Ensemble Surrogate Models for Fast LIB Performance Predictions

Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models are among the most popular electrochemical models capable of predicting battery performance and therefore guiding cell cha...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 14; p. 4115
Main Authors Quartulli, Marco, Gil, Amaia, Florez-Tapia, Ane Miren, Cereijo, Pablo, Ayerbe, Elixabete, Olaizola, Igor G.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models are among the most popular electrochemical models capable of predicting battery performance and therefore guiding cell characterization. On the other hand, empirical models obtained, for example, by Machine Learning (ML) methods represent a simpler and computationally more efficient complement to electrochemical models and have been widely used for Battery Management System (BMS) control purposes. This article proposes ML-based ensemble models to be used for the estimation of the performance of an LIB cell across a wide range of input material characteristics and parameters and evaluates 1. Deep Learning ensembles for simulation convergence classification and 2. structured regressors for battery energy and power predictions. The results represent an improvement on state-of-the-art LIB surrogate models and indicate that deep ensembles represent a promising direction for battery modeling and design.
AbstractList Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models are among the most popular electrochemical models capable of predicting battery performance and therefore guiding cell characterization. On the other hand, empirical models obtained, for example, by Machine Learning (ML) methods represent a simpler and computationally more efficient complement to electrochemical models and have been widely used for Battery Management System (BMS) control purposes. This article proposes ML-based ensemble models to be used for the estimation of the performance of an LIB cell across a wide range of input material characteristics and parameters and evaluates 1. Deep Learning ensembles for simulation convergence classification and 2. structured regressors for battery energy and power predictions. The results represent an improvement on state-of-the-art LIB surrogate models and indicate that deep ensembles represent a promising direction for battery modeling and design.
Author Quartulli, Marco
Olaizola, Igor G.
Cereijo, Pablo
Gil, Amaia
Florez-Tapia, Ane Miren
Ayerbe, Elixabete
Author_xml – sequence: 1
  givenname: Marco
  orcidid: 0000-0001-5735-2072
  surname: Quartulli
  fullname: Quartulli, Marco
– sequence: 2
  givenname: Amaia
  surname: Gil
  fullname: Gil, Amaia
– sequence: 3
  givenname: Ane Miren
  surname: Florez-Tapia
  fullname: Florez-Tapia, Ane Miren
– sequence: 4
  givenname: Pablo
  orcidid: 0000-0003-3436-4438
  surname: Cereijo
  fullname: Cereijo, Pablo
– sequence: 5
  givenname: Elixabete
  orcidid: 0000-0003-4092-2088
  surname: Ayerbe
  fullname: Ayerbe, Elixabete
– sequence: 6
  givenname: Igor G.
  orcidid: 0000-0002-9965-2038
  surname: Olaizola
  fullname: Olaizola, Igor G.
BookMark eNptUE1Lw0AQXaSC9ePiLwh4E6I72Y9sLoKWVgsVBfW8TDYTSUmzdTc9-O9NraKIc5kP3nu8N4ds1PmOGDsFfiFEwS-pAwlSAqg9Noai0CnwXIx-zQfsJMYlH0oIEEKM2dW0i7QqW0qeNiH4V-wpufcVtTGpfUhmGPtkMb9JHikM-wo7R8ljoKpxfeO7eMz2a2wjnXz1I_Yymz5P7tLFw-18cr1IndDQp3VeGESOIIwEXoEgqDRpjQJNljmuwei6yEqlJWRSVFKpqhyiuFzVSmQgjth8p1t5XNp1aFYY3q3Hxn4efHi1GPrGtWSBdF0pUxoOThI6dKWWRHmZ5SWZcqt1ttNaB_-2odjbpd-EbrBvM6Wk4sqYfEDxHcoFH2Og2rqmx23oPmDTWuB2-3T78_SBcv6H8m30H_AHd-WBOQ
CitedBy_id crossref_primary_10_1149_1945_7111_ad4a11
crossref_primary_10_1016_j_est_2023_108033
crossref_primary_10_3390_batteries10090336
crossref_primary_10_1002_aenm_202102785
crossref_primary_10_1002_batt_202300046
crossref_primary_10_1016_j_egyr_2023_08_069
crossref_primary_10_1002_aenm_202102696
crossref_primary_10_1016_j_renene_2023_119086
crossref_primary_10_1002_est2_70146
crossref_primary_10_1002_aenm_202102904
crossref_primary_10_1039_D1ME00150G
Cites_doi 10.1109/TTE.2019.2944802
10.1016/B978-0-08-101128-7.00011-3
10.1016/j.jpowsour.2016.07.036
10.1109/TIE.2017.2782224
10.1149/1.1409397
10.1007/s10994-021-05946-3
10.1016/j.jpowsour.2016.03.054
10.1149/1.1836921
10.4271/680453
10.1109/TMECH.2020.3049046
10.1007/s00158-018-1971-x
10.1145/2939672.2939785
10.1007/978-0-387-21606-5
10.1080/0305215X.2012.687731
10.1016/j.jpowsour.2018.05.040
10.1149/1.2817888
10.1007/s11222-009-9153-8
10.1016/S0167-9473(01)00065-2
10.1149/1.2221597
10.1017/S0269888997000015
10.1149/1.3515880
10.1149/1.2113792
10.1016/j.jpowsour.2015.07.019
10.1016/B978-1-55860-247-2.50035-8
10.1002/widm.1249
10.1109/TIE.2020.2973876
10.1007/s10898-016-0407-7
10.1109/TII.2019.2941747
10.1016/j.electacta.2021.137829
10.1023/A:1012771025575
10.1016/j.jpowsour.2006.03.050
10.1016/j.enconman.2007.03.015
10.1093/mnras/staa713
10.1016/j.enbuild.2017.04.069
10.1016/j.jpowsour.2014.11.066
10.1016/j.jpowsour.2016.03.042
10.1016/j.jpowsour.2014.01.057
10.1007/978-3-319-99229-7_36
10.1016/j.jpowsour.2005.05.070
10.1016/j.jpowsour.2011.09.034
10.1016/j.electacta.2018.12.167
10.1016/j.paerosci.2008.11.001
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14144115
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_1e6fd58b801c4eacacb64ee7b27be8b1
10_3390_en14144115
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-f798aa0a138410d13e1d6e66a3a822c06186f92b5641243d455db144c75f53213
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 00:52:34 EDT 2025
Mon Jun 30 07:36:43 EDT 2025
Tue Jul 01 01:18:10 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f798aa0a138410d13e1d6e66a3a822c06186f92b5641243d455db144c75f53213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4092-2088
0000-0002-9965-2038
0000-0001-5735-2072
0000-0003-3436-4438
OpenAccessLink https://www.proquest.com/docview/2554505887?pq-origsite=%requestingapplication%
PQID 2554505887
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_1e6fd58b801c4eacacb64ee7b27be8b1
proquest_journals_2554505887
crossref_citationtrail_10_3390_en14144115
crossref_primary_10_3390_en14144115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bandhauer (ref_9) 2011; 158
Geng (ref_20) 2021; 372
ref_50
Wang (ref_18) 2016; 315
Breslow (ref_41) 1997; 12
Bernardi (ref_8) 1985; 132
ref_10
Lydia (ref_47) 2019; 6
ref_51
Smith (ref_14) 2007; 48
Kumaresan (ref_4) 2007; 155
Dao (ref_13) 2012; 198
Majdabadi (ref_12) 2015; 275
Waegeman (ref_52) 2021; 110
Santhanagopalan (ref_7) 2006; 156
Graves (ref_31) 2011; 24
Krityakierne (ref_26) 2016; 66
Subramanian (ref_11) 2001; 148
Jones (ref_22) 2001; 21
Fushiki (ref_35) 2011; 21
Jokar (ref_15) 2016; 327
Smith (ref_36) 2006; 161
Wei (ref_19) 2017; 65
ref_29
Liu (ref_28) 2019; 5
Doyle (ref_5) 1993; 140
Regis (ref_25) 2013; 45
Liu (ref_27) 2019; 16
ref_34
Bizeray (ref_2) 2015; 296
ref_32
ref_30
Doyle (ref_3) 1996; 143
ref_39
ref_38
Friedman (ref_48) 2002; 38
Zhang (ref_24) 2018; 58
Sagi (ref_37) 2018; 8
ref_46
ref_45
ref_44
ref_43
Li (ref_21) 2019; 299
ref_42
ref_40
Wu (ref_1) 2018; 395
Seaman (ref_17) 2014; 256
Forrester (ref_23) 2009; 45
Ascione (ref_33) 2017; 146
ref_49
Nejad (ref_16) 2016; 316
ref_6
References_xml – volume: 6
  start-page: 566
  year: 2019
  ident: ref_47
  article-title: Adagrad—An optimizer for stochastic gradient descent
  publication-title: Int. J. Inf. Comput. Sci.
– volume: 5
  start-page: 1225
  year: 2019
  ident: ref_28
  article-title: Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2019.2944802
– ident: ref_32
  doi: 10.1016/B978-0-08-101128-7.00011-3
– ident: ref_39
– volume: 327
  start-page: 44
  year: 2016
  ident: ref_15
  article-title: Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.07.036
– volume: 65
  start-page: 5634
  year: 2017
  ident: ref_19
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2782224
– volume: 148
  start-page: E444
  year: 2001
  ident: ref_11
  article-title: Approximate solutions for galvanostatic discharge of spherical particles i. constant diffusion coefficient
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1409397
– volume: 110
  start-page: 457
  year: 2021
  ident: ref_52
  article-title: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-05946-3
– volume: 315
  start-page: 199
  year: 2016
  ident: ref_18
  article-title: Probability based remaining capacity estimation using data-driven and neural network model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.054
– volume: 143
  start-page: 1890
  year: 1996
  ident: ref_3
  article-title: Comparison of modeling predictions with experimental data from plastic lithium ion cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836921
– ident: ref_34
  doi: 10.4271/680453
– ident: ref_50
  doi: 10.1109/TMECH.2020.3049046
– volume: 58
  start-page: 1431
  year: 2018
  ident: ref_24
  article-title: Variable-fidelity expected improvement method for efficient global optimization of expensive functions
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1971-x
– ident: ref_44
  doi: 10.1145/2939672.2939785
– ident: ref_10
– ident: ref_43
  doi: 10.1007/978-0-387-21606-5
– volume: 45
  start-page: 529
  year: 2013
  ident: ref_25
  article-title: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2012.687731
– ident: ref_38
– ident: ref_45
– volume: 395
  start-page: 128
  year: 2018
  ident: ref_1
  article-title: Application of artificial neural networks in design of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.040
– volume: 155
  start-page: A164
  year: 2007
  ident: ref_4
  article-title: Thermal model for a Li-ion cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2817888
– volume: 21
  start-page: 137
  year: 2011
  ident: ref_35
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9153-8
– volume: 38
  start-page: 367
  year: 2002
  ident: ref_48
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– ident: ref_30
– volume: 140
  start-page: 1526
  year: 1993
  ident: ref_5
  article-title: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221597
– volume: 12
  start-page: 1
  year: 1997
  ident: ref_41
  article-title: Simplifying decision trees: A survey
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888997000015
– volume: 158
  start-page: R1
  year: 2011
  ident: ref_9
  article-title: A critical review of thermal issues in lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3515880
– volume: 132
  start-page: 5
  year: 1985
  ident: ref_8
  article-title: A general energy balance for battery systems
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2113792
– volume: 296
  start-page: 400
  year: 2015
  ident: ref_2
  article-title: Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.019
– ident: ref_40
– ident: ref_42
  doi: 10.1016/B978-1-55860-247-2.50035-8
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_37
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– ident: ref_29
  doi: 10.1109/TIE.2020.2973876
– volume: 66
  start-page: 417
  year: 2016
  ident: ref_26
  article-title: SOP: Parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-016-0407-7
– volume: 24
  start-page: 2348
  year: 2011
  ident: ref_31
  article-title: Practical variational inference for neural networks
  publication-title: Advances in Neural Information Processing Systems
– ident: ref_6
– volume: 16
  start-page: 3767
  year: 2019
  ident: ref_27
  article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2941747
– volume: 372
  start-page: 137829
  year: 2021
  ident: ref_20
  article-title: Bridging physics-based and equivalent circuit models for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.137829
– volume: 21
  start-page: 345
  year: 2001
  ident: ref_22
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012771025575
– volume: 161
  start-page: 628
  year: 2006
  ident: ref_36
  article-title: Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.03.050
– volume: 48
  start-page: 2565
  year: 2007
  ident: ref_14
  article-title: Control oriented 1D electrochemical model of lithium ion battery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.03.015
– ident: ref_46
– ident: ref_49
  doi: 10.1093/mnras/staa713
– volume: 146
  start-page: 200
  year: 2017
  ident: ref_33
  article-title: CASA, cost-optimal analysis by multi-objective optimisation and artificial neural networks: A new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.04.069
– volume: 275
  start-page: 633
  year: 2015
  ident: ref_12
  article-title: Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.066
– volume: 316
  start-page: 183
  year: 2016
  ident: ref_16
  article-title: A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.042
– volume: 256
  start-page: 410
  year: 2014
  ident: ref_17
  article-title: A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.057
– ident: ref_51
  doi: 10.1007/978-3-319-99229-7_36
– volume: 156
  start-page: 620
  year: 2006
  ident: ref_7
  article-title: Review of models for predicting the cycling performance of lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.05.070
– volume: 198
  start-page: 329
  year: 2012
  ident: ref_13
  article-title: Simplification and order reduction of lithium-ion battery model based on porous-electrode theory
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.09.034
– volume: 299
  start-page: 451
  year: 2019
  ident: ref_21
  article-title: A physics-based distributed-parameter equivalent circuit model for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.167
– volume: 45
  start-page: 50
  year: 2009
  ident: ref_23
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
SSID ssj0000331333
Score 2.3259313
Snippet Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4115
SubjectTerms Accuracy
Approximation
Control algorithms
deep learning ensembles
Design optimization
Electrodes
Electrolytes
Li-ion battery
Machine learning
Neural networks
Partial differential equations
Performance evaluation
Physics
Research methodology
Simulation
surrogate modeling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xWWdCLh9Bu9pVcBCstVVQKWugt7Cazpxolbf-_s5v0AQpevIaBJDO7M_Mls99HyE2qMeeZ1EUq0RAJltjIYqWJrE4NaJ5oF45Hv7yq0UQ8TeV0S-rLz4TV9MC147oMlCtkYjGT5gKzhMmtEgDaxtpCYgPwwZq3BaZCDuYcwRev-Ug54voulEx48OD1b7cqUCDq_5GHQ3EZHpD9piuk9_XTHJIdKI_I3hZX4DG5G5Rz-LAzoG_Lqvr0X7-oFzKbzSn2nXRo5gv6_Nin481JADqu_G-YsLJOyGQ4eH8YRY34QZRzxRaR02liTM8wngjWKxgHVihQynCDNT3veZ57l8ZWKq8fzQshZWHxBXMtneQx46ekVX6WcEYoFJo7RFaF0F70W9ocmwznABzEXPKiTW5XDsnyhhncC1TMMkQI3nnZxnltcr22_ar5MH616nu_ri08h3W4gJHNmshmf0W2TTqrqGTNxppniIAENm2YGs__4x4XZDf2Qyph_rZDWotqCZfYZSzsVVhQ36wwz20
  priority: 102
  providerName: Directory of Open Access Journals
Title Ensemble Surrogate Models for Fast LIB Performance Predictions
URI https://www.proquest.com/docview/2554505887
https://doaj.org/article/1e6fd58b801c4eacacb64ee7b27be8b1
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELVoKyQ4ICgg0pbIElw4rBqvP_dS1FRJC4IqAirltrLX417Cpuym_79jx0kqgbjsYdeXHdvzZsbj9wj5WGn0ebYKhTIaCsGMKxwiTeF0ZUFzo0O6Hv39Wl3diK9zOc8Ftz63VW58YnLUftnEGvkphr4C0Rr3xOe7P0VUjYqnq1lCY48coAs2mHwdjCfXsx_bKsuIc0zC-JqXlGN-fwotEzGJiDq4j5AoEfb_5Y8TyExfkhc5OqTn6-l8RZ5Ae0ieP-IMPCRPU89m078mZ5O2h99uAfTnfdctYz2MRmmzRU8xEqVT26_oty9jOtvdDaCzLh7MpLX2htxMJ78uroosh1A0XLFVEXRlrB1Zxo1gI884MK9AKcstonwzisz3oSqdVFFRmnshpXf4q42WQfKS8bdkv1228I5Q8JoHzLW80FEGXLoGw44QAAKUXHI_IJ82pqmbzBUeJSsWNeYM0Yz1zowD8mE79m7NkPHPUeNo4e2IyGqdXiy72zpvkpqBCl4ah6jZCEQE2zglALQrtQPj2ICcbOanzlutr3cL4-j_n4_JszI2pKRe2xOyv-ru4T1GFCs3JHtmejnMi2eY8nJ8Xs7ZAzDEzD0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VIgQcEBQQSwtYAg4cosaxYycHiih02aXbqhKt1Fuwk3Ev22xJtkL9Kb6xY2-yWwnErdfYymE8M2_GnpkH8C7X5PNM7iKVaYwkz2xkCWkiq3ODWmTahfbog0M1OpHfT9PTNfjT98L4ssreJwZHXc1Kf0e-TaGvJLQmm_h08SvyrFH-dbWn0FioxT5e_aaUrf04_krn-z5JhnvHX0ZRxyoQlULxeeR0nhkTGy4yyeOKC-SVQqWMMASWZewHyLs8sanyxMyikmlaWUo7Sp26VCRc0H_vwF0pRO4tKht-W97pxEJQyicWU1BpPd7GmkufsnjW3Ru4F-gB_vL-AdKGj-FRF4uyzwvleQJrWG_AwxsTCjfgXqgQLdunsLNXt3hup8h-XDbNzN--MU-kNm0Zxb1saNo5m4x32dGqE4EdNf4ZKGj2Mzi5FTE9h_V6VuMLYFhp4Sizq6T2pOOpLSnIcQ7RYSJSUQ3gQy-aouwmk3uCjGlBGYoXY7ES4wDeLvdeLOZx_HPXrpfwcoefoR0-zJqzojPJgqNyVZpZwuhSEv6Y0iqJqG2iLWaWD2CrP5-iM-y2WKnhy_8vv4H7o-ODSTEZH-5vwoPEl8KEKt8tWJ83l_iKYpm5fR0UiMHP29bYa9PIAlo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFH4anUBwQDBAlA2wBBw4RI3jOE4ODFHWamWjqoBJuwU7ft6lS0fSCe2v8ev2nCbtJBC3XRMrh-fP_t7nPL8P4G2maM_TmQuSVGEQ89QEhpgmMCrTqESqXHM9-us0OTyJv5zK0y34092F8WWV3Z7YbNR2Ufgz8gGlvjGxNa2JgWvLImYH448XvwLvIOX_tHZ2GiuIHOHVb5Jv9YfJAc31uygaj358Pgxah4GgEAlfBk5lqdah5iKNeWi5QG4TTBItNBFnEfpm8i6LjEy8SbOwsZTWkAQplHRSRFzQd-_AtiJVFPZgeziazr6tT3hCIUgAilVPVCGycIAlj72A8R68N1iwMQv4iwsaghs_godtZso-raD0GLaw3IEHN_oV7sDdpl60qJ_A_qis8dzMkX2_rKqFP4tj3lZtXjPKgtlY10t2PBmy2eZeAptV_qdQg_OncHIrgXoGvXJR4nNgaJVwpPNsrLwFuTQFpTzOITqMhBS2D--70ORF26fc22XMc9IrPoz5Jox9eLMee7HqzvHPUUMf4fUI31G7ebCozvJ2geYcE2dlaoixi5jYSBcmiRGViZTB1PA-7HXzk7fLvM43oHzx_9ev4R6hNT-eTI924X7k62Kakt896C2rS3xJic3SvGoRxODnbYP2GjuuB-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Surrogate+Models+for+Fast+LIB+Performance+Predictions&rft.jtitle=Energies+%28Basel%29&rft.au=Quartulli%2C+Marco&rft.au=Gil%2C+Amaia&rft.au=Florez-Tapia%2C+Ane+Miren&rft.au=Cereijo%2C+Pablo&rft.date=2021-07-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=14&rft.spage=4115&rft_id=info:doi/10.3390%2Fen14144115&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14144115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon