Fragmentation inside atomic cooling haloes exposed to Lyman–Werner radiation
Abstract Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 475; no. 4; pp. 4636 - 4647 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
21.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman–Werner flux. The background Lyman–Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case,
we find that this occurs above a critical Lyman–Werner background of J ∼ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed. |
---|---|
AbstractList | Abstract
Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman–Werner flux. The background Lyman–Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case,
we find that this occurs above a critical Lyman–Werner background of J ∼ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed. AbstractSupermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman-Werner flux. The background Lyman-Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2 . We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman-Werner background of J ∼ 10 J21 . The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T [gsim] 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed. |
Author | Downes, Turlough P Regan, John A |
Author_xml | – sequence: 1 givenname: John A orcidid: 0000-0001-9072-6427 surname: Regan fullname: Regan, John A email: john.regan@dcu.ie organization: Centre for Astrophysics and Relativity, School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland – sequence: 2 givenname: Turlough P surname: Downes fullname: Downes, Turlough P organization: Centre for Astrophysics and Relativity, School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland |
BookMark | eNp9kLFOwzAURS1UJNrCxgdYYmAh1I5jOx1RRQGpggXEGLn2S3GV2MF2JbrxD_whX0JpmJBgesu59-qdERo47wChU0ouKZmySeuCipOYtpQVB2hImeBZPhVigIaEMJ6VktIjNIpxTQgpWC6G6H4e1KoFl1Sy3mHrojWAVfKt1Vh731i3wi-q8RAxvHU-gsHJ48W2Ve7z_eMZgoOAgzJ2X3CMDmvVRDj5uWP0NL9-nN1mi4ebu9nVItNM0JTVkk25YFTJkkhmtBTaaCVB1pwbugRW65JxKjQBMIZJKCnhrOBLXtRLUig2Rmd9bxf86wZiqtZ-E9xussppTgTlkk53VN5TOvgYA9SVtv2jKSjbVJRU396qvbeq97YLXfwKdcG2Kmz_ws973G-6_8kv8g6Dsw |
CitedBy_id | crossref_primary_10_1093_mnras_stz1045 crossref_primary_10_3847_1538_4357_aad7b8 crossref_primary_10_1017_pasa_2019_14 crossref_primary_10_3847_1538_4357_abe866 crossref_primary_10_1093_mnras_staa035 crossref_primary_10_1093_mnrasl_sly091 crossref_primary_10_1146_annurev_astro_120419_014455 crossref_primary_10_3847_2041_8213_ac2a45 crossref_primary_10_3847_1538_4357_acefb9 crossref_primary_10_1051_0004_6361_202451672 crossref_primary_10_1051_0004_6361_202452486 crossref_primary_10_1093_mnras_stad1852 crossref_primary_10_3847_1538_4357_ab35e2 crossref_primary_10_3847_1538_4357_ad2fc9 crossref_primary_10_3847_1538_4357_abd93c crossref_primary_10_1093_mnras_stab2708 crossref_primary_10_1093_mnras_stad1179 crossref_primary_10_3847_1538_4357_abfaf9 crossref_primary_10_1093_mnras_stac3169 crossref_primary_10_1093_mnras_stz1956 crossref_primary_10_3847_2041_8213_ac7802 crossref_primary_10_1093_mnras_stac3463 crossref_primary_10_1093_mnras_stab2844 crossref_primary_10_3847_1538_4357_aac7c2 |
Cites_doi | 10.1016/j.newar.2006.06.021 10.1088/0004-637X/696/2/1798 10.1093/mnras/stw1728 10.1093/mnras/stu1112 10.1088/0067-0049/211/2/19 10.1086/309295 10.1093/mnras/stv2545 10.1093/mnras/stw929 10.1111/j.1365-2966.2006.10467.x 10.1093/mnras/stw3291 10.1093/mnras/stu042 10.1093/mnras/264.4.798 10.1093/mnras/stu1973 10.1111/j.1365-2966.2009.14579.x 10.1093/mnras/stu1778 10.1111/j.1365-2966.2011.18820.x 10.1016/0010-4655(94)00191-4 10.1093/mnras/stv1059 10.1111/j.1365-2966.2008.14088.x 10.1887/0852743920 10.1088/0067-0049/199/1/16 10.1093/mnras/stv1337 10.1038/nature14241 10.1088/0004-637X/713/1/269 10.1088/0004-637X/795/2/137 10.1086/588209 10.1088/0004-637X/792/1/78 10.1093/mnras/stx2919 10.1007/s00159-010-0029-x 10.1111/j.1365-2966.2012.21651.x 10.1088/0067-0049/193/1/7 10.1093/mnras/288.4.1060 10.1086/319848 10.1093/mnras/stt696 10.1086/421935 10.1093/mnras/sty086 10.1086/375810 10.1111/j.1745-3933.2012.01298.x 10.1046/j.1365-8711.2002.05115.x 10.1111/j.1365-2966.2009.15960.x 10.1086/312385 10.1111/j.1365-2966.2008.13224.x 10.3847/0004-637X/824/2/119 10.1086/174548 10.1016/0021-9991(84)90073-1 10.1088/0004-637X/778/2/178 10.1093/mnras/stx1915 10.1111/j.1365-2966.2008.14156.x 10.1093/mnras/stu444 10.1093/mnras/stu1870 10.1093/mnras/stu068 10.1093/mnras/stw297 10.1086/421548 10.1051/0004-6361/201321949 10.1038/s41550-017-0075 10.1086/519445 10.1051/0004-6361/201321591 10.1093/mnras/stu2244 10.1093/mnras/stv610 10.1088/0067-0049/192/1/9 10.1126/science.1198027 10.1088/0004-637X/701/2/L133 10.1111/j.1365-2966.2012.21852.x 10.1093/mnras/289.3.497 10.1038/nature10159 10.1093/mnras/stw1307 10.1086/157497 10.1086/155274 10.1093/mnras/stv1781 10.3847/2041-8213/aa7412 10.1146/annurev.astro.44.051905.092514 10.1088/0004-637X/696/2/L146 10.1146/annurev-astro-082708-101811 10.1088/0004-637X/709/1/27 10.1111/j.1365-2966.2010.17491.x |
ContentType | Journal Article |
Copyright | 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2018 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society |
Copyright_xml | – notice: 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2018 – notice: 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1093/mnras/sty134 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 4647 |
ExternalDocumentID | 10_1093_mnras_sty134 10.1093/mnras/sty134 |
GrantInformation_xml | – fundername: Science and Technology Facilities Council grantid: ST/L00075X/1; RF040365; ST/K00042X/1; ST/H008519/1; ST/K003267/1 funderid: 10.13039/501100000271 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ ALXQX AMNDL ANAKG CITATION JXSIZ 8FD H8D L7M |
ID | FETCH-LOGICAL-c361t-f7395631a78073dc76cdca7e7f55d1be3fc83516c0eedd37e8105345b54fb04a3 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Fri Jul 25 20:06:28 EDT 2025 Tue Jul 01 03:35:42 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Wed Aug 28 03:21:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | methods: numerical dark ages, reionization, first stars large-scale structure of Universe cosmology: theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-f7395631a78073dc76cdca7e7f55d1be3fc83516c0eedd37e8105345b54fb04a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9072-6427 |
PQID | 2120615719 |
PQPubID | 42411 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2120615719 crossref_citationtrail_10_1093_mnras_sty134 crossref_primary_10_1093_mnras_sty134 oup_primary_10_1093_mnras_sty134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-21 |
PublicationDateYYYYMMDD | 2018-04-21 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Johnson ( key 20180328153902_bib38) 2011; 410 Regan ( key 20180328153902_bib52) 2009; 393 Jeon ( key 20180328153902_bib37) 2014; 440 Kormendy ( key 20180328153902_bib40) 2013; 51 Volonteri ( key 20180328153902_bib70) 2010; 18 Wolcott-Green ( key 20180328153902_bib74) 2012; 425 Hosokawa ( key 20180328153902_bib34) 2013; 778 Sugimura ( key 20180328153902_bib66) 2014; 445 Alvarez ( key 20180328153902_bib7) 2009; 701 Latif ( key 20180328153902_bib44) 2015; 446 Bryan ( key 20180328153902_bib14) 1995; 89 Haemmerlé ( key 20180328153902_bib29) 2017; 474 Agarwal ( key 20180328153902_bib2) 2015; 446 Madau ( key 20180328153902_bib47) 2001; 551 Glover ( key 20180328153902_bib26) 2008; 388 Regan ( key 20180328153902_bib53) 2014; 439 Clark ( key 20180328153902_bib19) 2011; 331 Wang ( key 20180328153902_bib71) 2010; 709 Tanaka ( key 20180328153902_bib67) 2009; 696 Hosokawa ( key 20180328153902_bib33) 2013; 778 Safranek-Shrader ( key 20180328153902_bib58) 2012; 426 Tanaka ( key 20180328153902_bib68) 2014; 439 Yoshida ( key 20180328153902_bib78) 2003; 592 Burkert ( key 20180328153902_bib17) 1997; 289 Regan ( key 20180328153902_bib51) 2009; 396 Inayoshi ( key 20180328153902_bib36) 2014; 445 Glover ( key 20180328153902_bib28) 2009; 393 Mortlock ( key 20180328153902_bib49) 2011; 474 Woods ( key 20180328153902_bib76) 2017; 842 Haiman ( key 20180328153902_bib31) 2006; 50 Wu ( key 20180328153902_bib77) 2015; 518 Loeb ( key 20180328153902_bib46) 1994; 432 Becerra ( key 20180328153902_bib9) 2017 Fan ( key 20180328153902_bib22) 2006; 44 Schleicher ( key 20180328153902_bib61) 2013; 558 Begelman ( key 20180328153902_bib10) 2006; 370 Regan ( key 20180328153902_bib57) 2017; 1 Wolcott-Green ( key 20180328153902_bib75) 2017; 469 Krumholz ( key 20180328153902_bib41) 2004; 611 Berger ( key 20180328153902_bib11) 1984; 53 Burkert ( key 20180328153902_bib16) 1993; 264 Coppola ( key 20180328153902_bib20) 2011; 193 Stacy ( key 20180328153902_bib65) 2016; 462 Planck Collaboration XVI ( key 20180328153902_bib50) 2014; 571 Chon ( key 20180328153902_bib18) 2018; 475 Hahn ( key 20180328153902_bib30) 2011; 415 Agarwal ( key 20180328153902_bib6) 2016; 459 Federrath ( key 20180328153902_bib23) 2010; 713 Schauer ( key 20180328153902_bib60) 2017; 471 Regan ( key 20180328153902_bib56) 2016; 461 Bate ( key 20180328153902_bib8) 1997; 288 Bromm ( key 20180328153902_bib13) 1999; 527 Safranek-Shrader ( key 20180328153902_bib59) 2016; 455 Latif ( key 20180328153902_bib43) 2014; 792 Glover ( key 20180328153902_bib27) 2007; 666 Latif ( key 20180328153902_bib42) 2015; 452 Milosavljević ( key 20180328153902_bib48) 2009; 696 Kitsionas ( key 20180328153902_bib39) 2002; 330 Regan ( key 20180328153902_bib54) 2014; 795 Glover ( key 20180328153902_bib25) 2015; 453 Latif ( key 20180328153902_bib45) 2016; 458 Shu ( key 20180328153902_bib63) 1977; 214 Turk ( key 20180328153902_bib69) 2011; 192 Boss ( key 20180328153902_bib12) 1979; 234 Whalen ( key 20180328153902_bib72) 2004; 610 Abel ( key 20180328153902_bib1) 2000; 540 Coppola ( key 20180328153902_bib21) 2012; 199 Agarwal ( key 20180328153902_bib3) 2012; 425 Glover ( key 20180328153902_bib24) 2015; 451 Shang ( key 20180328153902_bib62) 2010; 402 Agarwal ( key 20180328153902_bib4) 2013; 432 Regan ( key 20180328153902_bib55) 2015; 449 Wise ( key 20180328153902_bib73) 2008; 682 Smith ( key 20180328153902_bib64) 2017; 466 Agarwal ( key 20180328153902_bib5) 2014; 443 Bryan ( key 20180328153902_bib15) 2014; 211 Hosokawa ( key 20180328153902_bib35) 2016; 824 Hockney ( key 20180328153902_bib32) 1988 |
References_xml | – volume: 50 start-page: 672 year: 2006 ident: key 20180328153902_bib31 publication-title: New Astron. Rev. doi: 10.1016/j.newar.2006.06.021 – volume: 696 start-page: 1798 year: 2009 ident: key 20180328153902_bib67 publication-title: ApJ doi: 10.1088/0004-637X/696/2/1798 – volume: 462 start-page: 1307 year: 2016 ident: key 20180328153902_bib65 publication-title: MNRAS doi: 10.1093/mnras/stw1728 – volume: 443 start-page: 648 year: 2014 ident: key 20180328153902_bib5 publication-title: MNRAS doi: 10.1093/mnras/stu1112 – volume: 211 start-page: 19 year: 2014 ident: key 20180328153902_bib15 publication-title: ApJS doi: 10.1088/0067-0049/211/2/19 – volume: 540 start-page: 39 year: 2000 ident: key 20180328153902_bib1 publication-title: ApJ doi: 10.1086/309295 – volume: 455 start-page: 3288 year: 2016 ident: key 20180328153902_bib59 publication-title: MNRAS doi: 10.1093/mnras/stv2545 – volume: 459 start-page: 4209 year: 2016 ident: key 20180328153902_bib6 publication-title: MNRAS doi: 10.1093/mnras/stw929 – volume: 370 start-page: 289 year: 2006 ident: key 20180328153902_bib10 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10467.x – volume: 466 start-page: 2217 year: 2017 ident: key 20180328153902_bib64 publication-title: MNRAS doi: 10.1093/mnras/stw3291 – volume: 439 start-page: 1092 year: 2014 ident: key 20180328153902_bib68 publication-title: MNRAS doi: 10.1093/mnras/stu042 – volume: 264 start-page: 798 year: 1993 ident: key 20180328153902_bib16 publication-title: MNRAS doi: 10.1093/mnras/264.4.798 – volume: 446 start-page: 160 year: 2015 ident: key 20180328153902_bib2 publication-title: MNRAS doi: 10.1093/mnras/stu1973 – volume: 396 start-page: 343 year: 2009 ident: key 20180328153902_bib51 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14579.x – volume: 445 start-page: 544 year: 2014 ident: key 20180328153902_bib66 publication-title: MNRAS doi: 10.1093/mnras/stu1778 – volume: 415 start-page: 2101 year: 2011 ident: key 20180328153902_bib30 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18820.x – volume: 89 start-page: 149 year: 1995 ident: key 20180328153902_bib14 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(94)00191-4 – volume: 451 start-page: 2082 year: 2015 ident: key 20180328153902_bib24 publication-title: MNRAS doi: 10.1093/mnras/stv1059 – volume: 393 start-page: 858 year: 2009 ident: key 20180328153902_bib52 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14088.x – volume-title: Computer Simulation Using Particles year: 1988 ident: key 20180328153902_bib32 doi: 10.1887/0852743920 – volume: 199 start-page: 16 year: 2012 ident: key 20180328153902_bib21 publication-title: ApJS doi: 10.1088/0067-0049/199/1/16 – volume: 452 start-page: 1026 year: 2015 ident: key 20180328153902_bib42 publication-title: MNRAS doi: 10.1093/mnras/stv1337 – volume: 518 start-page: 512 year: 2015 ident: key 20180328153902_bib77 publication-title: Nature doi: 10.1038/nature14241 – volume: 713 start-page: 269 year: 2010 ident: key 20180328153902_bib23 publication-title: ApJ doi: 10.1088/0004-637X/713/1/269 – volume: 795 start-page: 137 year: 2014 ident: key 20180328153902_bib54 publication-title: ApJ doi: 10.1088/0004-637X/795/2/137 – volume: 682 start-page: 745 year: 2008 ident: key 20180328153902_bib73 publication-title: ApJ doi: 10.1086/588209 – volume: 792 start-page: 78 (L14) year: 2014 ident: key 20180328153902_bib43 publication-title: ApJ doi: 10.1088/0004-637X/792/1/78 – volume: 474 start-page: 2757 year: 2017 ident: key 20180328153902_bib29 publication-title: MNRAS doi: 10.1093/mnras/stx2919 – volume: 18 start-page: 279 year: 2010 ident: key 20180328153902_bib70 publication-title: A&AR doi: 10.1007/s00159-010-0029-x – volume: 425 start-page: 2854 year: 2012 ident: key 20180328153902_bib3 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21651.x – volume: 193 start-page: 7 year: 2011 ident: key 20180328153902_bib20 publication-title: ApJS doi: 10.1088/0067-0049/193/1/7 – volume: 288 start-page: 1060 year: 1997 ident: key 20180328153902_bib8 publication-title: MNRAS doi: 10.1093/mnras/288.4.1060 – volume: 551 start-page: L27 year: 2001 ident: key 20180328153902_bib47 publication-title: ApJ doi: 10.1086/319848 – volume: 432 start-page: 3438 year: 2013 ident: key 20180328153902_bib4 publication-title: MNRAS doi: 10.1093/mnras/stt696 – volume: 611 start-page: 399 year: 2004 ident: key 20180328153902_bib41 publication-title: ApJ doi: 10.1086/421935 – volume: 475 start-page: 4104 year: 2018 ident: key 20180328153902_bib18 publication-title: MNRAS doi: 10.1093/mnras/sty086 – volume: 592 start-page: 645 year: 2003 ident: key 20180328153902_bib78 publication-title: ApJ doi: 10.1086/375810 – volume: 425 start-page: L51 year: 2012 ident: key 20180328153902_bib74 publication-title: MNRAS doi: 10.1111/j.1745-3933.2012.01298.x – volume-title: MNRAS year: 2017 ident: key 20180328153902_bib9 – volume: 330 start-page: 129 year: 2002 ident: key 20180328153902_bib39 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05115.x – volume: 402 start-page: 1249 year: 2010 ident: key 20180328153902_bib62 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15960.x – volume: 527 start-page: L5 year: 1999 ident: key 20180328153902_bib13 publication-title: ApJ doi: 10.1086/312385 – volume: 388 start-page: 1627 year: 2008 ident: key 20180328153902_bib26 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13224.x – volume: 824 start-page: 119 year: 2016 ident: key 20180328153902_bib35 publication-title: ApJ doi: 10.3847/0004-637X/824/2/119 – volume: 432 start-page: 52 year: 1994 ident: key 20180328153902_bib46 publication-title: ApJ doi: 10.1086/174548 – volume: 53 start-page: 484 year: 1984 ident: key 20180328153902_bib11 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90073-1 – volume: 778 start-page: 178 year: 2013 ident: key 20180328153902_bib33 publication-title: ApJ doi: 10.1088/0004-637X/778/2/178 – volume: 471 start-page: 4878 year: 2017 ident: key 20180328153902_bib60 publication-title: MNRAS doi: 10.1093/mnras/stx1915 – volume: 393 start-page: 911 year: 2009 ident: key 20180328153902_bib28 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14156.x – volume: 440 start-page: 3778 year: 2014 ident: key 20180328153902_bib37 publication-title: MNRAS doi: 10.1093/mnras/stu444 – volume: 445 start-page: 1549 year: 2014 ident: key 20180328153902_bib36 publication-title: MNRAS doi: 10.1093/mnras/stu1870 – volume: 439 start-page: 1160 year: 2014 ident: key 20180328153902_bib53 publication-title: MNRAS doi: 10.1093/mnras/stu068 – volume: 458 start-page: 233 year: 2016 ident: key 20180328153902_bib45 publication-title: MNRAS doi: 10.1093/mnras/stw297 – volume: 610 start-page: 14 year: 2004 ident: key 20180328153902_bib72 publication-title: ApJ doi: 10.1086/421548 – volume: 558 start-page: A59 year: 2013 ident: key 20180328153902_bib61 publication-title: A&A doi: 10.1051/0004-6361/201321949 – volume: 1 start-page: 0075 year: 2017 ident: key 20180328153902_bib57 publication-title: Nature Astron. doi: 10.1038/s41550-017-0075 – volume: 778 start-page: 178 year: 2013 ident: key 20180328153902_bib34 publication-title: ApJ doi: 10.1088/0004-637X/778/2/178 – volume: 666 start-page: 1 year: 2007 ident: key 20180328153902_bib27 publication-title: ApJ doi: 10.1086/519445 – volume: 571 start-page: A16 year: 2014 ident: key 20180328153902_bib50 publication-title: A&A doi: 10.1051/0004-6361/201321591 – volume: 446 start-page: 3163 year: 2015 ident: key 20180328153902_bib44 publication-title: MNRAS doi: 10.1093/mnras/stu2244 – volume: 449 start-page: 3766 year: 2015 ident: key 20180328153902_bib55 publication-title: MNRAS doi: 10.1093/mnras/stv610 – volume: 192 start-page: 9 year: 2011 ident: key 20180328153902_bib69 publication-title: ApJS doi: 10.1088/0067-0049/192/1/9 – volume: 331 start-page: 1040 year: 2011 ident: key 20180328153902_bib19 publication-title: Science doi: 10.1126/science.1198027 – volume: 701 start-page: L133 year: 2009 ident: key 20180328153902_bib7 publication-title: ApJ doi: 10.1088/0004-637X/701/2/L133 – volume: 426 start-page: 1159 year: 2012 ident: key 20180328153902_bib58 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21852.x – volume: 289 start-page: 497 year: 1997 ident: key 20180328153902_bib17 publication-title: MNRAS doi: 10.1093/mnras/289.3.497 – volume: 474 start-page: 616 year: 2011 ident: key 20180328153902_bib49 publication-title: Nature doi: 10.1038/nature10159 – volume: 461 start-page: 111 year: 2016 ident: key 20180328153902_bib56 publication-title: MNRAS doi: 10.1093/mnras/stw1307 – volume: 234 start-page: 289 year: 1979 ident: key 20180328153902_bib12 publication-title: ApJ doi: 10.1086/157497 – volume: 214 start-page: 488 year: 1977 ident: key 20180328153902_bib63 publication-title: ApJ doi: 10.1086/155274 – volume: 453 start-page: 2901 year: 2015 ident: key 20180328153902_bib25 publication-title: MNRAS doi: 10.1093/mnras/stv1781 – volume: 842 start-page: L6 year: 2017 ident: key 20180328153902_bib76 publication-title: ApJ doi: 10.3847/2041-8213/aa7412 – volume: 44 start-page: 415 year: 2006 ident: key 20180328153902_bib22 publication-title: ARA&A doi: 10.1146/annurev.astro.44.051905.092514 – volume: 696 start-page: L146 year: 2009 ident: key 20180328153902_bib48 publication-title: ApJ doi: 10.1088/0004-637X/696/2/L146 – volume: 51 start-page: 511 year: 2013 ident: key 20180328153902_bib40 publication-title: ARA&A doi: 10.1146/annurev-astro-082708-101811 – volume: 469 start-page: 3329 year: 2017 ident: key 20180328153902_bib75 publication-title: MNRAS – volume: 709 start-page: 27 year: 2010 ident: key 20180328153902_bib71 publication-title: ApJ doi: 10.1088/0004-637X/709/1/27 – volume: 410 start-page: 919 year: 2011 ident: key 20180328153902_bib38 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17491.x |
SSID | ssj0004326 |
Score | 2.4611301 |
Snippet | Abstract
Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed... AbstractSupermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4636 |
SubjectTerms | Astrochemistry Atomic properties Chemical properties Cooling Deposition Fragmentation Ionization Organic chemistry Population III stars Quasars Red shift Seeds Star & galaxy formation Star formation Supermassive black holes Supermassive stars Universe |
Title | Fragmentation inside atomic cooling haloes exposed to Lyman–Werner radiation |
URI | https://www.proquest.com/docview/2120615719 |
Volume | 475 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTsJAEN4YTl6MogYUzR7Ui2mgbrvbHgmRECN4gcit2b8iCW0JrYncfAff0Cdxdls0GA23Njudw06n8-1M5xuErsBlIGgp3xFUwQGFM-oEUgun48WMCh1QrkxqYDiig4n3MPWnFUlS_kcJPyTtJF3xvJ0Xa5cY3k-Iv4Yjf_w0_el_JHasmqVfhAOAW_3g_vvhrdCz1c62-f7aoNI_RAcVGsTd0nxHaE-nddTo5iY_nSVrfIPtdZl-yOuoOQSMm61sKhwWe4s5AE57d4xGgEFnSdVKlOK5HcSJYTmZSywzM5xnhl_4ItM51m_LLNcKFxl-XCc8_Xz_eNZm5D1eGa4Co-AETfr3497AqaYlOJJQt3BiU3KjxOUsALdVklGpJGeaxb6vXKFJLAFtuVR2ICwqwnQA0Ip4vvC9WHQ8Tk5RLc1S3UDY12HApOk2J4EniApUqL2QcaGNcq6b6HazkZGsqMTNRItFVJa0SWS3PSq3vYmuv6WXJYXGP3IYbLJDpLUxWFT5Wh5B8DW4jLnh2W4N52gfIE9g6kF3bgvVitWrvgBYUYhL-059AUJw0Kc |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fragmentation+inside+atomic+cooling+haloes+exposed+to+Lyman%E2%80%93Werner+radiation&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Regan%2C+John+A&rft.au=Downes%2C+Turlough+P&rft.date=2018-04-21&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=475&rft.issue=4&rft.spage=4636&rft.epage=4647&rft_id=info:doi/10.1093%2Fmnras%2Fsty134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_sty134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |