Solving stochastic differential equations on Homeo( S1)
The Brownian motion with respect to the metric H 3/2 on Diff( S 1) has been constructed. It is realized on the group of homeomorphisms Homeo( S 1). In this work, we shall resolve the stochastic differential equations on Homeo( S 1) for a given drift Z.
Saved in:
Published in | Journal of functional analysis Vol. 216; no. 1; pp. 22 - 46 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Brownian motion with respect to the metric
H
3/2 on Diff(
S
1) has been constructed. It is realized on the group of homeomorphisms Homeo(
S
1). In this work, we shall resolve the stochastic differential equations on Homeo(
S
1) for a given drift
Z. |
---|---|
AbstractList | The Brownian motion with respect to the metric
H
3/2 on Diff(
S
1) has been constructed. It is realized on the group of homeomorphisms Homeo(
S
1). In this work, we shall resolve the stochastic differential equations on Homeo(
S
1) for a given drift
Z. |
Author | Fang, Shizan |
Author_xml | – sequence: 1 givenname: Shizan surname: Fang fullname: Fang, Shizan email: fang@u-bourgogne.fr organization: I.M.B, Université de Bourgogne, 9, Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France |
BookMark | eNp9z71OwzAUhmELFYm0cAFsGWFIOLZrJxETqihFqsRQmC3_gqPUBjtU4u5JVWamM71H3zNHsxCDRegaQ40B87u-7p2sCQCtoasBmjNUYOh4BU1LZ6gAIKTChPILNM-5B8CYL1mBml0cDj68l3mM-kPm0evSeOdssmH0cijt17ccfQy5jKHcxL2NN-UO316icyeHbK_-7gK9rR9fV5tq-_L0vHrYVppyPFaudYQqJqmSkjijqOyYwUopYjujlGEaNGdSYmjIUreOt4qztmVESdowo-kC4dNfnWLOyTrxmfxeph-BQRzloheTXBzlAjoxyafm_tTYadjB2ySy9jZoa3yyehQm-n_qX5kRYyA |
CitedBy_id | crossref_primary_10_1007_s11537_008_0752_5 crossref_primary_10_1080_17442508_2017_1357723 crossref_primary_10_1080_17442508_2014_995659 crossref_primary_10_1016_j_jfa_2007_08_002 crossref_primary_10_1007_s00220_007_0306_3 crossref_primary_10_1214_08_AOP430 |
Cites_doi | 10.1016/S0022-1236(02)00011-3 10.1007/978-3-642-15074-6 10.1007/BF01198791 10.1016/S0764-4442(00)88575-4 10.1016/0393-0440(88)90029-0 10.1103/PhysRevLett.58.535 10.1007/978-1-4757-0295-8 10.1016/j.crma.2003.10.008 10.1006/jfan.2002.3922 |
ContentType | Journal Article |
Copyright | 2003 Elsevier Inc. |
Copyright_xml | – notice: 2003 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jfa.2003.09.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0783 |
EndPage | 46 |
ExternalDocumentID | 10_1016_j_jfa_2003_09_007 S0022123603003495 |
GroupedDBID | --K --M --Z -ET -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 WUQ XOL XPP YQT ZCG ZMT ZU3 ZY4 ~G- 0SF AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c361t-f8f23b5a3baa2fdb3a95d1bbb2e9dbbd5c0c65aa10724c8f68b658852ba375dc3 |
IEDL.DBID | IXB |
ISSN | 0022-1236 |
IngestDate | Thu Sep 26 16:29:27 EDT 2024 Fri Feb 23 02:23:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Girsanov transform Flow of homeomorphisms Canonical Brownian motion Martingale problem |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-f8f23b5a3baa2fdb3a95d1bbb2e9dbbd5c0c65aa10724c8f68b658852ba375dc3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022123603003495 |
PageCount | 25 |
ParticipantIDs | crossref_primary_10_1016_j_jfa_2003_09_007 elsevier_sciencedirect_doi_10_1016_j_jfa_2003_09_007 |
PublicationCentury | 2000 |
PublicationDate | 2004-11-01 |
PublicationDateYYYYMMDD | 2004-11-01 |
PublicationDate_xml | – month: 11 year: 2004 text: 2004-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Journal of functional analysis |
PublicationYear | 2004 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Malliavin (BIBMA2) 1999; t.329 G.H. Hardy, W.W. Rogosinski, Fourier Series, Cambridge tracts, in: Mathematics and Mathematical Physics, No. 38, Cambridge University Press, Cambridge, UK, 1950. Gelfand, Fuks (BIBGF) 1968; 2 J. Mickelsson, Current Algebras and Groups, Plenum Monographs in Nonlinear Physics, Plenum Press, New York, 1989. Fang (BIBFA) 2002; 196 Z.Y. Huang, Foundation of Stochastic Analysis, Wuhan University Press, Wuhan, China, 1988 (in Chinese). Kunita (BIBKU) 1988 Albeverio, Röckner (BIBALR) 1991; 89 P. Malliavin, Stochastic Analysis, Grunlehren des Math., Vol. 313, Springer, Berlin, 1997. Baxendale (BIBBA) 1984; 53 Ikeda, Watanabe (BIBIW) 1981 Kirillov, Yuriev (BIBKY) 1988; 5 Airault, Ren (BIBAR) 2002; 196 Elworthy (BIBEL) 1992 Da Prato, Zabczyk (BIBDPZ) 1992 S. Fang, T. Zhang, Stochastic differential equations with non-Lipschitzian coefficients: pathwise uniqueness and non explosion, C.R. Acad. Paris, to appear. Bowick, Rajeev (BIBBR) 1987; 58 Airault (10.1016/j.jfa.2003.09.007_BIBAR) 2002; 196 Fang (10.1016/j.jfa.2003.09.007_BIBFA) 2002; 196 Gelfand (10.1016/j.jfa.2003.09.007_BIBGF) 1968; 2 10.1016/j.jfa.2003.09.007_BIBHR Elworthy (10.1016/j.jfa.2003.09.007_BIBEL) 1992 10.1016/j.jfa.2003.09.007_BIBHU Bowick (10.1016/j.jfa.2003.09.007_BIBBR) 1987; 58 Malliavin (10.1016/j.jfa.2003.09.007_BIBMA2) 1999; t.329 Da Prato (10.1016/j.jfa.2003.09.007_BIBDPZ) 1992 10.1016/j.jfa.2003.09.007_BIBFZ Kirillov (10.1016/j.jfa.2003.09.007_BIBKY) 1988; 5 Kunita (10.1016/j.jfa.2003.09.007_BIBKU) 1988 Baxendale (10.1016/j.jfa.2003.09.007_BIBBA) 1984; 53 Ikeda (10.1016/j.jfa.2003.09.007_BIBIW) 1981 Albeverio (10.1016/j.jfa.2003.09.007_BIBALR) 1991; 89 10.1016/j.jfa.2003.09.007_BIBMA1 10.1016/j.jfa.2003.09.007_BIBMI |
References_xml | – year: 1981 ident: BIBIW article-title: Stochastic Differential Equations and Diffusion Processes contributor: fullname: Watanabe – volume: 89 start-page: 347 year: 1991 end-page: 386 ident: BIBALR article-title: Stochastic differential equations in infinite dimensions publication-title: Probab. Theory Related Fields contributor: fullname: Röckner – volume: 196 start-page: 395 year: 2002 end-page: 426 ident: BIBAR article-title: Modulus of continuity of the canonic Brownian motion “on the group of diffeomorphisms of the circle” publication-title: J. Funct. Anal. contributor: fullname: Ren – volume: 196 start-page: 162 year: 2002 end-page: 179 ident: BIBFA article-title: Canonical Brownian motion on the diffeomorphism group of the circle publication-title: J. Funct. Anal. contributor: fullname: Fang – volume: 53 start-page: 19 year: 1984 end-page: 50 ident: BIBBA article-title: Brownian motions in diffeomorphism group I publication-title: Compositio Math. contributor: fullname: Baxendale – year: 1988 ident: BIBKU article-title: Stochastic Flows contributor: fullname: Kunita – year: 1992 ident: BIBDPZ publication-title: Stochatic Equations in Infinite Dimensions contributor: fullname: Zabczyk – volume: 58 start-page: 535 year: 1987 end-page: 538 ident: BIBBR article-title: String theory as the Kähler geometry of loop spaces publication-title: Phys. Rev. Lett. contributor: fullname: Rajeev – volume: 2 start-page: 92 year: 1968 end-page: 93 ident: BIBGF article-title: Cohomology of the Lie algebra of vector fields on the circle publication-title: Funct. Anal. Appl. contributor: fullname: Fuks – volume: 5 start-page: 351 year: 1988 end-page: 363 ident: BIBKY article-title: Representations of Virasoro algebra by the orbit method publication-title: J. Geom. Phys. contributor: fullname: Yuriev – year: 1992 ident: BIBEL article-title: Stochastic flows on Riemannian manifolds publication-title: Diffusion Processes and Related Problems in Analysis contributor: fullname: Elworthy – volume: t.329 start-page: 325 year: 1999 end-page: 329 ident: BIBMA2 article-title: The canonic diffusion above the diffeomorphism group of the circle publication-title: C.R. Acad. Sci. Paris contributor: fullname: Malliavin – volume: 196 start-page: 395 year: 2002 ident: 10.1016/j.jfa.2003.09.007_BIBAR article-title: Modulus of continuity of the canonic Brownian motion “on the group of diffeomorphisms of the circle” publication-title: J. Funct. Anal. doi: 10.1016/S0022-1236(02)00011-3 contributor: fullname: Airault – year: 1992 ident: 10.1016/j.jfa.2003.09.007_BIBEL article-title: Stochastic flows on Riemannian manifolds contributor: fullname: Elworthy – year: 1988 ident: 10.1016/j.jfa.2003.09.007_BIBKU contributor: fullname: Kunita – ident: 10.1016/j.jfa.2003.09.007_BIBMA1 doi: 10.1007/978-3-642-15074-6 – volume: 89 start-page: 347 year: 1991 ident: 10.1016/j.jfa.2003.09.007_BIBALR article-title: Stochastic differential equations in infinite dimensions publication-title: Probab. Theory Related Fields doi: 10.1007/BF01198791 contributor: fullname: Albeverio – year: 1992 ident: 10.1016/j.jfa.2003.09.007_BIBDPZ contributor: fullname: Da Prato – ident: 10.1016/j.jfa.2003.09.007_BIBHU – volume: t.329 start-page: 325 year: 1999 ident: 10.1016/j.jfa.2003.09.007_BIBMA2 article-title: The canonic diffusion above the diffeomorphism group of the circle publication-title: C.R. Acad. Sci. Paris doi: 10.1016/S0764-4442(00)88575-4 contributor: fullname: Malliavin – ident: 10.1016/j.jfa.2003.09.007_BIBHR – year: 1981 ident: 10.1016/j.jfa.2003.09.007_BIBIW contributor: fullname: Ikeda – volume: 5 start-page: 351 year: 1988 ident: 10.1016/j.jfa.2003.09.007_BIBKY article-title: Representations of Virasoro algebra by the orbit method publication-title: J. Geom. Phys. doi: 10.1016/0393-0440(88)90029-0 contributor: fullname: Kirillov – volume: 58 start-page: 535 year: 1987 ident: 10.1016/j.jfa.2003.09.007_BIBBR article-title: String theory as the Kähler geometry of loop spaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.535 contributor: fullname: Bowick – volume: 2 start-page: 92 year: 1968 ident: 10.1016/j.jfa.2003.09.007_BIBGF article-title: Cohomology of the Lie algebra of vector fields on the circle publication-title: Funct. Anal. Appl. contributor: fullname: Gelfand – ident: 10.1016/j.jfa.2003.09.007_BIBMI doi: 10.1007/978-1-4757-0295-8 – ident: 10.1016/j.jfa.2003.09.007_BIBFZ doi: 10.1016/j.crma.2003.10.008 – volume: 53 start-page: 19 year: 1984 ident: 10.1016/j.jfa.2003.09.007_BIBBA article-title: Brownian motions in diffeomorphism group I publication-title: Compositio Math. contributor: fullname: Baxendale – volume: 196 start-page: 162 year: 2002 ident: 10.1016/j.jfa.2003.09.007_BIBFA article-title: Canonical Brownian motion on the diffeomorphism group of the circle publication-title: J. Funct. Anal. doi: 10.1006/jfan.2002.3922 contributor: fullname: Fang |
SSID | ssj0011645 |
Score | 1.7678645 |
Snippet | The Brownian motion with respect to the metric
H
3/2 on Diff(
S
1) has been constructed. It is realized on the group of homeomorphisms Homeo(
S
1). In this... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 22 |
SubjectTerms | Canonical Brownian motion Flow of homeomorphisms Girsanov transform Martingale problem |
Title | Solving stochastic differential equations on Homeo( S1) |
URI | https://dx.doi.org/10.1016/j.jfa.2003.09.007 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9zXvQgPnE-Rg4eVKi2eXTtcRuO6R6Ic7JbSdIEN0Y73bz6t5uvj6GgF0-B0kD5Nfkeyff9fghdME6Uy6hwAiq1wzxPOoGIoWbKV4JxIUIBzcmDod8ds4cJn1RQu-yFgbLKwvbnNj2z1sWT2wLN28V0Cj2-BOyub5cpkKxAozm13hma-Cat9U2CTQd4yRgOb5c3m1mN18xk1EM0ozoFRdnffNM3f9PZRTtFoIib-bfsoYpO9tH2YM2yujxAjVE6h_MAbAM49SqAcRmXgid2486xfsuJvJc4TTAIoqeXeORdHaJx5-653XUKIQRHUd9bOSYwhEouqBSCmFhSEfLYk1ISHcZSxly5yre42lSOMBUYP5A2sAg4kYI2eKzoEaomaaKPEeahMKGJDWOSMaPDwNiUwmXGEKUkp7qGrksIokXOdxGVhWCzyOIFupU0csPI4lVDrAQp-vHTImuP_5528r9pp2grZ1mE848zVF29f-hzGxGsZB1t3Hx6dbTZbL30-jC2n_qPMN73usN6tiC-AFYQuXY |
link.rule.ids | 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw8cACmi8ZImx1JRFbpc2qLeLNuxRasqKbT8P3aWCiS4cI00UvTiPL-xZ94A3FCGVYMS4YVEao_6vvRCEbuaqUAJyoSIhGtOHgyD7oS-TNm0Au2yF8aVVRbcn3N6xtbFk4cCzYflbOZ6fLHj3cAuU2eywragZtVA02Zgtdbja6-_uUywGQErTcNdQHm5mZV5zU3mPkQyt1M3VPa37enbltPZh71CK6JW_joHUNHJIewONkarqyNojtKFOxJAVsOpN-FMl1E588T-uwuk33Mv7xVKE-Rmoqe3aOTfHcOk8zRud71iFoKnSOCvPRMaTCQTRAqBTSyJiFjsSymxjmIpY6YaKrDQ2mwOUxWaIJRWW4QMS0GaLFbkBKpJmuhTQCwSJjKxoVRSanQUGptVNKgxWCnJiK7DfQkBX-aWF7ysBZtzi5cbXUl4I-IWrzrQEiT-47txS8l_h539L-watrvjQZ_3n4e9c9jJTRfdccgFVNcfn_rSCoS1vCoWwBf8tbgK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+stochastic+differential+equations+on+Homeo%28S1%29&rft.jtitle=Journal+of+functional+analysis&rft.au=Fang%2C+Shizan&rft.date=2004-11-01&rft.issn=0022-1236&rft.volume=216&rft.issue=1&rft.spage=22&rft.epage=46&rft_id=info:doi/10.1016%2Fj.jfa.2003.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2003_09_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon |