Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery
Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 5; p. 531 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are highly dependent on the statistical models of sea clutter or the extracted features, and their robustness need to be strengthened. Being an automatic learning representation, the RetinaNet object detector, one kind of deep learning model, is proposed to crack this obstacle. Firstly, feature pyramid networks (FPN) are used to extract multi-scale features for both ship classification and location. Then, focal loss is used to address the class imbalance and to increase the importance of the hard examples during training. There are 86 scenes of Chinese Gaofen-3 Imagery at four resolutions, i.e., 3 m, 5 m, 8 m, and 10 m, used to evaluate our approach. Two Gaofen-3 images and one Constellation of Small Satellite for Mediterranean basin Observation (Cosmo-SkyMed) image are used to evaluate the robustness. The experimental results reveal that (1) RetinaNet not only can efficiently detect multi-scale ships but also has a high detection accuracy; (2) compared with other object detectors, RetinaNet achieves more than a 96% mean average precision (mAP). These results demonstrate the effectiveness of our proposed method. |
---|---|
AbstractList | Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are highly dependent on the statistical models of sea clutter or the extracted features, and their robustness need to be strengthened. Being an automatic learning representation, the RetinaNet object detector, one kind of deep learning model, is proposed to crack this obstacle. Firstly, feature pyramid networks (FPN) are used to extract multi-scale features for both ship classification and location. Then, focal loss is used to address the class imbalance and to increase the importance of the hard examples during training. There are 86 scenes of Chinese Gaofen-3 Imagery at four resolutions, i.e., 3 m, 5 m, 8 m, and 10 m, used to evaluate our approach. Two Gaofen-3 images and one Constellation of Small Satellite for Mediterranean basin Observation (Cosmo-SkyMed) image are used to evaluate the robustness. The experimental results reveal that (1) RetinaNet not only can efficiently detect multi-scale ships but also has a high detection accuracy; (2) compared with other object detectors, RetinaNet achieves more than a 96% mean average precision (mAP). These results demonstrate the effectiveness of our proposed method. |
Author | Wang, Yuanyuan Zhang, Hong Dong, Yingbo Wang, Chao Wei, Sisi |
Author_xml | – sequence: 1 givenname: Yuanyuan orcidid: 0000-0001-7700-7284 surname: Wang fullname: Wang, Yuanyuan – sequence: 2 givenname: Chao surname: Wang fullname: Wang, Chao – sequence: 3 givenname: Hong orcidid: 0000-0002-0088-8148 surname: Zhang fullname: Zhang, Hong – sequence: 4 givenname: Yingbo surname: Dong fullname: Dong, Yingbo – sequence: 5 givenname: Sisi surname: Wei fullname: Wei, Sisi |
BookMark | eNptkclOwzAQhi1UJLZeeIJI3JAC4yVxfGSnUgGJwtmaxk5xlcbFdg68PYEiQAhfZtHnf7Y9Mup8Zwk5pHDCuYLTECmFAgpOt8guA8lywRQb_fJ3yDjGJQyPc6pA7JLZWZ_8CpOrs9mLW2eXNtk6Od9l5xityQbn0SbX4b1N2XN03SK769vk8kcbfdt_kjfoG9vlPJuscGHD2wHZbrCNdvxl98nz9dXTxW0-fbiZXJxN85qXNOWNMkIyMEiLykpTVU0xrwqucM5rWQsoh6As50oZ1RghpOEoDBZcCGXqChXfJ5ONrvG41OvgVhjetEenPxM-LDSGYbLWastowWxTUhSVUIqhAcoaIwEYSkn5oHW00VoH_9rbmPTS96Eb2teMA1eqBAkDdbyh6uBjDLb5rkpBf9xA_9xggOEPXLuEHxtLAV3735d3_gOIaA |
CitedBy_id | crossref_primary_10_3390_rs16050913 crossref_primary_10_1007_s11760_024_03609_z crossref_primary_10_3390_rs14092092 crossref_primary_10_1109_MAES_2021_3117369 crossref_primary_10_1155_2020_4813183 crossref_primary_10_1016_j_micpro_2022_104628 crossref_primary_10_1155_2022_3987494 crossref_primary_10_1007_s00138_023_01390_6 crossref_primary_10_3390_rs13214209 crossref_primary_10_3390_rs14122832 crossref_primary_10_1016_j_egyai_2024_100349 crossref_primary_10_3390_rs12030417 crossref_primary_10_3390_rs14215460 crossref_primary_10_1007_s11760_024_03420_w crossref_primary_10_1109_ACCESS_2019_2943241 crossref_primary_10_3390_rs11222694 crossref_primary_10_1109_ACCESS_2024_3515960 crossref_primary_10_12677_hjdm_2024_144020 crossref_primary_10_3390_electronics11162546 crossref_primary_10_1007_s44267_024_00040_3 crossref_primary_10_3390_rs11101206 crossref_primary_10_3390_rs15082035 crossref_primary_10_1109_ACCESS_2020_3005861 crossref_primary_10_3390_a16110520 crossref_primary_10_3390_rs14246240 crossref_primary_10_1080_22797254_2023_2273867 crossref_primary_10_1109_JSTARS_2023_3325376 crossref_primary_10_3390_rs13173400 crossref_primary_10_1109_JSTARS_2024_3514898 crossref_primary_10_1016_j_bspc_2024_106618 crossref_primary_10_1109_TGRS_2022_3180894 crossref_primary_10_1016_j_compag_2024_108674 crossref_primary_10_3390_rs14030442 crossref_primary_10_1109_ACCESS_2021_3106550 crossref_primary_10_1016_j_engappai_2021_104486 crossref_primary_10_1109_TGRS_2022_3161499 crossref_primary_10_3390_rs14010180 crossref_primary_10_1109_JSTARS_2022_3180159 crossref_primary_10_1109_JSTARS_2020_3034609 crossref_primary_10_1109_TPAMI_2025_3526990 crossref_primary_10_1186_s13007_024_01147_w crossref_primary_10_1166_jno_2022_3319 crossref_primary_10_1016_j_enggeo_2021_106172 crossref_primary_10_3390_s20092547 crossref_primary_10_3390_app14146153 crossref_primary_10_3390_jmse10091330 crossref_primary_10_3390_rs12122031 crossref_primary_10_3390_s20082340 crossref_primary_10_3390_rs12213607 crossref_primary_10_1109_TGRS_2020_3040273 crossref_primary_10_3389_fmars_2023_1113669 crossref_primary_10_3390_s23167027 crossref_primary_10_1109_JSTARS_2021_3049851 crossref_primary_10_1007_s44196_023_00235_4 crossref_primary_10_3390_rs13081452 crossref_primary_10_3390_s21144845 crossref_primary_10_1016_j_ecss_2022_107957 crossref_primary_10_1109_JSTARS_2022_3198577 crossref_primary_10_1177_15589250221135087 crossref_primary_10_1007_s11082_022_04458_1 crossref_primary_10_3390_rs13050871 crossref_primary_10_3390_jmse9121408 crossref_primary_10_3390_s20174938 crossref_primary_10_3390_diagnostics13020248 crossref_primary_10_3390_atmos14050771 crossref_primary_10_1109_JSTARS_2022_3206822 crossref_primary_10_3390_jmse11071272 crossref_primary_10_3390_rs13163182 crossref_primary_10_1186_s13054_023_04320_0 crossref_primary_10_1007_s41315_023_00285_z crossref_primary_10_3390_rs11070765 crossref_primary_10_3390_rs14143345 crossref_primary_10_1109_JSTARS_2022_3166897 crossref_primary_10_3390_act11100272 crossref_primary_10_3390_app12136488 crossref_primary_10_1109_JSTARS_2021_3112469 crossref_primary_10_3389_fcomp_2022_1012755 crossref_primary_10_1080_10095020_2022_2124129 crossref_primary_10_1109_JSTARS_2021_3088911 crossref_primary_10_3390_electronics13071190 crossref_primary_10_3390_rs13101995 crossref_primary_10_3390_s21175693 crossref_primary_10_3389_fpls_2024_1442968 crossref_primary_10_47134_jtsi_v1i3_2969 crossref_primary_10_3390_rs13132582 crossref_primary_10_3390_rs15112917 crossref_primary_10_3390_computation9020012 crossref_primary_10_1109_LGRS_2024_3462444 crossref_primary_10_1007_s11804_023_00367_1 crossref_primary_10_1109_ACCESS_2022_3154474 crossref_primary_10_1007_s11760_023_02677_x crossref_primary_10_1111_jfpe_14556 crossref_primary_10_3390_rs13010034 crossref_primary_10_1109_ACCESS_2020_3020363 crossref_primary_10_1109_ACCESS_2025_3548117 crossref_primary_10_4236_ojapps_2023_134045 crossref_primary_10_1007_s11082_022_04464_3 crossref_primary_10_3390_rs14112712 crossref_primary_10_1109_ACCESS_2023_3343419 crossref_primary_10_3390_rs13061184 crossref_primary_10_1007_s11432_019_2772_5 crossref_primary_10_1109_JIOT_2024_3488076 crossref_primary_10_1016_j_jksuci_2023_101863 crossref_primary_10_1109_ACCESS_2024_3362636 crossref_primary_10_32604_csse_2023_034449 crossref_primary_10_1080_01431161_2021_2008544 crossref_primary_10_1080_01431161_2020_1856965 crossref_primary_10_1109_TGRS_2023_3249349 crossref_primary_10_1038_s41598_024_61016_3 crossref_primary_10_1109_JSTARS_2025_3543531 crossref_primary_10_1109_TIM_2024_3350120 crossref_primary_10_3390_s22093370 crossref_primary_10_3390_rs14041018 crossref_primary_10_3390_rs15030629 crossref_primary_10_3390_rs12010167 crossref_primary_10_1007_s11042_022_12243_1 crossref_primary_10_1109_ACCESS_2019_2929080 crossref_primary_10_1007_s10462_023_10455_x crossref_primary_10_1109_JSYST_2022_3193951 crossref_primary_10_3390_app14125113 crossref_primary_10_1109_LGRS_2022_3161931 crossref_primary_10_3390_rs16162953 crossref_primary_10_1016_j_eswa_2021_115051 crossref_primary_10_1080_01431161_2020_1811422 crossref_primary_10_1109_ACCESS_2021_3103522 crossref_primary_10_1109_JSEN_2023_3317060 crossref_primary_10_1007_s11042_024_19782_9 crossref_primary_10_1016_j_ecoinf_2022_101584 crossref_primary_10_1017_eds_2023_30 crossref_primary_10_1117_1_JRS_18_016507 crossref_primary_10_1109_ACCESS_2020_2978880 crossref_primary_10_3390_rs13214384 crossref_primary_10_1155_2020_7025403 crossref_primary_10_3390_rs12030442 crossref_primary_10_5916_jamet_2024_48_2_81 crossref_primary_10_1109_ACCESS_2019_2930939 crossref_primary_10_1007_s11432_022_3588_0 crossref_primary_10_1007_s00500_022_07522_w crossref_primary_10_1109_TGRS_2020_2969979 crossref_primary_10_1016_j_biosystemseng_2024_09_016 crossref_primary_10_1109_TGRS_2023_3313603 crossref_primary_10_1002_ima_70034 crossref_primary_10_3390_biomedinformatics4020054 crossref_primary_10_3389_fmed_2022_955765 crossref_primary_10_3390_s20216251 crossref_primary_10_1111_exsy_13750 crossref_primary_10_32604_cmc_2023_039263 crossref_primary_10_1177_00405175241252965 crossref_primary_10_1016_j_asr_2024_06_028 crossref_primary_10_1155_2022_1272896 crossref_primary_10_1007_s00371_024_03716_5 crossref_primary_10_1016_j_patcog_2020_107787 crossref_primary_10_3390_electronics12163497 crossref_primary_10_1007_s11554_024_01580_z crossref_primary_10_3390_rs15112825 crossref_primary_10_1007_s12524_022_01491_1 crossref_primary_10_3390_rs14040906 crossref_primary_10_1002_rob_22273 crossref_primary_10_1016_j_isprsjprs_2020_05_016 crossref_primary_10_3390_rs16010130 crossref_primary_10_3390_rs16061001 crossref_primary_10_3390_rs12060989 crossref_primary_10_1016_j_nhres_2022_10_002 crossref_primary_10_3390_rs11091117 crossref_primary_10_3390_rs14174425 crossref_primary_10_1016_j_measurement_2024_115847 crossref_primary_10_1155_2022_3063965 crossref_primary_10_3390_rs15051329 crossref_primary_10_3390_rs12183035 crossref_primary_10_1109_LGRS_2020_3033988 crossref_primary_10_1109_TGRS_2022_3227260 crossref_primary_10_1117_1_OE_62_11_118101 crossref_primary_10_1007_s11554_024_01606_6 crossref_primary_10_3390_agriculture13010078 crossref_primary_10_3390_app15052625 crossref_primary_10_3390_rs14010031 crossref_primary_10_1109_MGRS_2023_3312347 crossref_primary_10_23939_acps2021_02_128 |
Cites_doi | 10.3390/rs9080860 10.1007/s12567-018-0222-8 10.1109/CVPR.2016.90 10.1109/TGRS.2008.2006504 10.1109/CVPR.2017.690 10.1109/CVPR.2017.106 10.1109/TGRS.2003.817809 10.1109/CVPR.2017.243 10.1049/ip-rsn:20045006 10.1109/7.937460 10.1080/2150704X.2018.1475770 10.1109/ICCV.2017.324 10.1007/s11432-017-9405-6 10.1007/978-3-319-46448-0_2 10.1109/RSIP.2017.7958806 10.1109/RSIP.2017.7958815 10.1038/nature14539 10.3390/rs70607695 10.1109/LGRS.2004.827462 10.1109/ACCESS.2016.2611492 10.1109/IGARSS.2016.7729017 10.1109/BIGSARDATA.2017.8124934 10.1109/TPAMI.2016.2577031 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs11050531 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_e2152ef61a484992ad012fd7002a7713 10_3390_rs11050531 |
GeographicLocations | Beijing China United States--US China Mediterranean Area |
GeographicLocations_xml | – name: China – name: Beijing China – name: United States--US – name: Mediterranean Area |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-f9d4720da158e7d88f5b8539ab3c7c40685366b99d9fd447d3a4da53449dc8a93 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:23:41 EDT 2025 Fri Jul 25 12:04:03 EDT 2025 Tue Jul 01 04:14:41 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-f9d4720da158e7d88f5b8539ab3c7c40685366b99d9fd447d3a4da53449dc8a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0088-8148 0000-0001-7700-7284 |
OpenAccessLink | https://www.proquest.com/docview/2303996070?pq-origsite=%requestingapplication% |
PQID | 2303996070 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2152ef61a484992ad012fd7002a7713 proquest_journals_2303996070 crossref_primary_10_3390_rs11050531 crossref_citationtrail_10_3390_rs11050531 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kaplan (ref_12) 2001; 37 Ren (ref_17) 2017; 39 ref_34 ref_33 ref_32 ref_31 ref_30 Juanping (ref_13) 2019; 62 ref_19 ref_18 ref_15 Ouchi (ref_11) 2004; 1 Souyris (ref_10) 2003; 41 Gill (ref_8) 2016; 4 McGuire (ref_14) 2013; 7 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_1 Huang (ref_9) 2015; 7 ref_2 ref_29 ref_28 ref_27 ref_26 Gao (ref_6) 2009; 47 Farrouki (ref_7) 2005; 152 LeCun (ref_16) 2015; 521 Wang (ref_3) 2018; 9 ref_5 ref_4 |
References_xml | – ident: ref_30 – ident: ref_5 – ident: ref_32 – ident: ref_1 doi: 10.3390/rs9080860 – ident: ref_24 – ident: ref_34 – ident: ref_4 doi: 10.1007/s12567-018-0222-8 – ident: ref_26 doi: 10.1109/CVPR.2016.90 – volume: 47 start-page: 1685 year: 2009 ident: ref_6 article-title: An adaptive and fast cfar algorithm based on automatic censoring for target detection in high-resolution sar images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2006504 – ident: ref_20 doi: 10.1109/CVPR.2017.690 – ident: ref_23 doi: 10.1109/CVPR.2017.106 – volume: 41 start-page: 2725 year: 2003 ident: ref_10 article-title: On the use of complex sar image spectral analysis for target detection: Assessment of polarimetry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.817809 – ident: ref_28 doi: 10.1109/CVPR.2017.243 – volume: 152 start-page: 43 year: 2005 ident: ref_7 article-title: Automatic censoring cfar detector based on ordered data variability for nonhomogeneous environments publication-title: IEE Proc. Radar Sonar Navig. doi: 10.1049/ip-rsn:20045006 – volume: 37 start-page: 436 year: 2001 ident: ref_12 article-title: Improved sar target detection via extended fractal features publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.937460 – volume: 9 start-page: 780 year: 2018 ident: ref_3 article-title: Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 sar images publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2018.1475770 – ident: ref_21 doi: 10.1109/ICCV.2017.324 – volume: 62 start-page: 042301 year: 2019 ident: ref_13 article-title: A coupled convolutional neural network for small and densely clustered ship detection in sar images publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-017-9405-6 – ident: ref_18 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_25 doi: 10.1109/RSIP.2017.7958806 – ident: ref_31 – ident: ref_29 – ident: ref_27 – ident: ref_2 doi: 10.1109/RSIP.2017.7958815 – volume: 7 start-page: 7 year: 2013 ident: ref_14 article-title: Target detection in synthetic aperture radar imagery: A state-of-the-art survey publication-title: J. Appl. Remote Sens. – volume: 521 start-page: 436 year: 2015 ident: ref_16 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 7 start-page: 7695 year: 2015 ident: ref_9 article-title: Automatic ship detection in sar images using multi-scale heterogeneities and an a contrario decision publication-title: Remote Sens. doi: 10.3390/rs70607695 – ident: ref_15 – volume: 1 start-page: 184 year: 2004 ident: ref_11 article-title: Ship detection based on coherence images derived from cross correlation of multilook sar images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2004.827462 – ident: ref_19 – volume: 4 start-page: 6014 year: 2016 ident: ref_8 article-title: Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2611492 – ident: ref_33 doi: 10.1109/IGARSS.2016.7729017 – ident: ref_22 doi: 10.1109/BIGSARDATA.2017.8124934 – volume: 39 start-page: 1137 year: 2017 ident: ref_17 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 |
SSID | ssj0000331904 |
Score | 2.6142266 |
Snippet | Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 531 |
SubjectTerms | Accuracy Clutter Datasets Deep learning False alarms Feature extraction feature pyramid networks focal loss Gaofen-3 imagery Image detection International conferences Machine learning Mathematical models Methods Neural networks Pattern recognition Radar imaging Remote sensing Robustness Satellite constellations Satellite imagery Satellite observation Satellites Sensors Shape recognition ship detection Ships Small satellites Statistical analysis Statistical models Surveillance radar Synthetic aperture radar Weather |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kF72In1itsqAXD6FJdpJNjq1aq2AP1kJvYb9CBU1Lmx76753dpFVR8OItCQsJM7Pz5oXZN4RcIeKFcQTgBTLIkaBA4knJwFMaEzJXIsmd4s3TIO6P4HEcjb-M-rI9YZU8cGW4trGDV00eBwISrM5DoTGl5prjThacu3m1IWLeFzLlcjDD0PKh0iNlyOvb8wUCXWRD7hsCOaH-H3nYgUtvj-zWVSHtVF-zT7ZMcUC26wHlk9UhGXaW5dSpq9Lh5HVGb03peqgK2kUY0hQvnu3hZTEwJXVtANQdrfXs7_kquOi9mOam8Bh9eLfCFasjMurdvdz0vXoegqdYHJRenmrgoa9FECWG6yTJI4lomwrJFFeIzHgTxzJNdZprAK6ZAC0iBpBqlYiUHZNGMS3MCaEKIBIJUjEJAoyW0tYd-MQ3DPlRoJrkem2jTNVi4XZmxVuGpMHaM_u0Z5NcbtbOKomMX1d1rak3K6ystXuAzs5qZ2d_ObtJWmtHZfVeW2RIopjVmOH-6X-844zsYFGUVn1mLdIo50tzjoVHKS9cjH0AYYLSwA priority: 102 providerName: Directory of Open Access Journals |
Title | Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery |
URI | https://www.proquest.com/docview/2303996070 https://doaj.org/article/e2152ef61a484992ad012fd7002a7713 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB3R5AAXRPkQgTZaCS4cVrWzY3t9QgltWhCNUEOl3qz9MkVq7ZC4h_57ZtebVAjEzV7vaXZ23rz17BuA94R4kzxD5KlOayIoKLnWArmxFJALo2QdFG_OF_nZJX65yq7igdsmllVuY2II1LY1_oz8iFJl4ZVEiuTj6hf3XaP839XYQmMPhhSCpRzAcHay-HaxO2VJBLlYgr0uqSB-f7TeEOBl3vX-QKIg2P9XPA4gM38GT2N2yKb9cu7DI9c8h8exUfn1_QtYTu-6NqissuX1zxU7dl2opWrYjODIMnq48JeY1cJ1LJQDsHDFlvtj-t7J2Klqa9dwwT7fegGL-5dwOT_5_umMx74I3Ig87XhdWiwmiVVpJl1hpawzTahbKi1MYQih6SXPdVnasraIhRUKrcoEYmmNVKV4BYOmbdxrYAYxU5IomUaFzmrt8w8aSZwgnpSaEXzY2qgyUTTc9664qYg8eHtWD_Ycwbvd3FUvlfHPWTNv6t0ML28dBtr1jyrulsr5bruuzlOFkijZRFnC0doWFL5VQbR6BAfbharinttUDx7y5v-f38ITSnvKvpLsAAbd-s4dUmrR6THsyfnpGIbT4_Ovy3H0pnEg6r8BcQfQMw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VAuqNBWLC1gqXDowWoST14HhFrKdpe2e-hD6i34FYoEybKbCu2f4jcydpKtUCtuvSW2T-PxfDP2zDcA7wjxoiRG5KEKSwpQMONKCeTakEFOtcxKz3hzNklGV_jlOr5egT99LYxLq-xtojfUptbujnyfXGXhmETS4OP0F3ddo9zrat9Co1WLE7v4TSHb_MP4iPb3fRQNP19-GvGuqwDXIgkbXuYG0ygwMowzm5osK2NFmJVLJXSqCd_oJ0lUnpu8NIipERKNjAVibnQmHfkSmfwnKAjJXWX68Hh5pxMIUugAWxZUmg_2Z3OC19gp-j-459sD3LP-HtKG6_Cs80XZQas8z2HFVi9grWuLfrPYgIuD26b2nK7s4ub7lB3ZxmduVeyQwM8w-jh3JdNyYhvmkw-YL-jl7lGgVWl2LOvSVlyw8U9Hl7HYhKtHkdcWrFZ1ZV8C04ixzCgAVCjRGqWct0MjgRUUlYV6AHu9jArdUZS7Thk_CgpVnDyLO3kOYHe5dtoSczy46tCJernCkWn7gXr2rejOZmFdb19bJqHEjALASBpC7dKkBBYypSB-ADv9RhXdCZ8Xd_r46v_Tb2FtdHl2WpyOJyfb8JQcrrzNYduB1WZ2a1-TU9OoN16TGHx9bNX9C00fCAk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwm4IJ5iaQFLwIGDtUnsxMkBoS7bpUthVbVU6i342SLRZNlNhfav8esYO8lWCMSttzx8Gn-eb8YefwPwChkvyVLOaaxihwkKz6lSjFNt0CELLXMXFG8-z7ODU_7xLD3bgl_9XRhfVtn7xOCoTa39HvkIQ2XmlURENHJdWcTRZPpu8YP6DlL-pLVvp9FC5NCuf2L6tno7m-Bcv06S6f6X9we06zBANcvihrrCcJFERsZpboXJc5cq5K9CKqaFRq7DlyxTRWEKZzgXhkluZMo4L4zOpRdiQve_LXxWNIDt8f786HizwxMxhHfEW01UxopotFwh2aYe9n-wYGgW8BcXBIKb3oO7XWRK9loo3YctWz2A212T9Iv1QzjZu2rqoPBKTi6-LcjENqGOqyJjpEJD8OHYX6CWc9uQUIpAwvVe6o8IWoCTD7J2tqKMzC69eMb6EZzeiMUew6CqK_sEiOY8lTmmg4pLbo1SPvbBL5FlmKPFeghvehuVuhMs930zvpeYuHh7ltf2HMLLzdhFK9Pxz1Fjb-rNCC-tHT7Uy_OyW6ml9Z1-rctiyXNMBxNpkMOdEUgdUmBKP4TdfqLKbr2vymt0Pv3_7xdwC2FbfprND3fgDkZfRVvQtguDZnlln2GE06jnHZQIfL1p9P4G8BQNmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Ship+Detection+Based+on+RetinaNet+Using+Multi-Resolution+Gaofen-3+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yuanyuan&rft.au=Wang%2C+Chao&rft.au=Zhang%2C+Hong&rft.au=Dong%2C+Yingbo&rft.date=2019-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=5&rft_id=info:doi/10.3390%2Frs11050531&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |