z_3YfPl_Ozm5OPi4tOH8eTdxcKAFGXhVnKoocxKdlIai0vLV2SVgkG5JfF2cGD6wfbCyZbL3gI3Ei0qZ9qBuIHDZtzp2ohrfZf8BtNWR_T64SGmW43VvZlIt6CwG4wkMMsW2toAEJxTitC1ZKBqvdpp3aX4Y6Zc9DrOKVT7etlz3ikBoq8ovkPV8eacyGnjC97PsyT0kxZc3-9Q_9thpbx-RPlr9Anwb-3vn8w
CitedBy_id crossref_primary_10_1038_s41598_023_48373_1
crossref_primary_10_1016_j_fuel_2023_129519
crossref_primary_10_1016_j_fuproc_2024_108066
crossref_primary_10_1016_j_cej_2023_144810
crossref_primary_10_1002_smll_202409313
Cites_doi 10.1016/j.fuel.2020.117038
10.1021/acs.energyfuels.1c00435
10.1016/j.combustflame.2020.03.007
10.1007/978-3-642-96446-6
10.1021/op300318k
10.1166/jnn.2017.14403
10.3390/molecules25112661
10.1016/j.fuel.2018.11.057
10.1016/S0008-6223(00)00318-3
10.1016/j.fuproc.2018.05.011
10.1016/j.coal.2010.07.003
10.1016/j.fuel.2009.07.020
10.1016/j.gexplo.2019.03.018
10.1016/j.energy.2020.118494
10.1007/s12040-007-0052-0
10.1016/0146-6380(96)00063-0
10.3390/en13246618
10.1021/ef900304v
10.1021/acs.energyfuels.8b04434
10.1016/j.coal.2008.08.014
10.1016/j.marpetgeo.2017.06.028
10.1016/j.coal.2012.09.001
10.1016/j.fuel.2007.02.021
10.1021/ef401276h
10.1021/jp511891f
10.1021/ef970100z
10.1021/ef020029j
10.1016/j.saa.2021.119724
10.1177/0144598720910507
10.1259/arr.1915.0160
10.1021/acs.energyfuels.0c03586
10.1016/0016-2361(95)98356-J
10.1016/S0166-5162(97)00044-X
10.1016/j.apsusc.2022.153748
10.1177/0144598720950479
10.1016/S0016-2361(97)00260-3
10.1016/j.jngse.2020.103289
10.1016/0016-2361(85)90223-6
10.1021/acs.energyfuels.5b01517
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15155334
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_439a58c6e3c243489f3a3ff99eaf4ec3
10_3390_en15155334
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-fb68b689cb6566cda2d0bed99389f2e048f3c78d71f64067d30c6ada9fc48e0c3
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:29:31 EDT 2025
Mon Jun 30 07:30:32 EDT 2025
Tue Jul 01 01:28:11 EDT 2025
Thu Apr 24 23:12:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-fb68b689cb6566cda2d0bed99389f2e048f3c78d71f64067d30c6ada9fc48e0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3065-426X
0000-0002-8900-8951
OpenAccessLink https://www.proquest.com/docview/2700591317?pq-origsite=%requestingapplication%
PQID 2700591317
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_439a58c6e3c243489f3a3ff99eaf4ec3
proquest_journals_2700591317
crossref_citationtrail_10_3390_en15155334
crossref_primary_10_3390_en15155334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_20) 2017; 86
Louw (ref_2) 2016; 30
Wang (ref_23) 2020; 38
Zhao (ref_16) 2008; 87
Wu (ref_25) 2013; 27
Wang (ref_11) 2022; 10
Wang (ref_46) 1985; 64
Mathews (ref_8) 2010; 89
Saikia (ref_40) 2007; 116
ref_12
Zhou (ref_6) 2021; 35
Lu (ref_32) 2001; 39
Debye (ref_31) 1916; 1916
Tay (ref_19) 2009; 23
Gabrienko (ref_22) 2015; 119
Zhu (ref_33) 2020; 216
Chen (ref_41) 1998; 12
Jiang (ref_13) 2021; 255
Kidena (ref_7) 2002; 16
Yan (ref_14) 2020; 268
Cao (ref_28) 2017; 17
Liu (ref_34) 2019; 202
Mastalerz (ref_27) 1995; 74
Wang (ref_24) 2020; 78
ref_45
Yu (ref_18) 2020; 34
ref_42
Zhao (ref_39) 2020; 209
Cao (ref_1) 2021; 49
Taulbee (ref_9) 1998; 77
Zhang (ref_44) 1990; 3
(ref_21) 2013; 17
Morga (ref_47) 2010; 84
Pugmire (ref_10) 2008; 76
ref_29
Gao (ref_4) 2018; 178
Wang (ref_5) 2022; 597
Jiang (ref_15) 2019; 239
Bragg (ref_30) 1915; Volume 215
Ibarra (ref_37) 1996; 24
Qu (ref_43) 1980; 2
Wang (ref_17) 2021; 35
Chen (ref_35) 2012; 104
Qin (ref_36) 2020; 38
Gao (ref_3) 2019; 33
Guo (ref_26) 1998; 36
Manoj (ref_38) 2009; 8
References_xml – volume: 268
  start-page: 117038
  year: 2020
  ident: ref_14
  article-title: Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117038
– volume: 35
  start-page: 8711
  year: 2021
  ident: ref_17
  article-title: Macromolecular Structure Changes of Tectonically Deformed Coal: Evidence from Coal Pyrolysis, 13C NMR, and XRD Experiments
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c00435
– volume: 3
  start-page: 42
  year: 1990
  ident: ref_44
  article-title: X-ray analysis of coal structure
  publication-title: J. Xi’an Inst. Min. Technol.
– volume: 216
  start-page: 354
  year: 2020
  ident: ref_33
  article-title: Investigation into the thermal behavior and FTIR micro-characteristics of re-oxidation coal
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2020.03.007
– ident: ref_45
  doi: 10.1007/978-3-642-96446-6
– volume: 17
  start-page: 127
  year: 2013
  ident: ref_21
  article-title: Biodiesel synthesis evaluated by using real-time ATR-FTIR
  publication-title: Org. Process. Res. Dev.
  doi: 10.1021/op300318k
– volume: 17
  start-page: 6276
  year: 2017
  ident: ref_28
  article-title: Nanoscale Microscopic Features and Evolution Sequence of Coal-Based Graphite
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2017.14403
– volume: 1916
  start-page: 1
  year: 1916
  ident: ref_31
  article-title: Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I
  publication-title: Nachr. Ges. Wiss. Göttingen Math. Phys. Kl.
– ident: ref_42
  doi: 10.3390/molecules25112661
– volume: 2
  start-page: 33
  year: 1980
  ident: ref_43
  article-title: X-ray analysis of coal
  publication-title: Coal Geol. Explor.
– volume: 239
  start-page: 559
  year: 2019
  ident: ref_15
  article-title: Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.11.057
– volume: 39
  start-page: 1821
  year: 2001
  ident: ref_32
  article-title: Quantitative X-ray diffraction analysis and its application to various coals
  publication-title: Carbon
  doi: 10.1016/S0008-6223(00)00318-3
– volume: 178
  start-page: 197
  year: 2018
  ident: ref_4
  article-title: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.05.011
– volume: 84
  start-page: 1
  year: 2010
  ident: ref_47
  article-title: Chemical structure of semifusinite and fusinite of steam and coking coal from the Upper Silesian Coal Basin (Poland) and its changes during heating as inferred from micro-FTIR analysis
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2010.07.003
– volume: 34
  start-page: 2058
  year: 2020
  ident: ref_18
  article-title: In-situ X-ray Diffraction Analysis on the Role of Hardening Accelerator in Early Hydration of Cement
  publication-title: Mater. Rep.
– volume: 89
  start-page: 73
  year: 2010
  ident: ref_8
  article-title: Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.07.020
– volume: 10
  start-page: 93
  year: 2022
  ident: ref_11
  article-title: Comparison of nanopore structure evolution in vitrinite and inertinite of tectonically deformed coals: A case study in the Wutongzhuang coal mine of Hebei province, North China
  publication-title: Front. Earth Sci.
– volume: 202
  start-page: 77
  year: 2019
  ident: ref_34
  article-title: The differences of element geochemical characteristics of the main coal seams in the Ningdong coalfield, Ordos Basin
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2019.03.018
– volume: 209
  start-page: 118494
  year: 2020
  ident: ref_39
  article-title: Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118494
– volume: 116
  start-page: 575
  year: 2007
  ident: ref_40
  article-title: FT-IR and XRD analysis of coal from Makum coalfield of Assam
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-007-0052-0
– volume: 24
  start-page: 725
  year: 1996
  ident: ref_37
  article-title: FTIR study of the evolution of coal structure during the coalification process
  publication-title: Org. Geochem.
  doi: 10.1016/0146-6380(96)00063-0
– ident: ref_12
  doi: 10.3390/en13246618
– volume: 23
  start-page: 4059
  year: 2009
  ident: ref_19
  article-title: Study of petroleum heat-exchanger deposits with ATR-FTIR spectroscopic imaging
  publication-title: Energy Fuels
  doi: 10.1021/ef900304v
– volume: 33
  start-page: 2848
  year: 2019
  ident: ref_3
  article-title: Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b04434
– volume: 76
  start-page: 290
  year: 2008
  ident: ref_10
  article-title: Structural characterization of vitrinite-rich and inertinite-rich Permian-aged South African bituminous coals
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2008.08.014
– volume: Volume 215
  start-page: 253
  year: 1915
  ident: ref_30
  article-title: IX Bakerian Lecture—X-rays and crystal structure
  publication-title: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character
– volume: 86
  start-page: 675
  year: 2017
  ident: ref_20
  article-title: Coalbed methane reservoirs’ pore-structure characterization of different macrolithotypes in the southern Junggar Basin of Northwest China
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2017.06.028
– volume: 49
  start-page: 12
  year: 2021
  ident: ref_1
  article-title: The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals: Research status and prospect
  publication-title: Coal Geol. Explor.
– volume: 104
  start-page: 22
  year: 2012
  ident: ref_35
  article-title: Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2012.09.001
– volume: 87
  start-page: 565
  year: 2008
  ident: ref_16
  article-title: Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals
  publication-title: Fuel
  doi: 10.1016/j.fuel.2007.02.021
– volume: 27
  start-page: 5823
  year: 2013
  ident: ref_25
  article-title: Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction
  publication-title: Energy Fuels
  doi: 10.1021/ef401276h
– volume: 119
  start-page: 2646
  year: 2015
  ident: ref_22
  article-title: Chemical visualization of asphaltenes aggregation processes studied in situ with ATR-FTIR spectroscopic imaging and NMR imaging
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp511891f
– volume: 12
  start-page: 446
  year: 1998
  ident: ref_41
  article-title: Observation of the type of hydrogen bonds in coal by FTIR
  publication-title: Energy Fuels
  doi: 10.1021/ef970100z
– volume: 16
  start-page: 1231
  year: 2002
  ident: ref_7
  article-title: Study on plasticity of maceral concentrates in terms of their structural features
  publication-title: Energy Fuels
  doi: 10.1021/ef020029j
– volume: 255
  start-page: 119724
  year: 2021
  ident: ref_13
  article-title: Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2021.119724
– volume: 38
  start-page: 989
  year: 2020
  ident: ref_23
  article-title: Gas migration for terrestrial gas hydrates in the Juhugeng mining area of Muli basin, Qilian Mountains, Northwest China
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/0144598720910507
– ident: ref_29
  doi: 10.1259/arr.1915.0160
– volume: 35
  start-page: 1322
  year: 2021
  ident: ref_6
  article-title: Research on molecular structure characteristics of vitrinite and inertinite from bituminous coal with FTIR, micro-Raman, and XRD spectroscopy
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03586
– volume: 74
  start-page: 536
  year: 1995
  ident: ref_27
  article-title: Application of reflectance micro-Fourier transform infrared spectrometry in studying coal macerals: Comparison with other Fourier transform infrared techniques
  publication-title: Fuel
  doi: 10.1016/0016-2361(95)98356-J
– volume: 36
  start-page: 259
  year: 1998
  ident: ref_26
  article-title: Micro-FTIR spectroscopy of liptinite macerals in coal
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/S0166-5162(97)00044-X
– volume: 597
  start-page: 153748
  year: 2022
  ident: ref_5
  article-title: Effect of different functional groups on CH4 adsorption heat and surface free energy of vitrinite during coalification
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153748
– volume: 8
  start-page: 821
  year: 2009
  ident: ref_38
  article-title: Chemical leaching of low rank coal and its characterization using SEM/EDAX and FTIR
  publication-title: J. Miner. Mater. Charact. Eng.
– volume: 38
  start-page: 1484
  year: 2020
  ident: ref_36
  article-title: Effect of peat mire evolution on pore structure characteristics in thick coal seam: Examples from Xishanyao Formation (Middle Jurassic), Yili Basin, China
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/0144598720950479
– volume: 77
  start-page: 805
  year: 1998
  ident: ref_9
  article-title: Quantitative 13C NMR study of structural variations within the vitrinite and inertinite maceral groups for a semifusinite-rich bituminous coal
  publication-title: Fuel
  doi: 10.1016/S0016-2361(97)00260-3
– volume: 78
  start-page: 103289
  year: 2020
  ident: ref_24
  article-title: Comparison of nanopore evolution in vitrinite and inertinite in coalbed methane reservoirs during coalification
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103289
– volume: 64
  start-page: 229
  year: 1985
  ident: ref_46
  article-title: Resolution enhancement of diffuse reflectance ir spectra of coals by Fourier self-deconvolution: 1. CH stretching and bending modes
  publication-title: Fuel
  doi: 10.1016/0016-2361(85)90223-6
– volume: 30
  start-page: 112
  year: 2016
  ident: ref_2
  article-title: Constitution of drop-tube-generated coal chars from vitrinite-and inertinite-rich South African coals
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b01517
SSID ssj0000331333
Score 2.372306
Snippet An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5334
SubjectTerms Carbon
clean utilization
Coal
Experiments
Fourier transforms
Heat
Hydrocarbons
macromolecular structure
Molecular structure
pyrolysis
Spectrum analysis
Vibration
vitrinite and inertinite
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXA3rxUGybNNseXdfFFVbEF3srySSBBemKVsEf4X92klZdUfAi9NIyoSUzyTfTzHzD2EGGOSY-U011pY5ElmCkCQgiI9LEcKmLvPAFzqMLeXYrzsfZeKbVl88Ja-iBm4k7IsBUWY7SckwFFzSUK-5cUVjlhMXA80mYNxNMhT2Ycwq-eMNHyimuP7KVh25fePoNgQJR_499OIDLYJkttV4hHDdfs8LmbLXKFme4AtfYW79tZUILGyYVjFTIpGub28J14IF9frRw-tJaEzQliEAuHly-Pk4D-QhMHdxNan9uU1tQlYFh5VOrw22PIM0AjRxWcD2pn2FwM7wKQuOrPoy-fic-rbPbwenNyVnU9lKIkMukjpyWOV0Fau_AoVGpibU15J3QjKaW1rHj2M1NN3GSML5reIxSGVU4FLmNkW-w-Wpa2U0GtkAXG6ekVkokVmgjFEqdGkxIOTHvsMOP-S2xJRr3_S7uSwo4vC7KL1102P6n7ENDr_GrVM-r6VPCU2KHB2QoZWso5V-G0mE7H0ou23X6VPpj96xIyIna-o93bLOF1JdHhATBHTZPqre75LTUei_Y5ztbte2J
  priority: 102
  providerName: Directory of Open Access Journals
Title Differences in Macromolecular Structure Evolution during the Pyrolysis of Vitrinite and Inertinite Based on In Situ FTIR and XRD Measurements
URI https://www.proquest.com/docview/2700591317
https://doaj.org/article/439a58c6e3c243489f3a3ff99eaf4ec3
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdr-7I9jH2ydl0QbC97MLUsWbGeSrMmbQYpJW1H3ox0kkZg2G3iDvZH9H_uSVGSjY1BMMQ-g-3Tferud4R8KqECFirVdF-aTJQMMoOGILOiYJZLoyoVGpwnF_L8RnydlbOUcFumssq1ToyK2rYQcuRHYYO0VAzN3fHtXRamRoXd1TRCY4fsoQquMPjaGwwvLqebLEvOOQZhfIVLyjG-P3JNMOGhAfUPSxQB-__Sx9HIjF6Q58k7pCcrdr4kT1zzijz7DTPwNXk4TSNNUMDpvKETHSvq0pBbehXxYO8Xjg5_plVFV62IFF09evlr0UYQEtp6-m3ehf2bzlHdWDpuQol1_DtA02Yp3jlu6NW8u6ej6_E0Es2mp3SyTSsu35Cb0fD6y3mWZipkwCXrMm9khT8FJjhyYHVhc-MseinIlMKhPHsO_cr2mZdo6_uW5yC11cqDqFwO_C3ZbdrGvSPUKfC59VoarQVzwlihQZrCAlMeLeM--bz-vjUkwPEw9-JHjYFH4EW95cU--bihvV3BbPyTahDYtKEI0NjxRLv4XidJq9HD0mUF0nEoBBf4Wlxz75Vy2gsH-FiHaybXSV6X9XZ1Hfz_8nvytAgNELEE8JDsIlPdB3RLOtMjO9XorJdWYC8G93g8m7FH0vPojA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMUClgCDhyiJrHjjQ8ItWyXDe1WqN2ivQU_0UooKbspqD-Cv9LfyIyT7IJA3CrlkngSOZ7xfGN7HoS8zExuEvRUUwOhI54lJtIABJHlaWKZ0DKXGOA8ORLjU_5hls02yGUfC4Nulb1ODIra1gb3yHfwgDSTCcDd27NvEVaNwtPVvoRGKxYH7uIHLNmWb4oh8PdVmo72p-_GUVdVIDJMJE3ktcjhkkajKWOsSm2snQWchm6lDiTaMzPI7SDxAtBuYFlshLJKesNzFxsG371GrnPGJM6ofPR-tacTMwZLPtZmQYX2eMdVaDBguOsfuBfKA_yl_QOkje6Q250tSndb4blLNlx1j9z6LUPhffJz2BVQAXVC5xWdqOC_15XUpSch--z5wtH9750M0zbwkYJhST9eLOqQ8oTWnn6aN3ha1DiqKkuLCh26w-0eAKml8GZR0ZN5c05H0-I4EM2Oh3Sy3sRcPiCnVzLWD8lmVVfuEaFOGh9br4RWiieOa8uVETq1JpEecHiLvO7HtzRdenOssvG1hGUO8qJc82KLvFjRnrVJPf5JtYdsWlFgIu7woF58Kbt5XYI9p7LcCMdMyhmH32KKeS-lU547A93a7plcdtphWa5l-fH_m5-TG-Pp5LA8LI4OnpCbKYZeBOfDbbIJDHZPwSBq9LMghZR8vmqx_wWlNiJt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWroTggHiKhQUsAQcOUZPYdeIDQpS22rC0qrq7qLfgJ6qEkqXNgvZH8If4dYwdpwWBuK2US5JJ5Hgm883Y80DoxUDlKnGRaiJjMqKDREUSgCDSNE00YZLn3CU4T2fs6Iy-Xw6We-hnlwvjwio7negVta6VWyPvuw3SAU8A7vo2hEXMR5M3518j10HK7bR27TRaETk2l9_Bfdu8LkbA65dpOhmfvjuKQoeBSBGWNJGVLIeDK-nMGqVFqmNpNGA2DDE1IN2WqCzXWWIZIF-mSayY0IJbRXMTKwLvvYb2M_CK4h7aH45n88V2hScmBBxA0tZEJYTHfVM588Elv_6Bgr5ZwF9Y4AFuchvdCpYpftuK0h20Z6q76OZv9QrvoR-j0E4FlAteVXgqfDRfaLCLT3wt2ou1weNvQaJxmwaJwczE88t17Qug4Nrij6vG7R01BotK46Jy4d3-dAiwqjE8WVT4ZNVc4MlpsfBEy8UIT3dLmpv76OxKZvsB6lV1ZR4ibLiysbaCSSFoYqjUVCgmU60SbgGVD9Crbn5LFYqdu54bX0pwehwvyh0vDtDzLe15W-Ljn1RDx6YthSvL7S_U689l-MtLsO7EIFfMEJVSQuGziCDWcm6EpUbBsA47JpdBV2zKnWQ_-v_tZ-g6iHz5oZgdP0Y3UpeH4SMRD1EP-GuegHXUyKdBDDH6dNWS_wuXRif_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differences+in+Macromolecular+Structure+Evolution+during+the+Pyrolysis+of+Vitrinite+and+Inertinite+Based+on+In+Situ+FTIR+and+XRD+Measurements&rft.jtitle=Energies+%28Basel%29&rft.au=Zhao%2C+Meng&rft.au=Wang%2C+Anmin&rft.au=Cao%2C+Daiyong&rft.au=Wei%2C+Yingchun&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=15&rft.spage=5334&rft_id=info:doi/10.3390%2Fen15155334&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon