Fragmentation inside atomic cooling haloes exposed to Lyman–Werner radiation

Abstract Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 475; no. 4; pp. 4636 - 4647
Main Authors Regan, John A, Downes, Turlough P
Format Journal Article
LanguageEnglish
Published London Oxford University Press 21.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman–Werner flux. The background Lyman–Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman–Werner background of J ∼ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed.
AbstractList Abstract Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman–Werner flux. The background Lyman–Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman–Werner background of J ∼ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed.
AbstractSupermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman-Werner flux. The background Lyman-Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2 . We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman-Werner background of J ∼ 10 J21 . The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T [gsim] 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed.
Author Downes, Turlough P
Regan, John A
Author_xml – sequence: 1
  givenname: John A
  orcidid: 0000-0001-9072-6427
  surname: Regan
  fullname: Regan, John A
  email: john.regan@dcu.ie
  organization: Centre for Astrophysics and Relativity, School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
– sequence: 2
  givenname: Turlough P
  surname: Downes
  fullname: Downes, Turlough P
  organization: Centre for Astrophysics and Relativity, School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
BookMark eNp9kLFOwzAURS1UJNrCxgdYYmAh1I5jOx1RRQGpggXEGLn2S3GV2MF2JbrxD_whX0JpmJBgesu59-qdERo47wChU0ouKZmySeuCipOYtpQVB2hImeBZPhVigIaEMJ6VktIjNIpxTQgpWC6G6H4e1KoFl1Sy3mHrojWAVfKt1Vh731i3wi-q8RAxvHU-gsHJ48W2Ve7z_eMZgoOAgzJ2X3CMDmvVRDj5uWP0NL9-nN1mi4ebu9nVItNM0JTVkk25YFTJkkhmtBTaaCVB1pwbugRW65JxKjQBMIZJKCnhrOBLXtRLUig2Rmd9bxf86wZiqtZ-E9xussppTgTlkk53VN5TOvgYA9SVtv2jKSjbVJRU396qvbeq97YLXfwKdcG2Kmz_ws973G-6_8kv8g6Dsw
CitedBy_id crossref_primary_10_1093_mnras_stz1045
crossref_primary_10_3847_1538_4357_aad7b8
crossref_primary_10_1017_pasa_2019_14
crossref_primary_10_3847_1538_4357_abe866
crossref_primary_10_1093_mnras_staa035
crossref_primary_10_1093_mnrasl_sly091
crossref_primary_10_1146_annurev_astro_120419_014455
crossref_primary_10_3847_2041_8213_ac2a45
crossref_primary_10_3847_1538_4357_acefb9
crossref_primary_10_1051_0004_6361_202451672
crossref_primary_10_1051_0004_6361_202452486
crossref_primary_10_1093_mnras_stad1852
crossref_primary_10_3847_1538_4357_ab35e2
crossref_primary_10_3847_1538_4357_ad2fc9
crossref_primary_10_3847_1538_4357_abd93c
crossref_primary_10_1093_mnras_stab2708
crossref_primary_10_1093_mnras_stad1179
crossref_primary_10_3847_1538_4357_abfaf9
crossref_primary_10_1093_mnras_stac3169
crossref_primary_10_1093_mnras_stz1956
crossref_primary_10_3847_2041_8213_ac7802
crossref_primary_10_1093_mnras_stac3463
crossref_primary_10_1093_mnras_stab2844
crossref_primary_10_3847_1538_4357_aac7c2
Cites_doi 10.1016/j.newar.2006.06.021
10.1088/0004-637X/696/2/1798
10.1093/mnras/stw1728
10.1093/mnras/stu1112
10.1088/0067-0049/211/2/19
10.1086/309295
10.1093/mnras/stv2545
10.1093/mnras/stw929
10.1111/j.1365-2966.2006.10467.x
10.1093/mnras/stw3291
10.1093/mnras/stu042
10.1093/mnras/264.4.798
10.1093/mnras/stu1973
10.1111/j.1365-2966.2009.14579.x
10.1093/mnras/stu1778
10.1111/j.1365-2966.2011.18820.x
10.1016/0010-4655(94)00191-4
10.1093/mnras/stv1059
10.1111/j.1365-2966.2008.14088.x
10.1887/0852743920
10.1088/0067-0049/199/1/16
10.1093/mnras/stv1337
10.1038/nature14241
10.1088/0004-637X/713/1/269
10.1088/0004-637X/795/2/137
10.1086/588209
10.1088/0004-637X/792/1/78
10.1093/mnras/stx2919
10.1007/s00159-010-0029-x
10.1111/j.1365-2966.2012.21651.x
10.1088/0067-0049/193/1/7
10.1093/mnras/288.4.1060
10.1086/319848
10.1093/mnras/stt696
10.1086/421935
10.1093/mnras/sty086
10.1086/375810
10.1111/j.1745-3933.2012.01298.x
10.1046/j.1365-8711.2002.05115.x
10.1111/j.1365-2966.2009.15960.x
10.1086/312385
10.1111/j.1365-2966.2008.13224.x
10.3847/0004-637X/824/2/119
10.1086/174548
10.1016/0021-9991(84)90073-1
10.1088/0004-637X/778/2/178
10.1093/mnras/stx1915
10.1111/j.1365-2966.2008.14156.x
10.1093/mnras/stu444
10.1093/mnras/stu1870
10.1093/mnras/stu068
10.1093/mnras/stw297
10.1086/421548
10.1051/0004-6361/201321949
10.1038/s41550-017-0075
10.1086/519445
10.1051/0004-6361/201321591
10.1093/mnras/stu2244
10.1093/mnras/stv610
10.1088/0067-0049/192/1/9
10.1126/science.1198027
10.1088/0004-637X/701/2/L133
10.1111/j.1365-2966.2012.21852.x
10.1093/mnras/289.3.497
10.1038/nature10159
10.1093/mnras/stw1307
10.1086/157497
10.1086/155274
10.1093/mnras/stv1781
10.3847/2041-8213/aa7412
10.1146/annurev.astro.44.051905.092514
10.1088/0004-637X/696/2/L146
10.1146/annurev-astro-082708-101811
10.1088/0004-637X/709/1/27
10.1111/j.1365-2966.2010.17491.x
ContentType Journal Article
Copyright 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2018
2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
Copyright_xml – notice: 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2018
– notice: 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1093/mnras/sty134
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 4647
ExternalDocumentID 10_1093_mnras_sty134
10.1093/mnras/sty134
GrantInformation_xml – fundername: Science and Technology Facilities Council
  grantid: ST/L00075X/1; RF040365; ST/K00042X/1; ST/H008519/1; ST/K003267/1
  funderid: 10.13039/501100000271
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
8FD
H8D
L7M
ID FETCH-LOGICAL-c361t-f7395631a78073dc76cdca7e7f55d1be3fc83516c0eedd37e8105345b54fb04a3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Fri Jul 25 20:06:28 EDT 2025
Tue Jul 01 03:35:42 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
Wed Aug 28 03:21:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords methods: numerical
dark ages, reionization, first stars
large-scale structure of Universe
cosmology: theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f7395631a78073dc76cdca7e7f55d1be3fc83516c0eedd37e8105345b54fb04a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9072-6427
PQID 2120615719
PQPubID 42411
PageCount 12
ParticipantIDs proquest_journals_2120615719
crossref_citationtrail_10_1093_mnras_sty134
crossref_primary_10_1093_mnras_sty134
oup_primary_10_1093_mnras_sty134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-21
PublicationDateYYYYMMDD 2018-04-21
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-21
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Johnson ( key 20180328153902_bib38) 2011; 410
Regan ( key 20180328153902_bib52) 2009; 393
Jeon ( key 20180328153902_bib37) 2014; 440
Kormendy ( key 20180328153902_bib40) 2013; 51
Volonteri ( key 20180328153902_bib70) 2010; 18
Wolcott-Green ( key 20180328153902_bib74) 2012; 425
Hosokawa ( key 20180328153902_bib34) 2013; 778
Sugimura ( key 20180328153902_bib66) 2014; 445
Alvarez ( key 20180328153902_bib7) 2009; 701
Latif ( key 20180328153902_bib44) 2015; 446
Bryan ( key 20180328153902_bib14) 1995; 89
Haemmerlé ( key 20180328153902_bib29) 2017; 474
Agarwal ( key 20180328153902_bib2) 2015; 446
Madau ( key 20180328153902_bib47) 2001; 551
Glover ( key 20180328153902_bib26) 2008; 388
Regan ( key 20180328153902_bib53) 2014; 439
Clark ( key 20180328153902_bib19) 2011; 331
Wang ( key 20180328153902_bib71) 2010; 709
Tanaka ( key 20180328153902_bib67) 2009; 696
Hosokawa ( key 20180328153902_bib33) 2013; 778
Safranek-Shrader ( key 20180328153902_bib58) 2012; 426
Tanaka ( key 20180328153902_bib68) 2014; 439
Yoshida ( key 20180328153902_bib78) 2003; 592
Burkert ( key 20180328153902_bib17) 1997; 289
Regan ( key 20180328153902_bib51) 2009; 396
Inayoshi ( key 20180328153902_bib36) 2014; 445
Glover ( key 20180328153902_bib28) 2009; 393
Mortlock ( key 20180328153902_bib49) 2011; 474
Woods ( key 20180328153902_bib76) 2017; 842
Haiman ( key 20180328153902_bib31) 2006; 50
Wu ( key 20180328153902_bib77) 2015; 518
Loeb ( key 20180328153902_bib46) 1994; 432
Becerra ( key 20180328153902_bib9) 2017
Fan ( key 20180328153902_bib22) 2006; 44
Schleicher ( key 20180328153902_bib61) 2013; 558
Begelman ( key 20180328153902_bib10) 2006; 370
Regan ( key 20180328153902_bib57) 2017; 1
Wolcott-Green ( key 20180328153902_bib75) 2017; 469
Krumholz ( key 20180328153902_bib41) 2004; 611
Berger ( key 20180328153902_bib11) 1984; 53
Burkert ( key 20180328153902_bib16) 1993; 264
Coppola ( key 20180328153902_bib20) 2011; 193
Stacy ( key 20180328153902_bib65) 2016; 462
Planck Collaboration XVI ( key 20180328153902_bib50) 2014; 571
Chon ( key 20180328153902_bib18) 2018; 475
Hahn ( key 20180328153902_bib30) 2011; 415
Agarwal ( key 20180328153902_bib6) 2016; 459
Federrath ( key 20180328153902_bib23) 2010; 713
Schauer ( key 20180328153902_bib60) 2017; 471
Regan ( key 20180328153902_bib56) 2016; 461
Bate ( key 20180328153902_bib8) 1997; 288
Bromm ( key 20180328153902_bib13) 1999; 527
Safranek-Shrader ( key 20180328153902_bib59) 2016; 455
Latif ( key 20180328153902_bib43) 2014; 792
Glover ( key 20180328153902_bib27) 2007; 666
Latif ( key 20180328153902_bib42) 2015; 452
Milosavljević ( key 20180328153902_bib48) 2009; 696
Kitsionas ( key 20180328153902_bib39) 2002; 330
Regan ( key 20180328153902_bib54) 2014; 795
Glover ( key 20180328153902_bib25) 2015; 453
Latif ( key 20180328153902_bib45) 2016; 458
Shu ( key 20180328153902_bib63) 1977; 214
Turk ( key 20180328153902_bib69) 2011; 192
Boss ( key 20180328153902_bib12) 1979; 234
Whalen ( key 20180328153902_bib72) 2004; 610
Abel ( key 20180328153902_bib1) 2000; 540
Coppola ( key 20180328153902_bib21) 2012; 199
Agarwal ( key 20180328153902_bib3) 2012; 425
Glover ( key 20180328153902_bib24) 2015; 451
Shang ( key 20180328153902_bib62) 2010; 402
Agarwal ( key 20180328153902_bib4) 2013; 432
Regan ( key 20180328153902_bib55) 2015; 449
Wise ( key 20180328153902_bib73) 2008; 682
Smith ( key 20180328153902_bib64) 2017; 466
Agarwal ( key 20180328153902_bib5) 2014; 443
Bryan ( key 20180328153902_bib15) 2014; 211
Hosokawa ( key 20180328153902_bib35) 2016; 824
Hockney ( key 20180328153902_bib32) 1988
References_xml – volume: 50
  start-page: 672
  year: 2006
  ident: key 20180328153902_bib31
  publication-title: New Astron. Rev.
  doi: 10.1016/j.newar.2006.06.021
– volume: 696
  start-page: 1798
  year: 2009
  ident: key 20180328153902_bib67
  publication-title: ApJ
  doi: 10.1088/0004-637X/696/2/1798
– volume: 462
  start-page: 1307
  year: 2016
  ident: key 20180328153902_bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1728
– volume: 443
  start-page: 648
  year: 2014
  ident: key 20180328153902_bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1112
– volume: 211
  start-page: 19
  year: 2014
  ident: key 20180328153902_bib15
  publication-title: ApJS
  doi: 10.1088/0067-0049/211/2/19
– volume: 540
  start-page: 39
  year: 2000
  ident: key 20180328153902_bib1
  publication-title: ApJ
  doi: 10.1086/309295
– volume: 455
  start-page: 3288
  year: 2016
  ident: key 20180328153902_bib59
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2545
– volume: 459
  start-page: 4209
  year: 2016
  ident: key 20180328153902_bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stw929
– volume: 370
  start-page: 289
  year: 2006
  ident: key 20180328153902_bib10
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10467.x
– volume: 466
  start-page: 2217
  year: 2017
  ident: key 20180328153902_bib64
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3291
– volume: 439
  start-page: 1092
  year: 2014
  ident: key 20180328153902_bib68
  publication-title: MNRAS
  doi: 10.1093/mnras/stu042
– volume: 264
  start-page: 798
  year: 1993
  ident: key 20180328153902_bib16
  publication-title: MNRAS
  doi: 10.1093/mnras/264.4.798
– volume: 446
  start-page: 160
  year: 2015
  ident: key 20180328153902_bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1973
– volume: 396
  start-page: 343
  year: 2009
  ident: key 20180328153902_bib51
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14579.x
– volume: 445
  start-page: 544
  year: 2014
  ident: key 20180328153902_bib66
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1778
– volume: 415
  start-page: 2101
  year: 2011
  ident: key 20180328153902_bib30
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18820.x
– volume: 89
  start-page: 149
  year: 1995
  ident: key 20180328153902_bib14
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(94)00191-4
– volume: 451
  start-page: 2082
  year: 2015
  ident: key 20180328153902_bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1059
– volume: 393
  start-page: 858
  year: 2009
  ident: key 20180328153902_bib52
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14088.x
– volume-title: Computer Simulation Using Particles
  year: 1988
  ident: key 20180328153902_bib32
  doi: 10.1887/0852743920
– volume: 199
  start-page: 16
  year: 2012
  ident: key 20180328153902_bib21
  publication-title: ApJS
  doi: 10.1088/0067-0049/199/1/16
– volume: 452
  start-page: 1026
  year: 2015
  ident: key 20180328153902_bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1337
– volume: 518
  start-page: 512
  year: 2015
  ident: key 20180328153902_bib77
  publication-title: Nature
  doi: 10.1038/nature14241
– volume: 713
  start-page: 269
  year: 2010
  ident: key 20180328153902_bib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/713/1/269
– volume: 795
  start-page: 137
  year: 2014
  ident: key 20180328153902_bib54
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/2/137
– volume: 682
  start-page: 745
  year: 2008
  ident: key 20180328153902_bib73
  publication-title: ApJ
  doi: 10.1086/588209
– volume: 792
  start-page: 78 (L14)
  year: 2014
  ident: key 20180328153902_bib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/792/1/78
– volume: 474
  start-page: 2757
  year: 2017
  ident: key 20180328153902_bib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2919
– volume: 18
  start-page: 279
  year: 2010
  ident: key 20180328153902_bib70
  publication-title: A&AR
  doi: 10.1007/s00159-010-0029-x
– volume: 425
  start-page: 2854
  year: 2012
  ident: key 20180328153902_bib3
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21651.x
– volume: 193
  start-page: 7
  year: 2011
  ident: key 20180328153902_bib20
  publication-title: ApJS
  doi: 10.1088/0067-0049/193/1/7
– volume: 288
  start-page: 1060
  year: 1997
  ident: key 20180328153902_bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/288.4.1060
– volume: 551
  start-page: L27
  year: 2001
  ident: key 20180328153902_bib47
  publication-title: ApJ
  doi: 10.1086/319848
– volume: 432
  start-page: 3438
  year: 2013
  ident: key 20180328153902_bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stt696
– volume: 611
  start-page: 399
  year: 2004
  ident: key 20180328153902_bib41
  publication-title: ApJ
  doi: 10.1086/421935
– volume: 475
  start-page: 4104
  year: 2018
  ident: key 20180328153902_bib18
  publication-title: MNRAS
  doi: 10.1093/mnras/sty086
– volume: 592
  start-page: 645
  year: 2003
  ident: key 20180328153902_bib78
  publication-title: ApJ
  doi: 10.1086/375810
– volume: 425
  start-page: L51
  year: 2012
  ident: key 20180328153902_bib74
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2012.01298.x
– volume-title: MNRAS
  year: 2017
  ident: key 20180328153902_bib9
– volume: 330
  start-page: 129
  year: 2002
  ident: key 20180328153902_bib39
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05115.x
– volume: 402
  start-page: 1249
  year: 2010
  ident: key 20180328153902_bib62
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15960.x
– volume: 527
  start-page: L5
  year: 1999
  ident: key 20180328153902_bib13
  publication-title: ApJ
  doi: 10.1086/312385
– volume: 388
  start-page: 1627
  year: 2008
  ident: key 20180328153902_bib26
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13224.x
– volume: 824
  start-page: 119
  year: 2016
  ident: key 20180328153902_bib35
  publication-title: ApJ
  doi: 10.3847/0004-637X/824/2/119
– volume: 432
  start-page: 52
  year: 1994
  ident: key 20180328153902_bib46
  publication-title: ApJ
  doi: 10.1086/174548
– volume: 53
  start-page: 484
  year: 1984
  ident: key 20180328153902_bib11
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90073-1
– volume: 778
  start-page: 178
  year: 2013
  ident: key 20180328153902_bib33
  publication-title: ApJ
  doi: 10.1088/0004-637X/778/2/178
– volume: 471
  start-page: 4878
  year: 2017
  ident: key 20180328153902_bib60
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1915
– volume: 393
  start-page: 911
  year: 2009
  ident: key 20180328153902_bib28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14156.x
– volume: 440
  start-page: 3778
  year: 2014
  ident: key 20180328153902_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stu444
– volume: 445
  start-page: 1549
  year: 2014
  ident: key 20180328153902_bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1870
– volume: 439
  start-page: 1160
  year: 2014
  ident: key 20180328153902_bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stu068
– volume: 458
  start-page: 233
  year: 2016
  ident: key 20180328153902_bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stw297
– volume: 610
  start-page: 14
  year: 2004
  ident: key 20180328153902_bib72
  publication-title: ApJ
  doi: 10.1086/421548
– volume: 558
  start-page: A59
  year: 2013
  ident: key 20180328153902_bib61
  publication-title: A&A
  doi: 10.1051/0004-6361/201321949
– volume: 1
  start-page: 0075
  year: 2017
  ident: key 20180328153902_bib57
  publication-title: Nature Astron.
  doi: 10.1038/s41550-017-0075
– volume: 778
  start-page: 178
  year: 2013
  ident: key 20180328153902_bib34
  publication-title: ApJ
  doi: 10.1088/0004-637X/778/2/178
– volume: 666
  start-page: 1
  year: 2007
  ident: key 20180328153902_bib27
  publication-title: ApJ
  doi: 10.1086/519445
– volume: 571
  start-page: A16
  year: 2014
  ident: key 20180328153902_bib50
  publication-title: A&A
  doi: 10.1051/0004-6361/201321591
– volume: 446
  start-page: 3163
  year: 2015
  ident: key 20180328153902_bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2244
– volume: 449
  start-page: 3766
  year: 2015
  ident: key 20180328153902_bib55
  publication-title: MNRAS
  doi: 10.1093/mnras/stv610
– volume: 192
  start-page: 9
  year: 2011
  ident: key 20180328153902_bib69
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/9
– volume: 331
  start-page: 1040
  year: 2011
  ident: key 20180328153902_bib19
  publication-title: Science
  doi: 10.1126/science.1198027
– volume: 701
  start-page: L133
  year: 2009
  ident: key 20180328153902_bib7
  publication-title: ApJ
  doi: 10.1088/0004-637X/701/2/L133
– volume: 426
  start-page: 1159
  year: 2012
  ident: key 20180328153902_bib58
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21852.x
– volume: 289
  start-page: 497
  year: 1997
  ident: key 20180328153902_bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/289.3.497
– volume: 474
  start-page: 616
  year: 2011
  ident: key 20180328153902_bib49
  publication-title: Nature
  doi: 10.1038/nature10159
– volume: 461
  start-page: 111
  year: 2016
  ident: key 20180328153902_bib56
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1307
– volume: 234
  start-page: 289
  year: 1979
  ident: key 20180328153902_bib12
  publication-title: ApJ
  doi: 10.1086/157497
– volume: 214
  start-page: 488
  year: 1977
  ident: key 20180328153902_bib63
  publication-title: ApJ
  doi: 10.1086/155274
– volume: 453
  start-page: 2901
  year: 2015
  ident: key 20180328153902_bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1781
– volume: 842
  start-page: L6
  year: 2017
  ident: key 20180328153902_bib76
  publication-title: ApJ
  doi: 10.3847/2041-8213/aa7412
– volume: 44
  start-page: 415
  year: 2006
  ident: key 20180328153902_bib22
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.44.051905.092514
– volume: 696
  start-page: L146
  year: 2009
  ident: key 20180328153902_bib48
  publication-title: ApJ
  doi: 10.1088/0004-637X/696/2/L146
– volume: 51
  start-page: 511
  year: 2013
  ident: key 20180328153902_bib40
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082708-101811
– volume: 469
  start-page: 3329
  year: 2017
  ident: key 20180328153902_bib75
  publication-title: MNRAS
– volume: 709
  start-page: 27
  year: 2010
  ident: key 20180328153902_bib71
  publication-title: ApJ
  doi: 10.1088/0004-637X/709/1/27
– volume: 410
  start-page: 919
  year: 2011
  ident: key 20180328153902_bib38
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17491.x
SSID ssj0004326
Score 2.4611301
Snippet Abstract Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed...
AbstractSupermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4636
SubjectTerms Astrochemistry
Atomic properties
Chemical properties
Cooling
Deposition
Fragmentation
Ionization
Organic chemistry
Population III stars
Quasars
Red shift
Seeds
Star & galaxy formation
Star formation
Supermassive black holes
Supermassive stars
Universe
Title Fragmentation inside atomic cooling haloes exposed to Lyman–Werner radiation
URI https://www.proquest.com/docview/2120615719
Volume 475
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTsJAEN4YTl6MogYUzR7Ui2mgbrvbHgmRECN4gcit2b8iCW0JrYncfAff0Cdxdls0GA23Njudw06n8-1M5xuErsBlIGgp3xFUwQGFM-oEUgun48WMCh1QrkxqYDiig4n3MPWnFUlS_kcJPyTtJF3xvJ0Xa5cY3k-Iv4Yjf_w0_el_JHasmqVfhAOAW_3g_vvhrdCz1c62-f7aoNI_RAcVGsTd0nxHaE-nddTo5iY_nSVrfIPtdZl-yOuoOQSMm61sKhwWe4s5AE57d4xGgEFnSdVKlOK5HcSJYTmZSywzM5xnhl_4ItM51m_LLNcKFxl-XCc8_Xz_eNZm5D1eGa4Co-AETfr3497AqaYlOJJQt3BiU3KjxOUsALdVklGpJGeaxb6vXKFJLAFtuVR2ICwqwnQA0Ip4vvC9WHQ8Tk5RLc1S3UDY12HApOk2J4EniApUqL2QcaGNcq6b6HazkZGsqMTNRItFVJa0SWS3PSq3vYmuv6WXJYXGP3IYbLJDpLUxWFT5Wh5B8DW4jLnh2W4N52gfIE9g6kF3bgvVitWrvgBYUYhL-059AUJw0Kc
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fragmentation+inside+atomic+cooling+haloes+exposed+to+Lyman%E2%80%93Werner+radiation&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Regan%2C+John+A&rft.au=Downes%2C+Turlough+P&rft.date=2018-04-21&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=475&rft.issue=4&rft.spage=4636&rft.epage=4647&rft_id=info:doi/10.1093%2Fmnras%2Fsty134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_sty134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon