Ensemble Surrogate Models for Fast LIB Performance Predictions
Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models are among the most popular electrochemical models capable of predicting battery performance and therefore guiding cell cha...
Saved in:
Published in | Energies (Basel) Vol. 14; no. 14; p. 4115 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models are among the most popular electrochemical models capable of predicting battery performance and therefore guiding cell characterization. On the other hand, empirical models obtained, for example, by Machine Learning (ML) methods represent a simpler and computationally more efficient complement to electrochemical models and have been widely used for Battery Management System (BMS) control purposes. This article proposes ML-based ensemble models to be used for the estimation of the performance of an LIB cell across a wide range of input material characteristics and parameters and evaluates 1. Deep Learning ensembles for simulation convergence classification and 2. structured regressors for battery energy and power predictions. The results represent an improvement on state-of-the-art LIB surrogate models and indicate that deep ensembles represent a promising direction for battery modeling and design. |
---|---|
AbstractList | Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models are among the most popular electrochemical models capable of predicting battery performance and therefore guiding cell characterization. On the other hand, empirical models obtained, for example, by Machine Learning (ML) methods represent a simpler and computationally more efficient complement to electrochemical models and have been widely used for Battery Management System (BMS) control purposes. This article proposes ML-based ensemble models to be used for the estimation of the performance of an LIB cell across a wide range of input material characteristics and parameters and evaluates 1. Deep Learning ensembles for simulation convergence classification and 2. structured regressors for battery energy and power predictions. The results represent an improvement on state-of-the-art LIB surrogate models and indicate that deep ensembles represent a promising direction for battery modeling and design. |
Author | Quartulli, Marco Olaizola, Igor G. Cereijo, Pablo Gil, Amaia Florez-Tapia, Ane Miren Ayerbe, Elixabete |
Author_xml | – sequence: 1 givenname: Marco orcidid: 0000-0001-5735-2072 surname: Quartulli fullname: Quartulli, Marco – sequence: 2 givenname: Amaia surname: Gil fullname: Gil, Amaia – sequence: 3 givenname: Ane Miren surname: Florez-Tapia fullname: Florez-Tapia, Ane Miren – sequence: 4 givenname: Pablo orcidid: 0000-0003-3436-4438 surname: Cereijo fullname: Cereijo, Pablo – sequence: 5 givenname: Elixabete orcidid: 0000-0003-4092-2088 surname: Ayerbe fullname: Ayerbe, Elixabete – sequence: 6 givenname: Igor G. orcidid: 0000-0002-9965-2038 surname: Olaizola fullname: Olaizola, Igor G. |
BookMark | eNptUE1Lw0AQXaSC9ePiLwh4E6I72Y9sLoKWVgsVBfW8TDYTSUmzdTc9-O9NraKIc5kP3nu8N4ds1PmOGDsFfiFEwS-pAwlSAqg9Noai0CnwXIx-zQfsJMYlH0oIEEKM2dW0i7QqW0qeNiH4V-wpufcVtTGpfUhmGPtkMb9JHikM-wo7R8ljoKpxfeO7eMz2a2wjnXz1I_Yymz5P7tLFw-18cr1IndDQp3VeGESOIIwEXoEgqDRpjQJNljmuwei6yEqlJWRSVFKpqhyiuFzVSmQgjth8p1t5XNp1aFYY3q3Hxn4efHi1GPrGtWSBdF0pUxoOThI6dKWWRHmZ5SWZcqt1ttNaB_-2odjbpd-EbrBvM6Wk4sqYfEDxHcoFH2Og2rqmx23oPmDTWuB2-3T78_SBcv6H8m30H_AHd-WBOQ |
CitedBy_id | crossref_primary_10_1149_1945_7111_ad4a11 crossref_primary_10_1016_j_est_2023_108033 crossref_primary_10_3390_batteries10090336 crossref_primary_10_1002_aenm_202102785 crossref_primary_10_1002_batt_202300046 crossref_primary_10_1016_j_egyr_2023_08_069 crossref_primary_10_1002_aenm_202102696 crossref_primary_10_1016_j_renene_2023_119086 crossref_primary_10_1002_est2_70146 crossref_primary_10_1002_aenm_202102904 crossref_primary_10_1039_D1ME00150G |
Cites_doi | 10.1109/TTE.2019.2944802 10.1016/B978-0-08-101128-7.00011-3 10.1016/j.jpowsour.2016.07.036 10.1109/TIE.2017.2782224 10.1149/1.1409397 10.1007/s10994-021-05946-3 10.1016/j.jpowsour.2016.03.054 10.1149/1.1836921 10.4271/680453 10.1109/TMECH.2020.3049046 10.1007/s00158-018-1971-x 10.1145/2939672.2939785 10.1007/978-0-387-21606-5 10.1080/0305215X.2012.687731 10.1016/j.jpowsour.2018.05.040 10.1149/1.2817888 10.1007/s11222-009-9153-8 10.1016/S0167-9473(01)00065-2 10.1149/1.2221597 10.1017/S0269888997000015 10.1149/1.3515880 10.1149/1.2113792 10.1016/j.jpowsour.2015.07.019 10.1016/B978-1-55860-247-2.50035-8 10.1002/widm.1249 10.1109/TIE.2020.2973876 10.1007/s10898-016-0407-7 10.1109/TII.2019.2941747 10.1016/j.electacta.2021.137829 10.1023/A:1012771025575 10.1016/j.jpowsour.2006.03.050 10.1016/j.enconman.2007.03.015 10.1093/mnras/staa713 10.1016/j.enbuild.2017.04.069 10.1016/j.jpowsour.2014.11.066 10.1016/j.jpowsour.2016.03.042 10.1016/j.jpowsour.2014.01.057 10.1007/978-3-319-99229-7_36 10.1016/j.jpowsour.2005.05.070 10.1016/j.jpowsour.2011.09.034 10.1016/j.electacta.2018.12.167 10.1016/j.paerosci.2008.11.001 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en14144115 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_1e6fd58b801c4eacacb64ee7b27be8b1 10_3390_en14144115 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-f798aa0a138410d13e1d6e66a3a822c06186f92b5641243d455db144c75f53213 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 00:52:34 EDT 2025 Mon Jun 30 07:36:43 EDT 2025 Tue Jul 01 01:18:10 EDT 2025 Thu Apr 24 23:09:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-f798aa0a138410d13e1d6e66a3a822c06186f92b5641243d455db144c75f53213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4092-2088 0000-0002-9965-2038 0000-0001-5735-2072 0000-0003-3436-4438 |
OpenAccessLink | https://www.proquest.com/docview/2554505887?pq-origsite=%requestingapplication% |
PQID | 2554505887 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e6fd58b801c4eacacb64ee7b27be8b1 proquest_journals_2554505887 crossref_citationtrail_10_3390_en14144115 crossref_primary_10_3390_en14144115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bandhauer (ref_9) 2011; 158 Geng (ref_20) 2021; 372 ref_50 Wang (ref_18) 2016; 315 Breslow (ref_41) 1997; 12 Bernardi (ref_8) 1985; 132 ref_10 Lydia (ref_47) 2019; 6 ref_51 Smith (ref_14) 2007; 48 Kumaresan (ref_4) 2007; 155 Dao (ref_13) 2012; 198 Majdabadi (ref_12) 2015; 275 Waegeman (ref_52) 2021; 110 Santhanagopalan (ref_7) 2006; 156 Graves (ref_31) 2011; 24 Krityakierne (ref_26) 2016; 66 Subramanian (ref_11) 2001; 148 Jones (ref_22) 2001; 21 Fushiki (ref_35) 2011; 21 Jokar (ref_15) 2016; 327 Smith (ref_36) 2006; 161 Wei (ref_19) 2017; 65 ref_29 Liu (ref_28) 2019; 5 Doyle (ref_5) 1993; 140 Regis (ref_25) 2013; 45 Liu (ref_27) 2019; 16 ref_34 Bizeray (ref_2) 2015; 296 ref_32 ref_30 Doyle (ref_3) 1996; 143 ref_39 ref_38 Friedman (ref_48) 2002; 38 Zhang (ref_24) 2018; 58 Sagi (ref_37) 2018; 8 ref_46 ref_45 ref_44 ref_43 Li (ref_21) 2019; 299 ref_42 ref_40 Wu (ref_1) 2018; 395 Seaman (ref_17) 2014; 256 Forrester (ref_23) 2009; 45 Ascione (ref_33) 2017; 146 ref_49 Nejad (ref_16) 2016; 316 ref_6 |
References_xml | – volume: 6 start-page: 566 year: 2019 ident: ref_47 article-title: Adagrad—An optimizer for stochastic gradient descent publication-title: Int. J. Inf. Comput. Sci. – volume: 5 start-page: 1225 year: 2019 ident: ref_28 article-title: Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2019.2944802 – ident: ref_32 doi: 10.1016/B978-0-08-101128-7.00011-3 – ident: ref_39 – volume: 327 start-page: 44 year: 2016 ident: ref_15 article-title: Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.07.036 – volume: 65 start-page: 5634 year: 2017 ident: ref_19 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2782224 – volume: 148 start-page: E444 year: 2001 ident: ref_11 article-title: Approximate solutions for galvanostatic discharge of spherical particles i. constant diffusion coefficient publication-title: J. Electrochem. Soc. doi: 10.1149/1.1409397 – volume: 110 start-page: 457 year: 2021 ident: ref_52 article-title: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods publication-title: Mach. Learn. doi: 10.1007/s10994-021-05946-3 – volume: 315 start-page: 199 year: 2016 ident: ref_18 article-title: Probability based remaining capacity estimation using data-driven and neural network model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.054 – volume: 143 start-page: 1890 year: 1996 ident: ref_3 article-title: Comparison of modeling predictions with experimental data from plastic lithium ion cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836921 – ident: ref_34 doi: 10.4271/680453 – ident: ref_50 doi: 10.1109/TMECH.2020.3049046 – volume: 58 start-page: 1431 year: 2018 ident: ref_24 article-title: Variable-fidelity expected improvement method for efficient global optimization of expensive functions publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1971-x – ident: ref_44 doi: 10.1145/2939672.2939785 – ident: ref_10 – ident: ref_43 doi: 10.1007/978-0-387-21606-5 – volume: 45 start-page: 529 year: 2013 ident: ref_25 article-title: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2012.687731 – ident: ref_38 – ident: ref_45 – volume: 395 start-page: 128 year: 2018 ident: ref_1 article-title: Application of artificial neural networks in design of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.05.040 – volume: 155 start-page: A164 year: 2007 ident: ref_4 article-title: Thermal model for a Li-ion cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2817888 – volume: 21 start-page: 137 year: 2011 ident: ref_35 article-title: Estimation of prediction error by using K-fold cross-validation publication-title: Stat. Comput. doi: 10.1007/s11222-009-9153-8 – volume: 38 start-page: 367 year: 2002 ident: ref_48 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – ident: ref_30 – volume: 140 start-page: 1526 year: 1993 ident: ref_5 article-title: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2221597 – volume: 12 start-page: 1 year: 1997 ident: ref_41 article-title: Simplifying decision trees: A survey publication-title: Knowl. Eng. Rev. doi: 10.1017/S0269888997000015 – volume: 158 start-page: R1 year: 2011 ident: ref_9 article-title: A critical review of thermal issues in lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.3515880 – volume: 132 start-page: 5 year: 1985 ident: ref_8 article-title: A general energy balance for battery systems publication-title: J. Electrochem. Soc. doi: 10.1149/1.2113792 – volume: 296 start-page: 400 year: 2015 ident: ref_2 article-title: Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.07.019 – ident: ref_40 – ident: ref_42 doi: 10.1016/B978-1-55860-247-2.50035-8 – volume: 8 start-page: e1249 year: 2018 ident: ref_37 article-title: Ensemble learning: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 – ident: ref_29 doi: 10.1109/TIE.2020.2973876 – volume: 66 start-page: 417 year: 2016 ident: ref_26 article-title: SOP: Parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems publication-title: J. Glob. Optim. doi: 10.1007/s10898-016-0407-7 – volume: 24 start-page: 2348 year: 2011 ident: ref_31 article-title: Practical variational inference for neural networks publication-title: Advances in Neural Information Processing Systems – ident: ref_6 – volume: 16 start-page: 3767 year: 2019 ident: ref_27 article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2941747 – volume: 372 start-page: 137829 year: 2021 ident: ref_20 article-title: Bridging physics-based and equivalent circuit models for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.137829 – volume: 21 start-page: 345 year: 2001 ident: ref_22 article-title: A taxonomy of global optimization methods based on response surfaces publication-title: J. Glob. Optim. doi: 10.1023/A:1012771025575 – volume: 161 start-page: 628 year: 2006 ident: ref_36 article-title: Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.03.050 – volume: 48 start-page: 2565 year: 2007 ident: ref_14 article-title: Control oriented 1D electrochemical model of lithium ion battery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.03.015 – ident: ref_46 – ident: ref_49 doi: 10.1093/mnras/staa713 – volume: 146 start-page: 200 year: 2017 ident: ref_33 article-title: CASA, cost-optimal analysis by multi-objective optimisation and artificial neural networks: A new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.04.069 – volume: 275 start-page: 633 year: 2015 ident: ref_12 article-title: Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.066 – volume: 316 start-page: 183 year: 2016 ident: ref_16 article-title: A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.042 – volume: 256 start-page: 410 year: 2014 ident: ref_17 article-title: A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.057 – ident: ref_51 doi: 10.1007/978-3-319-99229-7_36 – volume: 156 start-page: 620 year: 2006 ident: ref_7 article-title: Review of models for predicting the cycling performance of lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.05.070 – volume: 198 start-page: 329 year: 2012 ident: ref_13 article-title: Simplification and order reduction of lithium-ion battery model based on porous-electrode theory publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.09.034 – volume: 299 start-page: 451 year: 2019 ident: ref_21 article-title: A physics-based distributed-parameter equivalent circuit model for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.167 – volume: 45 start-page: 50 year: 2009 ident: ref_23 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.11.001 |
SSID | ssj0000331333 |
Score | 2.3259313 |
Snippet | Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4115 |
SubjectTerms | Accuracy Approximation Control algorithms deep learning ensembles Design optimization Electrodes Electrolytes Li-ion battery Machine learning Neural networks Partial differential equations Performance evaluation Physics Research methodology Simulation surrogate modeling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xWWdCLh9Bu9pVcBCstVVQKWugt7Cazpxolbf-_s5v0AQpevIaBJDO7M_Mls99HyE2qMeeZ1EUq0RAJltjIYqWJrE4NaJ5oF45Hv7yq0UQ8TeV0S-rLz4TV9MC147oMlCtkYjGT5gKzhMmtEgDaxtpCYgPwwZq3BaZCDuYcwRev-Ug54voulEx48OD1b7cqUCDq_5GHQ3EZHpD9piuk9_XTHJIdKI_I3hZX4DG5G5Rz-LAzoG_Lqvr0X7-oFzKbzSn2nXRo5gv6_Nin481JADqu_G-YsLJOyGQ4eH8YRY34QZRzxRaR02liTM8wngjWKxgHVihQynCDNT3veZ57l8ZWKq8fzQshZWHxBXMtneQx46ekVX6WcEYoFJo7RFaF0F70W9ocmwznABzEXPKiTW5XDsnyhhncC1TMMkQI3nnZxnltcr22_ar5MH616nu_ri08h3W4gJHNmshmf0W2TTqrqGTNxppniIAENm2YGs__4x4XZDf2Qyph_rZDWotqCZfYZSzsVVhQ36wwz20 priority: 102 providerName: Directory of Open Access Journals |
Title | Ensemble Surrogate Models for Fast LIB Performance Predictions |
URI | https://www.proquest.com/docview/2554505887 https://doaj.org/article/1e6fd58b801c4eacacb64ee7b27be8b1 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELVoKyQ4ICgg0pbIElw4rBqvP_dS1FRJC4IqAirltrLX417Cpuym_79jx0kqgbjsYdeXHdvzZsbj9wj5WGn0ebYKhTIaCsGMKxwiTeF0ZUFzo0O6Hv39Wl3diK9zOc8Ftz63VW58YnLUftnEGvkphr4C0Rr3xOe7P0VUjYqnq1lCY48coAs2mHwdjCfXsx_bKsuIc0zC-JqXlGN-fwotEzGJiDq4j5AoEfb_5Y8TyExfkhc5OqTn6-l8RZ5Ae0ieP-IMPCRPU89m078mZ5O2h99uAfTnfdctYz2MRmmzRU8xEqVT26_oty9jOtvdDaCzLh7MpLX2htxMJ78uroosh1A0XLFVEXRlrB1Zxo1gI884MK9AKcstonwzisz3oSqdVFFRmnshpXf4q42WQfKS8bdkv1228I5Q8JoHzLW80FEGXLoGw44QAAKUXHI_IJ82pqmbzBUeJSsWNeYM0Yz1zowD8mE79m7NkPHPUeNo4e2IyGqdXiy72zpvkpqBCl4ah6jZCEQE2zglALQrtQPj2ICcbOanzlutr3cL4-j_n4_JszI2pKRe2xOyv-ru4T1GFCs3JHtmejnMi2eY8nJ8Xs7ZAzDEzD0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VIgQcEBQQSwtYAg4cosaxYycHiih02aXbqhKt1Fuwk3Ev22xJtkL9Kb6xY2-yWwnErdfYymE8M2_GnpkH8C7X5PNM7iKVaYwkz2xkCWkiq3ODWmTahfbog0M1OpHfT9PTNfjT98L4ssreJwZHXc1Kf0e-TaGvJLQmm_h08SvyrFH-dbWn0FioxT5e_aaUrf04_krn-z5JhnvHX0ZRxyoQlULxeeR0nhkTGy4yyeOKC-SVQqWMMASWZewHyLs8sanyxMyikmlaWUo7Sp26VCRc0H_vwF0pRO4tKht-W97pxEJQyicWU1BpPd7GmkufsnjW3Ru4F-gB_vL-AdKGj-FRF4uyzwvleQJrWG_AwxsTCjfgXqgQLdunsLNXt3hup8h-XDbNzN--MU-kNm0Zxb1saNo5m4x32dGqE4EdNf4ZKGj2Mzi5FTE9h_V6VuMLYFhp4Sizq6T2pOOpLSnIcQ7RYSJSUQ3gQy-aouwmk3uCjGlBGYoXY7ES4wDeLvdeLOZx_HPXrpfwcoefoR0-zJqzojPJgqNyVZpZwuhSEv6Y0iqJqG2iLWaWD2CrP5-iM-y2WKnhy_8vv4H7o-ODSTEZH-5vwoPEl8KEKt8tWJ83l_iKYpm5fR0UiMHP29bYa9PIAlo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFH4anUBwQDBAlA2wBBw4RI3jOE4ODFHWamWjqoBJuwU7ft6lS0fSCe2v8ev2nCbtJBC3XRMrh-fP_t7nPL8P4G2maM_TmQuSVGEQ89QEhpgmMCrTqESqXHM9-us0OTyJv5zK0y34092F8WWV3Z7YbNR2Ufgz8gGlvjGxNa2JgWvLImYH448XvwLvIOX_tHZ2GiuIHOHVb5Jv9YfJAc31uygaj358Pgxah4GgEAlfBk5lqdah5iKNeWi5QG4TTBItNBFnEfpm8i6LjEy8SbOwsZTWkAQplHRSRFzQd-_AtiJVFPZgeziazr6tT3hCIUgAilVPVCGycIAlj72A8R68N1iwMQv4iwsaghs_godtZso-raD0GLaw3IEHN_oV7sDdpl60qJ_A_qis8dzMkX2_rKqFP4tj3lZtXjPKgtlY10t2PBmy2eZeAptV_qdQg_OncHIrgXoGvXJR4nNgaJVwpPNsrLwFuTQFpTzOITqMhBS2D--70ORF26fc22XMc9IrPoz5Jox9eLMee7HqzvHPUUMf4fUI31G7ebCozvJ2geYcE2dlaoixi5jYSBcmiRGViZTB1PA-7HXzk7fLvM43oHzx_9ev4R6hNT-eTI924X7k62Kakt896C2rS3xJic3SvGoRxODnbYP2GjuuB-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Surrogate+Models+for+Fast+LIB+Performance+Predictions&rft.jtitle=Energies+%28Basel%29&rft.au=Quartulli%2C+Marco&rft.au=Gil%2C+Amaia&rft.au=Florez-Tapia%2C+Ane+Miren&rft.au=Cereijo%2C+Pablo&rft.date=2021-07-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=14&rft.spage=4115&rft_id=info:doi/10.3390%2Fen14144115&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14144115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |