Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery

Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 5; p. 531
Main Authors Wang, Yuanyuan, Wang, Chao, Zhang, Hong, Dong, Yingbo, Wei, Sisi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are highly dependent on the statistical models of sea clutter or the extracted features, and their robustness need to be strengthened. Being an automatic learning representation, the RetinaNet object detector, one kind of deep learning model, is proposed to crack this obstacle. Firstly, feature pyramid networks (FPN) are used to extract multi-scale features for both ship classification and location. Then, focal loss is used to address the class imbalance and to increase the importance of the hard examples during training. There are 86 scenes of Chinese Gaofen-3 Imagery at four resolutions, i.e., 3 m, 5 m, 8 m, and 10 m, used to evaluate our approach. Two Gaofen-3 images and one Constellation of Small Satellite for Mediterranean basin Observation (Cosmo-SkyMed) image are used to evaluate the robustness. The experimental results reveal that (1) RetinaNet not only can efficiently detect multi-scale ships but also has a high detection accuracy; (2) compared with other object detectors, RetinaNet achieves more than a 96% mean average precision (mAP). These results demonstrate the effectiveness of our proposed method.
AbstractList Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are highly dependent on the statistical models of sea clutter or the extracted features, and their robustness need to be strengthened. Being an automatic learning representation, the RetinaNet object detector, one kind of deep learning model, is proposed to crack this obstacle. Firstly, feature pyramid networks (FPN) are used to extract multi-scale features for both ship classification and location. Then, focal loss is used to address the class imbalance and to increase the importance of the hard examples during training. There are 86 scenes of Chinese Gaofen-3 Imagery at four resolutions, i.e., 3 m, 5 m, 8 m, and 10 m, used to evaluate our approach. Two Gaofen-3 images and one Constellation of Small Satellite for Mediterranean basin Observation (Cosmo-SkyMed) image are used to evaluate the robustness. The experimental results reveal that (1) RetinaNet not only can efficiently detect multi-scale ships but also has a high detection accuracy; (2) compared with other object detectors, RetinaNet achieves more than a 96% mean average precision (mAP). These results demonstrate the effectiveness of our proposed method.
Author Wang, Yuanyuan
Zhang, Hong
Dong, Yingbo
Wang, Chao
Wei, Sisi
Author_xml – sequence: 1
  givenname: Yuanyuan
  orcidid: 0000-0001-7700-7284
  surname: Wang
  fullname: Wang, Yuanyuan
– sequence: 2
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
– sequence: 3
  givenname: Hong
  orcidid: 0000-0002-0088-8148
  surname: Zhang
  fullname: Zhang, Hong
– sequence: 4
  givenname: Yingbo
  surname: Dong
  fullname: Dong, Yingbo
– sequence: 5
  givenname: Sisi
  surname: Wei
  fullname: Wei, Sisi
BookMark eNptkclOwzAQhi1UJLZeeIJI3JAC4yVxfGSnUgGJwtmaxk5xlcbFdg68PYEiQAhfZtHnf7Y9Mup8Zwk5pHDCuYLTECmFAgpOt8guA8lywRQb_fJ3yDjGJQyPc6pA7JLZWZ_8CpOrs9mLW2eXNtk6Od9l5xityQbn0SbX4b1N2XN03SK769vk8kcbfdt_kjfoG9vlPJuscGHD2wHZbrCNdvxl98nz9dXTxW0-fbiZXJxN85qXNOWNMkIyMEiLykpTVU0xrwqucM5rWQsoh6As50oZ1RghpOEoDBZcCGXqChXfJ5ONrvG41OvgVhjetEenPxM-LDSGYbLWastowWxTUhSVUIqhAcoaIwEYSkn5oHW00VoH_9rbmPTS96Eb2teMA1eqBAkDdbyh6uBjDLb5rkpBf9xA_9xggOEPXLuEHxtLAV3735d3_gOIaA
CitedBy_id crossref_primary_10_3390_rs16050913
crossref_primary_10_1007_s11760_024_03609_z
crossref_primary_10_3390_rs14092092
crossref_primary_10_1109_MAES_2021_3117369
crossref_primary_10_1155_2020_4813183
crossref_primary_10_1016_j_micpro_2022_104628
crossref_primary_10_1155_2022_3987494
crossref_primary_10_1007_s00138_023_01390_6
crossref_primary_10_3390_rs13214209
crossref_primary_10_3390_rs14122832
crossref_primary_10_1016_j_egyai_2024_100349
crossref_primary_10_3390_rs12030417
crossref_primary_10_3390_rs14215460
crossref_primary_10_1007_s11760_024_03420_w
crossref_primary_10_1109_ACCESS_2019_2943241
crossref_primary_10_3390_rs11222694
crossref_primary_10_1109_ACCESS_2024_3515960
crossref_primary_10_12677_hjdm_2024_144020
crossref_primary_10_3390_electronics11162546
crossref_primary_10_1007_s44267_024_00040_3
crossref_primary_10_3390_rs11101206
crossref_primary_10_3390_rs15082035
crossref_primary_10_1109_ACCESS_2020_3005861
crossref_primary_10_3390_a16110520
crossref_primary_10_3390_rs14246240
crossref_primary_10_1080_22797254_2023_2273867
crossref_primary_10_1109_JSTARS_2023_3325376
crossref_primary_10_3390_rs13173400
crossref_primary_10_1109_JSTARS_2024_3514898
crossref_primary_10_1016_j_bspc_2024_106618
crossref_primary_10_1109_TGRS_2022_3180894
crossref_primary_10_1016_j_compag_2024_108674
crossref_primary_10_3390_rs14030442
crossref_primary_10_1109_ACCESS_2021_3106550
crossref_primary_10_1016_j_engappai_2021_104486
crossref_primary_10_1109_TGRS_2022_3161499
crossref_primary_10_3390_rs14010180
crossref_primary_10_1109_JSTARS_2022_3180159
crossref_primary_10_1109_JSTARS_2020_3034609
crossref_primary_10_1109_TPAMI_2025_3526990
crossref_primary_10_1186_s13007_024_01147_w
crossref_primary_10_1166_jno_2022_3319
crossref_primary_10_1016_j_enggeo_2021_106172
crossref_primary_10_3390_s20092547
crossref_primary_10_3390_app14146153
crossref_primary_10_3390_jmse10091330
crossref_primary_10_3390_rs12122031
crossref_primary_10_3390_s20082340
crossref_primary_10_3390_rs12213607
crossref_primary_10_1109_TGRS_2020_3040273
crossref_primary_10_3389_fmars_2023_1113669
crossref_primary_10_3390_s23167027
crossref_primary_10_1109_JSTARS_2021_3049851
crossref_primary_10_1007_s44196_023_00235_4
crossref_primary_10_3390_rs13081452
crossref_primary_10_3390_s21144845
crossref_primary_10_1016_j_ecss_2022_107957
crossref_primary_10_1109_JSTARS_2022_3198577
crossref_primary_10_1177_15589250221135087
crossref_primary_10_1007_s11082_022_04458_1
crossref_primary_10_3390_rs13050871
crossref_primary_10_3390_jmse9121408
crossref_primary_10_3390_s20174938
crossref_primary_10_3390_diagnostics13020248
crossref_primary_10_3390_atmos14050771
crossref_primary_10_1109_JSTARS_2022_3206822
crossref_primary_10_3390_jmse11071272
crossref_primary_10_3390_rs13163182
crossref_primary_10_1186_s13054_023_04320_0
crossref_primary_10_1007_s41315_023_00285_z
crossref_primary_10_3390_rs11070765
crossref_primary_10_3390_rs14143345
crossref_primary_10_1109_JSTARS_2022_3166897
crossref_primary_10_3390_act11100272
crossref_primary_10_3390_app12136488
crossref_primary_10_1109_JSTARS_2021_3112469
crossref_primary_10_3389_fcomp_2022_1012755
crossref_primary_10_1080_10095020_2022_2124129
crossref_primary_10_1109_JSTARS_2021_3088911
crossref_primary_10_3390_electronics13071190
crossref_primary_10_3390_rs13101995
crossref_primary_10_3390_s21175693
crossref_primary_10_3389_fpls_2024_1442968
crossref_primary_10_47134_jtsi_v1i3_2969
crossref_primary_10_3390_rs13132582
crossref_primary_10_3390_rs15112917
crossref_primary_10_3390_computation9020012
crossref_primary_10_1109_LGRS_2024_3462444
crossref_primary_10_1007_s11804_023_00367_1
crossref_primary_10_1109_ACCESS_2022_3154474
crossref_primary_10_1007_s11760_023_02677_x
crossref_primary_10_1111_jfpe_14556
crossref_primary_10_3390_rs13010034
crossref_primary_10_1109_ACCESS_2020_3020363
crossref_primary_10_1109_ACCESS_2025_3548117
crossref_primary_10_4236_ojapps_2023_134045
crossref_primary_10_1007_s11082_022_04464_3
crossref_primary_10_3390_rs14112712
crossref_primary_10_1109_ACCESS_2023_3343419
crossref_primary_10_3390_rs13061184
crossref_primary_10_1007_s11432_019_2772_5
crossref_primary_10_1109_JIOT_2024_3488076
crossref_primary_10_1016_j_jksuci_2023_101863
crossref_primary_10_1109_ACCESS_2024_3362636
crossref_primary_10_32604_csse_2023_034449
crossref_primary_10_1080_01431161_2021_2008544
crossref_primary_10_1080_01431161_2020_1856965
crossref_primary_10_1109_TGRS_2023_3249349
crossref_primary_10_1038_s41598_024_61016_3
crossref_primary_10_1109_JSTARS_2025_3543531
crossref_primary_10_1109_TIM_2024_3350120
crossref_primary_10_3390_s22093370
crossref_primary_10_3390_rs14041018
crossref_primary_10_3390_rs15030629
crossref_primary_10_3390_rs12010167
crossref_primary_10_1007_s11042_022_12243_1
crossref_primary_10_1109_ACCESS_2019_2929080
crossref_primary_10_1007_s10462_023_10455_x
crossref_primary_10_1109_JSYST_2022_3193951
crossref_primary_10_3390_app14125113
crossref_primary_10_1109_LGRS_2022_3161931
crossref_primary_10_3390_rs16162953
crossref_primary_10_1016_j_eswa_2021_115051
crossref_primary_10_1080_01431161_2020_1811422
crossref_primary_10_1109_ACCESS_2021_3103522
crossref_primary_10_1109_JSEN_2023_3317060
crossref_primary_10_1007_s11042_024_19782_9
crossref_primary_10_1016_j_ecoinf_2022_101584
crossref_primary_10_1017_eds_2023_30
crossref_primary_10_1117_1_JRS_18_016507
crossref_primary_10_1109_ACCESS_2020_2978880
crossref_primary_10_3390_rs13214384
crossref_primary_10_1155_2020_7025403
crossref_primary_10_3390_rs12030442
crossref_primary_10_5916_jamet_2024_48_2_81
crossref_primary_10_1109_ACCESS_2019_2930939
crossref_primary_10_1007_s11432_022_3588_0
crossref_primary_10_1007_s00500_022_07522_w
crossref_primary_10_1109_TGRS_2020_2969979
crossref_primary_10_1016_j_biosystemseng_2024_09_016
crossref_primary_10_1109_TGRS_2023_3313603
crossref_primary_10_1002_ima_70034
crossref_primary_10_3390_biomedinformatics4020054
crossref_primary_10_3389_fmed_2022_955765
crossref_primary_10_3390_s20216251
crossref_primary_10_1111_exsy_13750
crossref_primary_10_32604_cmc_2023_039263
crossref_primary_10_1177_00405175241252965
crossref_primary_10_1016_j_asr_2024_06_028
crossref_primary_10_1155_2022_1272896
crossref_primary_10_1007_s00371_024_03716_5
crossref_primary_10_1016_j_patcog_2020_107787
crossref_primary_10_3390_electronics12163497
crossref_primary_10_1007_s11554_024_01580_z
crossref_primary_10_3390_rs15112825
crossref_primary_10_1007_s12524_022_01491_1
crossref_primary_10_3390_rs14040906
crossref_primary_10_1002_rob_22273
crossref_primary_10_1016_j_isprsjprs_2020_05_016
crossref_primary_10_3390_rs16010130
crossref_primary_10_3390_rs16061001
crossref_primary_10_3390_rs12060989
crossref_primary_10_1016_j_nhres_2022_10_002
crossref_primary_10_3390_rs11091117
crossref_primary_10_3390_rs14174425
crossref_primary_10_1016_j_measurement_2024_115847
crossref_primary_10_1155_2022_3063965
crossref_primary_10_3390_rs15051329
crossref_primary_10_3390_rs12183035
crossref_primary_10_1109_LGRS_2020_3033988
crossref_primary_10_1109_TGRS_2022_3227260
crossref_primary_10_1117_1_OE_62_11_118101
crossref_primary_10_1007_s11554_024_01606_6
crossref_primary_10_3390_agriculture13010078
crossref_primary_10_3390_app15052625
crossref_primary_10_3390_rs14010031
crossref_primary_10_1109_MGRS_2023_3312347
crossref_primary_10_23939_acps2021_02_128
Cites_doi 10.3390/rs9080860
10.1007/s12567-018-0222-8
10.1109/CVPR.2016.90
10.1109/TGRS.2008.2006504
10.1109/CVPR.2017.690
10.1109/CVPR.2017.106
10.1109/TGRS.2003.817809
10.1109/CVPR.2017.243
10.1049/ip-rsn:20045006
10.1109/7.937460
10.1080/2150704X.2018.1475770
10.1109/ICCV.2017.324
10.1007/s11432-017-9405-6
10.1007/978-3-319-46448-0_2
10.1109/RSIP.2017.7958806
10.1109/RSIP.2017.7958815
10.1038/nature14539
10.3390/rs70607695
10.1109/LGRS.2004.827462
10.1109/ACCESS.2016.2611492
10.1109/IGARSS.2016.7729017
10.1109/BIGSARDATA.2017.8124934
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs11050531
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_e2152ef61a484992ad012fd7002a7713
10_3390_rs11050531
GeographicLocations Beijing China
United States--US
China
Mediterranean Area
GeographicLocations_xml – name: China
– name: Beijing China
– name: United States--US
– name: Mediterranean Area
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-f9d4720da158e7d88f5b8539ab3c7c40685366b99d9fd447d3a4da53449dc8a93
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:23:41 EDT 2025
Fri Jul 25 12:04:03 EDT 2025
Tue Jul 01 04:14:41 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f9d4720da158e7d88f5b8539ab3c7c40685366b99d9fd447d3a4da53449dc8a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0088-8148
0000-0001-7700-7284
OpenAccessLink https://www.proquest.com/docview/2303996070?pq-origsite=%requestingapplication%
PQID 2303996070
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_e2152ef61a484992ad012fd7002a7713
proquest_journals_2303996070
crossref_primary_10_3390_rs11050531
crossref_citationtrail_10_3390_rs11050531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kaplan (ref_12) 2001; 37
Ren (ref_17) 2017; 39
ref_34
ref_33
ref_32
ref_31
ref_30
Juanping (ref_13) 2019; 62
ref_19
ref_18
ref_15
Ouchi (ref_11) 2004; 1
Souyris (ref_10) 2003; 41
Gill (ref_8) 2016; 4
McGuire (ref_14) 2013; 7
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_1
Huang (ref_9) 2015; 7
ref_2
ref_29
ref_28
ref_27
ref_26
Gao (ref_6) 2009; 47
Farrouki (ref_7) 2005; 152
LeCun (ref_16) 2015; 521
Wang (ref_3) 2018; 9
ref_5
ref_4
References_xml – ident: ref_30
– ident: ref_5
– ident: ref_32
– ident: ref_1
  doi: 10.3390/rs9080860
– ident: ref_24
– ident: ref_34
– ident: ref_4
  doi: 10.1007/s12567-018-0222-8
– ident: ref_26
  doi: 10.1109/CVPR.2016.90
– volume: 47
  start-page: 1685
  year: 2009
  ident: ref_6
  article-title: An adaptive and fast cfar algorithm based on automatic censoring for target detection in high-resolution sar images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2006504
– ident: ref_20
  doi: 10.1109/CVPR.2017.690
– ident: ref_23
  doi: 10.1109/CVPR.2017.106
– volume: 41
  start-page: 2725
  year: 2003
  ident: ref_10
  article-title: On the use of complex sar image spectral analysis for target detection: Assessment of polarimetry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.817809
– ident: ref_28
  doi: 10.1109/CVPR.2017.243
– volume: 152
  start-page: 43
  year: 2005
  ident: ref_7
  article-title: Automatic censoring cfar detector based on ordered data variability for nonhomogeneous environments
  publication-title: IEE Proc. Radar Sonar Navig.
  doi: 10.1049/ip-rsn:20045006
– volume: 37
  start-page: 436
  year: 2001
  ident: ref_12
  article-title: Improved sar target detection via extended fractal features
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.937460
– volume: 9
  start-page: 780
  year: 2018
  ident: ref_3
  article-title: Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 sar images
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2018.1475770
– ident: ref_21
  doi: 10.1109/ICCV.2017.324
– volume: 62
  start-page: 042301
  year: 2019
  ident: ref_13
  article-title: A coupled convolutional neural network for small and densely clustered ship detection in sar images
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-017-9405-6
– ident: ref_18
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_25
  doi: 10.1109/RSIP.2017.7958806
– ident: ref_31
– ident: ref_29
– ident: ref_27
– ident: ref_2
  doi: 10.1109/RSIP.2017.7958815
– volume: 7
  start-page: 7
  year: 2013
  ident: ref_14
  article-title: Target detection in synthetic aperture radar imagery: A state-of-the-art survey
  publication-title: J. Appl. Remote Sens.
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_16
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 7
  start-page: 7695
  year: 2015
  ident: ref_9
  article-title: Automatic ship detection in sar images using multi-scale heterogeneities and an a contrario decision
  publication-title: Remote Sens.
  doi: 10.3390/rs70607695
– ident: ref_15
– volume: 1
  start-page: 184
  year: 2004
  ident: ref_11
  article-title: Ship detection based on coherence images derived from cross correlation of multilook sar images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2004.827462
– ident: ref_19
– volume: 4
  start-page: 6014
  year: 2016
  ident: ref_8
  article-title: Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2611492
– ident: ref_33
  doi: 10.1109/IGARSS.2016.7729017
– ident: ref_22
  doi: 10.1109/BIGSARDATA.2017.8124934
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_17
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
SSID ssj0000331904
Score 2.6142266
Snippet Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 531
SubjectTerms Accuracy
Clutter
Datasets
Deep learning
False alarms
Feature extraction
feature pyramid networks
focal loss
Gaofen-3 imagery
Image detection
International conferences
Machine learning
Mathematical models
Methods
Neural networks
Pattern recognition
Radar imaging
Remote sensing
Robustness
Satellite constellations
Satellite imagery
Satellite observation
Satellites
Sensors
Shape recognition
ship detection
Ships
Small satellites
Statistical analysis
Statistical models
Surveillance radar
Synthetic aperture radar
Weather
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kF72In1itsqAXD6FJdpJNjq1aq2AP1kJvYb9CBU1Lmx76753dpFVR8OItCQsJM7Pz5oXZN4RcIeKFcQTgBTLIkaBA4knJwFMaEzJXIsmd4s3TIO6P4HEcjb-M-rI9YZU8cGW4trGDV00eBwISrM5DoTGl5prjThacu3m1IWLeFzLlcjDD0PKh0iNlyOvb8wUCXWRD7hsCOaH-H3nYgUtvj-zWVSHtVF-zT7ZMcUC26wHlk9UhGXaW5dSpq9Lh5HVGb03peqgK2kUY0hQvnu3hZTEwJXVtANQdrfXs7_kquOi9mOam8Bh9eLfCFasjMurdvdz0vXoegqdYHJRenmrgoa9FECWG6yTJI4lomwrJFFeIzHgTxzJNdZprAK6ZAC0iBpBqlYiUHZNGMS3MCaEKIBIJUjEJAoyW0tYd-MQ3DPlRoJrkem2jTNVi4XZmxVuGpMHaM_u0Z5NcbtbOKomMX1d1rak3K6ystXuAzs5qZ2d_ObtJWmtHZfVeW2RIopjVmOH-6X-844zsYFGUVn1mLdIo50tzjoVHKS9cjH0AYYLSwA
  priority: 102
  providerName: Directory of Open Access Journals
Title Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery
URI https://www.proquest.com/docview/2303996070
https://doaj.org/article/e2152ef61a484992ad012fd7002a7713
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB3R5AAXRPkQgTZaCS4cVrWzY3t9QgltWhCNUEOl3qz9MkVq7ZC4h_57ZtebVAjEzV7vaXZ23rz17BuA94R4kzxD5KlOayIoKLnWArmxFJALo2QdFG_OF_nZJX65yq7igdsmllVuY2II1LY1_oz8iFJl4ZVEiuTj6hf3XaP839XYQmMPhhSCpRzAcHay-HaxO2VJBLlYgr0uqSB-f7TeEOBl3vX-QKIg2P9XPA4gM38GT2N2yKb9cu7DI9c8h8exUfn1_QtYTu-6NqissuX1zxU7dl2opWrYjODIMnq48JeY1cJ1LJQDsHDFlvtj-t7J2Klqa9dwwT7fegGL-5dwOT_5_umMx74I3Ig87XhdWiwmiVVpJl1hpawzTahbKi1MYQih6SXPdVnasraIhRUKrcoEYmmNVKV4BYOmbdxrYAYxU5IomUaFzmrt8w8aSZwgnpSaEXzY2qgyUTTc9664qYg8eHtWD_Ycwbvd3FUvlfHPWTNv6t0ML28dBtr1jyrulsr5bruuzlOFkijZRFnC0doWFL5VQbR6BAfbharinttUDx7y5v-f38ITSnvKvpLsAAbd-s4dUmrR6THsyfnpGIbT4_Ovy3H0pnEg6r8BcQfQMw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VAuqNBWLC1gqXDowWoST14HhFrKdpe2e-hD6i34FYoEybKbCu2f4jcydpKtUCtuvSW2T-PxfDP2zDcA7wjxoiRG5KEKSwpQMONKCeTakEFOtcxKz3hzNklGV_jlOr5egT99LYxLq-xtojfUptbujnyfXGXhmETS4OP0F3ddo9zrat9Co1WLE7v4TSHb_MP4iPb3fRQNP19-GvGuqwDXIgkbXuYG0ygwMowzm5osK2NFmJVLJXSqCd_oJ0lUnpu8NIipERKNjAVibnQmHfkSmfwnKAjJXWX68Hh5pxMIUugAWxZUmg_2Z3OC19gp-j-459sD3LP-HtKG6_Cs80XZQas8z2HFVi9grWuLfrPYgIuD26b2nK7s4ub7lB3ZxmduVeyQwM8w-jh3JdNyYhvmkw-YL-jl7lGgVWl2LOvSVlyw8U9Hl7HYhKtHkdcWrFZ1ZV8C04ixzCgAVCjRGqWct0MjgRUUlYV6AHu9jArdUZS7Thk_CgpVnDyLO3kOYHe5dtoSczy46tCJernCkWn7gXr2rejOZmFdb19bJqHEjALASBpC7dKkBBYypSB-ADv9RhXdCZ8Xd_r46v_Tb2FtdHl2WpyOJyfb8JQcrrzNYduB1WZ2a1-TU9OoN16TGHx9bNX9C00fCAk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwm4IJ5iaQFLwIGDtUnsxMkBoS7bpUthVbVU6i342SLRZNlNhfav8esYO8lWCMSttzx8Gn-eb8YefwPwChkvyVLOaaxihwkKz6lSjFNt0CELLXMXFG8-z7ODU_7xLD3bgl_9XRhfVtn7xOCoTa39HvkIQ2XmlURENHJdWcTRZPpu8YP6DlL-pLVvp9FC5NCuf2L6tno7m-Bcv06S6f6X9we06zBANcvihrrCcJFERsZpboXJc5cq5K9CKqaFRq7DlyxTRWEKZzgXhkluZMo4L4zOpRdiQve_LXxWNIDt8f786HizwxMxhHfEW01UxopotFwh2aYe9n-wYGgW8BcXBIKb3oO7XWRK9loo3YctWz2A212T9Iv1QzjZu2rqoPBKTi6-LcjENqGOqyJjpEJD8OHYX6CWc9uQUIpAwvVe6o8IWoCTD7J2tqKMzC69eMb6EZzeiMUew6CqK_sEiOY8lTmmg4pLbo1SPvbBL5FlmKPFeghvehuVuhMs930zvpeYuHh7ltf2HMLLzdhFK9Pxz1Fjb-rNCC-tHT7Uy_OyW6ml9Z1-rctiyXNMBxNpkMOdEUgdUmBKP4TdfqLKbr2vymt0Pv3_7xdwC2FbfprND3fgDkZfRVvQtguDZnlln2GE06jnHZQIfL1p9P4G8BQNmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Ship+Detection+Based+on+RetinaNet+Using+Multi-Resolution+Gaofen-3+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yuanyuan&rft.au=Wang%2C+Chao&rft.au=Zhang%2C+Hong&rft.au=Dong%2C+Yingbo&rft.date=2019-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=5&rft_id=info:doi/10.3390%2Frs11050531&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon