Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data
The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption and low labor compared to traditional irrigation methods. The CPIS is a leader in mechanized irrigation in Brazil, with growth forecast for...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 13; p. 2159 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption and low labor compared to traditional irrigation methods. The CPIS is a leader in mechanized irrigation in Brazil, with growth forecast for the coming years. Therefore, the mapping of center pivot areas is a strategic factor for the estimation of agricultural production, ensuring food security, water resources management, and environmental conservation. In this regard, digital processing of satellite images is the primary tool allowing regional and continuous monitoring with low costs and agility. However, the automatic detection of CPIS using remote sensing images remains a challenge, and much research has adopted visual interpretation. Although CPIS presents a consistent circular shape in the landscape, these areas can have a high internal variation with different plantations that vary over time, which is difficult with just the spectral behavior. Deep learning using convolutional neural networks (CNNs) is an emerging approach that provokes a revolution in image segmentation, surpassing traditional methods, and achieving higher accuracy and efficiency. This research aimed to evaluate the use of deep semantic segmentation of CPIS from CNN-based algorithms using Landsat-8 surface reflectance images (seven bands). The developed methodology can be subdivided into the following steps: (a) Definition of three study areas with a high concentration of CPIS in Central Brazil; (b) acquisition of Landsat-8 images considering the seasonal variations of the rain and drought periods; (c) definition of CPIS datasets containing Landsat images and ground truth mask of 256×256 pixels; (d) training using three CNN architectures (U-net, Deep ResUnet, and SharpMask); (e) accuracy analysis; and (f) large image reconstruction using six stride values (8, 16, 32, 64, 128, and 256). The three methods achieved state-of-the-art results with a slight prevalence of U-net over Deep ResUnet and SharpMask (0.96, 0.95, and 0.92 Kappa coefficients, respectively). A novelty in this research was the overlapping pixel analysis in the large image reconstruction. Lower stride values had improvements quantified by the Receiver Operating Characteristic curve (ROC curve) and Kappa, and fewer errors in the frame edges were also perceptible. The overlapping images significantly improved the accuracy and reduced the error present in the edges of the classified frames. Additionally, we obtained greater accuracy results during the beginning of the dry season. The present study enabled the establishment of a database of center pivot images and an adequate methodology for mapping the center pivot in central Brazil. |
---|---|
AbstractList | The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption and low labor compared to traditional irrigation methods. The CPIS is a leader in mechanized irrigation in Brazil, with growth forecast for the coming years. Therefore, the mapping of center pivot areas is a strategic factor for the estimation of agricultural production, ensuring food security, water resources management, and environmental conservation. In this regard, digital processing of satellite images is the primary tool allowing regional and continuous monitoring with low costs and agility. However, the automatic detection of CPIS using remote sensing images remains a challenge, and much research has adopted visual interpretation. Although CPIS presents a consistent circular shape in the landscape, these areas can have a high internal variation with different plantations that vary over time, which is difficult with just the spectral behavior. Deep learning using convolutional neural networks (CNNs) is an emerging approach that provokes a revolution in image segmentation, surpassing traditional methods, and achieving higher accuracy and efficiency. This research aimed to evaluate the use of deep semantic segmentation of CPIS from CNN-based algorithms using Landsat-8 surface reflectance images (seven bands). The developed methodology can be subdivided into the following steps: (a) Definition of three study areas with a high concentration of CPIS in Central Brazil; (b) acquisition of Landsat-8 images considering the seasonal variations of the rain and drought periods; (c) definition of CPIS datasets containing Landsat images and ground truth mask of 256×256 pixels; (d) training using three CNN architectures (U-net, Deep ResUnet, and SharpMask); (e) accuracy analysis; and (f) large image reconstruction using six stride values (8, 16, 32, 64, 128, and 256). The three methods achieved state-of-the-art results with a slight prevalence of U-net over Deep ResUnet and SharpMask (0.96, 0.95, and 0.92 Kappa coefficients, respectively). A novelty in this research was the overlapping pixel analysis in the large image reconstruction. Lower stride values had improvements quantified by the Receiver Operating Characteristic curve (ROC curve) and Kappa, and fewer errors in the frame edges were also perceptible. The overlapping images significantly improved the accuracy and reduced the error present in the edges of the classified frames. Additionally, we obtained greater accuracy results during the beginning of the dry season. The present study enabled the establishment of a database of center pivot images and an adequate methodology for mapping the center pivot in central Brazil. |
Author | Silva, Cristiano Rosa Carvalho, Osmar Luiz Ferreira de Fontes Guimarães, Renato de Moura, Rebeca dos Santos Trancoso Gomes, Roberto Arnaldo de Albuquerque, Anesmar Olino de Carvalho Júnior, Osmar Abílio de Bem, Pablo Pozzobon Ferreira, Pedro Henrique Guimarães |
Author_xml | – sequence: 1 givenname: Anesmar Olino orcidid: 0000-0003-1561-7583 surname: de Albuquerque fullname: de Albuquerque, Anesmar Olino – sequence: 2 givenname: Osmar Abílio orcidid: 0000-0002-0346-1684 surname: de Carvalho Júnior fullname: de Carvalho Júnior, Osmar Abílio – sequence: 3 givenname: Osmar Luiz Ferreira de orcidid: 0000-0002-5619-8525 surname: Carvalho fullname: Carvalho, Osmar Luiz Ferreira de – sequence: 4 givenname: Pablo Pozzobon orcidid: 0000-0003-3868-8704 surname: de Bem fullname: de Bem, Pablo Pozzobon – sequence: 5 givenname: Pedro Henrique Guimarães surname: Ferreira fullname: Ferreira, Pedro Henrique Guimarães – sequence: 6 givenname: Rebeca dos Santos surname: de Moura fullname: de Moura, Rebeca dos Santos – sequence: 7 givenname: Cristiano Rosa surname: Silva fullname: Silva, Cristiano Rosa – sequence: 8 givenname: Roberto Arnaldo orcidid: 0000-0003-4724-4064 surname: Trancoso Gomes fullname: Trancoso Gomes, Roberto Arnaldo – sequence: 9 givenname: Renato orcidid: 0000-0002-9555-043X surname: Fontes Guimarães fullname: Fontes Guimarães, Renato |
BookMark | eNpNUVtLQzEMLqLg1L34Cw74Jkzb9FzWR5m3gaB4wceS9qTjjJ3T2VZh_97qRM1LviRfviTkgO0OfiDGjgU_k1Lx8xAFCAmiUjtsBLyBSQkKdv_hfTaOccmzSSkUL0fs9ZJoXTxRj0PqbAaLnoaEqfND4V0xywGF4qH78KmYh9AttqWnTUzUx8IF3xeP1PtEq03uHiK1xSUmPGJ7DleRxj_-kL1cXz3Pbid39zfz2cXdxMpapImrK2wAnbSNaauSUCljHSKfVm2ruCJhwEijhMKp5XXpGqCKG-FyqQUgecjmW93W41KvQ9dj2GiPnf5O-LDQGPJlK9ICWpNVkNetLBvgaLkhMwXT2LpRZLPWyVZrHfzbO8Wkl_49DHl9DSWAzPPLMrNOtywbfIyB3O9UwfXXH_TfH-Qna4Z8iA |
CitedBy_id | crossref_primary_10_3390_rs12244145 crossref_primary_10_1109_LGRS_2022_3172207 crossref_primary_10_1016_j_rsase_2021_100537 crossref_primary_10_3390_w16131897 crossref_primary_10_1109_JSTARS_2022_3169128 crossref_primary_10_1080_15481603_2023_2165256 crossref_primary_10_20396_labore_v18i00_8674282 crossref_primary_10_1016_j_jag_2022_102695 crossref_primary_10_3390_ijgi10120813 crossref_primary_10_3390_rs15051240 crossref_primary_10_3390_rs13061088 crossref_primary_10_3390_rs14040965 crossref_primary_10_1016_j_isprsjprs_2021_02_019 crossref_primary_10_3390_s20247089 crossref_primary_10_1016_j_ocecoaman_2022_106381 crossref_primary_10_1016_j_geomorph_2024_109212 crossref_primary_10_3390_rs13010039 crossref_primary_10_1016_j_isprsjprs_2022_02_002 crossref_primary_10_3390_rs12162576 crossref_primary_10_3390_w13030298 crossref_primary_10_1080_10106049_2021_1943009 crossref_primary_10_3390_s22010094 crossref_primary_10_1061_JIDEDH_IRENG_10155 crossref_primary_10_1088_1755_1315_614_1_012138 crossref_primary_10_3390_rs13040612 crossref_primary_10_3390_rs15030731 crossref_primary_10_1109_JSTARS_2021_3104726 crossref_primary_10_1016_j_compag_2022_106977 crossref_primary_10_1109_JSTARS_2024_3382096 crossref_primary_10_3390_en14102960 |
Cites_doi | 10.1016/j.jclepro.2018.07.066 10.3390/su10041084 10.3390/rs11030240 10.1109/LGRS.2018.2879492 10.1007/978-3-319-24574-4_28 10.3390/w10040377 10.1590/S1415-43662004000200026 10.1016/S0034-4257(01)00295-4 10.1016/j.rse.2016.04.008 10.3390/rs11040403 10.3390/rs70912160 10.3390/w11091758 10.1016/j.landusepol.2016.10.046 10.3390/rs3112473 10.1590/S0100-204X2011001100015 10.1146/annurev-publhealth-031816-044356 10.1007/s11263-015-0816-y 10.1016/j.rse.2008.04.010 10.3390/agriculture8100147 10.1155/2014/863141 10.1109/LGRS.2018.2802944 10.1016/j.isprsjprs.2020.01.013 10.3390/ijgi7050181 10.3390/rs11151774 10.3390/rs12101544 10.1016/j.asoc.2018.05.018 10.1109/ACCESS.2019.2903127 10.1016/j.rse.2014.04.008 10.3390/rs2092274 10.3390/rs11151836 10.1016/j.isprsjprs.2018.04.002 10.1002/ird.26 10.1016/j.compag.2008.04.001 10.3390/w7030975 10.1016/j.isprsjprs.2019.04.015 10.3390/rs10010144 10.3390/rs11070887 10.15809/irriga.2016v21n2p300-311 10.15809/irriga.2019v1n1p56-61 10.3390/rs2102388 10.1016/j.jhydrol.2009.07.031 10.1590/S0100-69162011000400015 10.1016/j.isprsjprs.2019.02.017 10.3390/rs2010211 10.3390/rs10091495 10.3390/rs11030274 10.1016/j.rse.2018.04.050 10.3390/rs11020118 10.1590/S1982-45132009000300007 10.1117/1.JRS.14.036509 10.3390/rs12060901 10.1109/LGRS.2017.2681128 10.1109/JSTARS.2017.2686488 10.1007/s10584-017-1947-7 10.1016/j.rse.2019.03.039 10.3390/app9152972 10.1590/S0100-69162005000200025 10.1007/978-3-319-46454-1 10.3390/rs11111382 10.1016/j.neucom.2015.09.116 10.3390/w11050933 10.3390/rs10121953 10.3390/rs11172053 10.3390/rs11091015 10.22409/engevista.v17i2.633 10.1016/j.rse.2017.10.030 10.1080/01431161.2010.531783 10.1109/IGARSS.2019.8898392 10.1109/LGRS.2017.2657778 10.1590/S0102-261X2008000400010 10.1007/s11263-009-0275-4 10.1016/j.rse.2007.05.017 10.1016/j.rse.2011.06.007 10.5194/hess-15-1117-2011 10.1007/s13735-017-0141-z 10.3390/rs11060626 10.1038/s41561-017-0004-5 10.1126/science.aal2011 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs12132159 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Agriculture |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_12dba8ca06d34720ac0beb82b7c679ec 10_3390_rs12132159 |
GeographicLocations | Brazil Cerrado Biome |
GeographicLocations_xml | – name: Cerrado Biome – name: Brazil |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c361t-f65a72af3c7bd54ea99bcfaa085dd909e1b2b3b919a8c064f72e50b1f09ed22e3 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:17:22 EDT 2024 Sat Nov 09 15:43:21 EST 2024 Thu Sep 26 21:29:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-f65a72af3c7bd54ea99bcfaa085dd909e1b2b3b919a8c064f72e50b1f09ed22e3 |
ORCID | 0000-0002-5619-8525 0000-0003-3868-8704 0000-0002-9555-043X 0000-0003-1561-7583 0000-0002-0346-1684 0000-0003-4724-4064 |
OpenAccessLink | https://www.proquest.com/docview/2422306444?pq-origsite=%requestingapplication% |
PQID | 2422306444 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_12dba8ca06d34720ac0beb82b7c679ec proquest_journals_2422306444 crossref_primary_10_3390_rs12132159 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Hadria (ref_30) 2010; 12 Guo (ref_37) 2018; 7 Siebert (ref_5) 2010; 384 Cotterman (ref_12) 2018; 146 ref_57 ref_56 ref_11 Pervez (ref_22) 2010; 2 ref_10 ref_52 Bernardes (ref_70) 2011; 46 ref_51 Mancosu (ref_8) 2015; 7 Alexandridis (ref_1) 2008; 64 Vermote (ref_73) 2016; 185 Russakovsky (ref_90) 2015; 115 Ozdogan (ref_21) 2008; 112 Chen (ref_20) 2018; 204 Gillespie (ref_93) 2011; 3 Congalton (ref_86) 1983; 49 Fieuzal (ref_29) 2011; 15 Crist (ref_6) 2017; 356 Sano (ref_66) 2005; 25 Gomes (ref_60) 2015; 17 ref_25 Xie (ref_55) 2017; 10 ref_24 Zhang (ref_77) 2018; 15 Huang (ref_45) 2018; 214 ref_65 ref_63 Rundquist (ref_19) 1989; 55 Martins (ref_31) 2016; 21 Li (ref_44) 2019; 7 ref_28 ref_27 Ma (ref_39) 2019; 152 Brunckhorst (ref_64) 2014; 33 Ambast (ref_14) 2002; 51 ref_26 Arvor (ref_69) 2011; 32 Sampaio (ref_75) 2008; 26 Thenkabail (ref_16) 2010; 2 Schmidt (ref_34) 2004; 8 Diakogiannis (ref_85) 2020; 162 ref_72 Althoff (ref_2) 2019; 1 Ferreira (ref_32) 2011; 31 Abade (ref_74) 2015; 7 Stehman (ref_91) 2011; 115 ref_35 ref_79 Ye (ref_92) 2018; 141 Heller (ref_18) 1979; 45 ref_78 Kussul (ref_41) 2017; 14 Li (ref_42) 2020; 14 ref_76 Pervez (ref_23) 2014; 149 Li (ref_54) 2019; 150 Oprea (ref_36) 2018; 70 Guo (ref_38) 2016; 187 Scott (ref_43) 2017; 14 (ref_7) 2018; 198 ref_83 Foody (ref_87) 2002; 80 ref_82 ref_81 Gomes (ref_59) 2014; 66 Feng (ref_80) 2018; 16 Everingham (ref_88) 2010; 88 Ozdogan (ref_15) 2010; 2 Jeppesen (ref_53) 2019; 229 Silva (ref_67) 2015; 17 ref_47 ref_46 ref_89 Galford (ref_68) 2008; 112 Gusso (ref_71) 2014; 2014 ref_40 ref_84 Myers (ref_13) 2017; 38 ref_3 Menke (ref_62) 2009; 21 Davis (ref_17) 2017; 10 Hessel (ref_58) 2012; 26 ref_49 ref_48 ref_9 Sano (ref_33) 2005; 25 Gomes (ref_61) 2017; 61 ref_4 |
References_xml | – volume: 198 start-page: 1120 year: 2018 ident: ref_7 article-title: Economic analysis of sustainable water use: A review of worldwide research publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.07.066 – ident: ref_11 doi: 10.3390/su10041084 – ident: ref_51 doi: 10.3390/rs11030240 – volume: 16 start-page: 618 year: 2018 ident: ref_80 article-title: Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2879492 contributor: fullname: Feng – ident: ref_76 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_10 doi: 10.3390/w10040377 – volume: 8 start-page: 330 year: 2004 ident: ref_34 article-title: Spatial distribution of center pivots in Brazil: I-southeast region publication-title: Rev. Bras. Eng. Agríc. Ambient. doi: 10.1590/S1415-43662004000200026 contributor: fullname: Schmidt – volume: 80 start-page: 185 year: 2002 ident: ref_87 article-title: Status of land cover classification accuracy assessment publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00295-4 contributor: fullname: Foody – volume: 185 start-page: 46 year: 2016 ident: ref_73 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.008 contributor: fullname: Vermote – ident: ref_81 doi: 10.3390/rs11040403 – volume: 7 start-page: 12160 year: 2015 ident: ref_74 article-title: Comparative Analysis of MODIS Time-Series Classification Using Support Vector Machines and Methods Based upon Distance and Similarity Measures in the Brazilian Cerrado-Caatinga Boundary publication-title: Remote Sens. doi: 10.3390/rs70912160 contributor: fullname: Abade – ident: ref_9 doi: 10.3390/w11091758 – volume: 61 start-page: 40 year: 2017 ident: ref_61 article-title: Deforestation analysis in protected areas and scenario simulation for structural corridors in the agricultural frontier of Western Bahia, Brazil publication-title: Land Use Policy doi: 10.1016/j.landusepol.2016.10.046 contributor: fullname: Gomes – volume: 3 start-page: 2473 year: 2011 ident: ref_93 article-title: A New approach to change vector analysis using distance and similarity measures publication-title: Remote Sens. doi: 10.3390/rs3112473 contributor: fullname: Gillespie – ident: ref_65 – volume: 46 start-page: 1530 year: 2011 ident: ref_70 article-title: Imagens mono e multitemporais MODIS para estimativa da área com soja no Estado de Mato Grosso publication-title: Pesqui. Agropecu. Bras. doi: 10.1590/S0100-204X2011001100015 contributor: fullname: Bernardes – volume: 38 start-page: 259 year: 2017 ident: ref_13 article-title: Climate change and global food systems: Potential impacts on food security and undernutrition publication-title: Annu. Rev. Public Health doi: 10.1146/annurev-publhealth-031816-044356 contributor: fullname: Myers – volume: 115 start-page: 211 year: 2015 ident: ref_90 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y contributor: fullname: Russakovsky – volume: 112 start-page: 3520 year: 2008 ident: ref_21 article-title: A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.04.010 contributor: fullname: Ozdogan – ident: ref_56 doi: 10.3390/agriculture8100147 – volume: 17 start-page: 411 year: 2015 ident: ref_60 article-title: Landscape-fragmentation change detection from agricultural expansion in the Brazilian savanna, Western Bahia, Brazil (1988–2011) publication-title: Reg. Environ. Chang. contributor: fullname: Gomes – volume: 2014 start-page: 863141 year: 2014 ident: ref_71 article-title: Assessing the modis crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil publication-title: Sci. World J. doi: 10.1155/2014/863141 contributor: fullname: Gusso – volume: 15 start-page: 749 year: 2018 ident: ref_77 article-title: Road extraction by deep residual U-Net publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2802944 contributor: fullname: Zhang – volume: 162 start-page: 94 year: 2020 ident: ref_85 article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.013 contributor: fullname: Diakogiannis – ident: ref_52 doi: 10.3390/ijgi7050181 – ident: ref_57 doi: 10.3390/rs11151774 – ident: ref_47 doi: 10.3390/rs12101544 – volume: 33 start-page: 228 year: 2014 ident: ref_64 article-title: Aplicação de SIG na gestão de conflitos pelo uso da água na porção goiana da bacia hidrográfica do rio São Marcos, município de Cristalina–GO publication-title: Geociências contributor: fullname: Brunckhorst – ident: ref_4 – volume: 70 start-page: 41 year: 2018 ident: ref_36 article-title: A survey on deep learning techniques for image and video semantic segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.018 contributor: fullname: Oprea – volume: 7 start-page: 36274 year: 2019 ident: ref_44 article-title: Deep learning-based classification methods for remote sensing images in urban built-up areas publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903127 contributor: fullname: Li – volume: 149 start-page: 155 year: 2014 ident: ref_23 article-title: Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.04.008 contributor: fullname: Pervez – volume: 2 start-page: 2274 year: 2010 ident: ref_15 article-title: Remote sensing of irrigated agriculture: Opportunities and challenges publication-title: Remote Sens. doi: 10.3390/rs2092274 contributor: fullname: Ozdogan – ident: ref_24 doi: 10.3390/rs11151836 – volume: 141 start-page: 137 year: 2018 ident: ref_92 article-title: A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.002 contributor: fullname: Ye – volume: 51 start-page: 25 year: 2002 ident: ref_14 article-title: Satellite remote sensing to support management of irrigation systems: Concepts and approaches publication-title: Irrig. Drain. doi: 10.1002/ird.26 contributor: fullname: Ambast – volume: 64 start-page: 93 year: 2008 ident: ref_1 article-title: Mapping irrigated area in Mediterranean basins using low cost satellite Earth Observation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2008.04.001 contributor: fullname: Alexandridis – volume: 26 start-page: 128 year: 2012 ident: ref_58 article-title: Dinâmica e sucessão dos padrões da paisagem agrícola no município de Cocos (Bahia) publication-title: RAE GA contributor: fullname: Hessel – ident: ref_72 – volume: 7 start-page: 975 year: 2015 ident: ref_8 article-title: Water scarcity and future challenges for food production publication-title: Water doi: 10.3390/w7030975 contributor: fullname: Mancosu – volume: 152 start-page: 166 year: 2019 ident: ref_39 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 contributor: fullname: Ma – volume: 55 start-page: 587 year: 1989 ident: ref_19 article-title: The Nebraska Center-Pivot Inventory: An example of operational satellite remote sensing on a long-term basis publication-title: Photogramm. Eng. Remote Sens. contributor: fullname: Rundquist – ident: ref_46 doi: 10.3390/rs10010144 – ident: ref_25 doi: 10.3390/rs11070887 – volume: 21 start-page: 300 year: 2016 ident: ref_31 article-title: Levantamento da área irrigada por pivô central no Estado do Rio Grande do Sul publication-title: IRRIGA doi: 10.15809/irriga.2016v21n2p300-311 contributor: fullname: Martins – volume: 1 start-page: 56 year: 2019 ident: ref_2 article-title: The expansion of center-pivot irrigation in the Cerrado biome publication-title: IRRIGA doi: 10.15809/irriga.2019v1n1p56-61 contributor: fullname: Althoff – volume: 2 start-page: 2388 year: 2010 ident: ref_22 article-title: Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics publication-title: Remote Sens. doi: 10.3390/rs2102388 contributor: fullname: Pervez – ident: ref_3 – volume: 384 start-page: 198 year: 2010 ident: ref_5 article-title: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.07.031 contributor: fullname: Siebert – volume: 31 start-page: 771 year: 2011 ident: ref_32 article-title: Cadastral maps of irrigated areas by center pivots in the State of Minas Gerais, using CBERS-2B/CCD satellite imaging publication-title: Eng. Agríc doi: 10.1590/S0100-69162011000400015 contributor: fullname: Ferreira – volume: 150 start-page: 197 year: 2019 ident: ref_54 article-title: Deep learning-based cloud detection for medium and high-resolution remote sensing images of different sensors publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.017 contributor: fullname: Li – volume: 49 start-page: 1671 year: 1983 ident: ref_86 article-title: Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques publication-title: Photogramm. Eng. Remote Sensing contributor: fullname: Congalton – volume: 2 start-page: 211 year: 2010 ident: ref_16 article-title: A Holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches publication-title: Remote Sens. doi: 10.3390/rs2010211 contributor: fullname: Thenkabail – ident: ref_27 doi: 10.3390/rs10091495 – volume: 12 start-page: S32 year: 2010 ident: ref_30 article-title: Potentiality of optical and radar satellite data at high spatio-temporal resolutions for the monitoring of irrigated wheat crops in Morocco publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Hadria – ident: ref_40 doi: 10.3390/rs11030274 – volume: 214 start-page: 73 year: 2018 ident: ref_45 article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.050 contributor: fullname: Huang – ident: ref_28 doi: 10.3390/rs11020118 – volume: 21 start-page: 315 year: 2009 ident: ref_62 article-title: Análise das mudanças do uso agrícola da terra a partir de dados de sensoriamento remoto multitemporal no município de Luís EduardoMagalhães (BA–Brasil) publication-title: Soc. Nat. doi: 10.1590/S1982-45132009000300007 contributor: fullname: Menke – volume: 14 start-page: 1 year: 2020 ident: ref_42 article-title: Comparison of land use classification based on convolutional neural network publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.14.036509 contributor: fullname: Li – ident: ref_48 doi: 10.3390/rs12060901 – volume: 14 start-page: 778 year: 2017 ident: ref_41 article-title: Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2681128 contributor: fullname: Kussul – volume: 10 start-page: 3631 year: 2017 ident: ref_55 article-title: Multilevel cloud detection in remote sensing images based on deep learning publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2686488 contributor: fullname: Xie – volume: 146 start-page: 187 year: 2018 ident: ref_12 article-title: Groundwater depletion and climate change: Future prospects of crop production in the Central High Plains Aquifer publication-title: Clim. Chang. doi: 10.1007/s10584-017-1947-7 contributor: fullname: Cotterman – volume: 229 start-page: 247 year: 2019 ident: ref_53 article-title: A cloud detection algorithm for satellite imagery based on deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.039 contributor: fullname: Jeppesen – ident: ref_83 doi: 10.3390/app9152972 – volume: 25 start-page: 508 year: 2005 ident: ref_66 article-title: Estimativa da Variação na Demanda de Água para Irrigação por Pivô-Central no Distrito Federal entre 1992 e 2002 publication-title: Eng. Agríc. doi: 10.1590/S0100-69162005000200025 contributor: fullname: Sano – ident: ref_78 doi: 10.1007/978-3-319-46454-1 – ident: ref_50 doi: 10.3390/rs11111382 – volume: 187 start-page: 27 year: 2016 ident: ref_38 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 contributor: fullname: Guo – ident: ref_63 doi: 10.3390/w11050933 – ident: ref_26 doi: 10.3390/rs10121953 – ident: ref_82 doi: 10.3390/rs11172053 – ident: ref_79 doi: 10.3390/rs11091015 – volume: 17 start-page: 166 year: 2015 ident: ref_67 article-title: Conflito pelo uso da água na bacia hidrográfica do rio São Marcos: O estudo de caso da UHE batalha publication-title: Engevista doi: 10.22409/engevista.v17i2.633 contributor: fullname: Silva – volume: 204 start-page: 197 year: 2018 ident: ref_20 article-title: Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.030 contributor: fullname: Chen – ident: ref_89 – volume: 32 start-page: 7847 year: 2011 ident: ref_69 article-title: Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.531783 contributor: fullname: Arvor – ident: ref_84 doi: 10.1109/IGARSS.2019.8898392 – volume: 14 start-page: 549 year: 2017 ident: ref_43 article-title: Training deep convolutional neural networks for land–cover classification of high-resolution imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2657778 contributor: fullname: Scott – volume: 26 start-page: 505 year: 2008 ident: ref_75 article-title: Classificação de padrões de savana usando assinaturas temporais NDVI do sensor MODIS no Parque Nacional Chapada dos Veadeiros publication-title: Rev. Bras. Geof. doi: 10.1590/S0102-261X2008000400010 contributor: fullname: Sampaio – volume: 88 start-page: 303 year: 2010 ident: ref_88 article-title: The PASCAL visual object classes (VOC) challenge publication-title: IJCV doi: 10.1007/s11263-009-0275-4 contributor: fullname: Everingham – volume: 25 start-page: 508 year: 2005 ident: ref_33 article-title: Estimative variation in the water demand for irrigation by center pivot in Distrito Federal-Brazil, between 1992 and 2002 publication-title: Eng. Agríc. doi: 10.1590/S0100-69162005000200025 contributor: fullname: Sano – volume: 112 start-page: 576 year: 2008 ident: ref_68 article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.05.017 contributor: fullname: Galford – volume: 115 start-page: 3044 year: 2011 ident: ref_91 article-title: Pixels, blocks of pixels, and polygons: Choosing a spatial unit for thematic accuracy assessment publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.06.007 contributor: fullname: Stehman – volume: 66 start-page: 1157 year: 2014 ident: ref_59 article-title: Detecção de mudança do uso e cobertura da terra usando o método de pós-classificação na fronteira agrícola do Oeste da Bahia sobre o Grupo Urucuia durante o período 1988–2011 publication-title: Rev. Bras. Cartogr. contributor: fullname: Gomes – volume: 15 start-page: 1117 year: 2011 ident: ref_29 article-title: Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-1117-2011 contributor: fullname: Fieuzal – volume: 7 start-page: 87 year: 2018 ident: ref_37 article-title: A review of semantic segmentation using deep neural networks publication-title: Int. J. Multimed. Inf. Retr. doi: 10.1007/s13735-017-0141-z contributor: fullname: Guo – ident: ref_49 doi: 10.3390/rs11060626 – ident: ref_35 doi: 10.1016/j.asoc.2018.05.018 – volume: 10 start-page: 919 year: 2017 ident: ref_17 article-title: Increased food production and reduced water use through optimized crop distribution publication-title: Nat. Geosci. doi: 10.1038/s41561-017-0004-5 contributor: fullname: Davis – volume: 356 start-page: 260 year: 2017 ident: ref_6 article-title: The interaction of human population, food production, and biodiversity protection publication-title: Science doi: 10.1126/science.aal2011 contributor: fullname: Crist – volume: 45 start-page: 1379 year: 1979 ident: ref_18 article-title: Estimating irrigated land acreage from Landsat imagery publication-title: Photogramm. Eng. Remote Sens. contributor: fullname: Heller |
SSID | ssj0000331904 |
Score | 2.4552104 |
Snippet | The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2159 |
SubjectTerms | Agricultural management Agricultural production Agriculture Algorithms Artificial neural networks Center-pivot irrigation Classification Consumption Deep learning Digital imaging Drought Dry season Environmental management Error reduction Food security Food supply Freshwater resources Ground truth Groundwater Image acquisition Image detection Image processing Image reconstruction Image segmentation Irrigation Irrigation systems Landsat Landsat satellites Landsat-8 Machine learning Mapping Neural networks Pixels Plantations Precision farming Remote sensing Resource conservation Resource management ResUnet Satellite imagery Seasonal variations Semantic segmentation Semantics SharpMask U-net Vegetation Water consumption Water resources Water resources management |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE9cXAb0uNo82m6OvRQVFfODeSpJOVHC7S7cK---dpFVXPHjxUChNQ8s36cx8TeYLIQfIuDgeyFS9gK40KszvImv1KlOFh1SnvVCNfHWdnT_Iy0E6mNnqK6wJa-SBG-AOGS-s6TmTZIWQiifGJRZsj1vlMqXBRe-b6BkyFX2wwKGVyEaPVCCvP6wmQbwMA5z-EYGiUP8vPxyDS3-ZLLVZIT1q3maFzEG5ShbaDcqfp2vk8RRgTO9giEC8ODx5GrZFQyUdeRr-0UJFb17eRzW9qKqom4FNrR45DUUk9BbQLPA6xd7lBAp6amqzTh76Z_cn5912T4SuExmruz5LjeLGC6dskUowWlvnjcHMqSh0ooFZboXVTCNomG54xSFNLPPYVHAOYoPMl6MSNgk1yjjQTDIJXjrsxoSz0oowNZlkXnfI_idO-biRvsiRMgQ08280O-Q4QPh1R5CrjhfQiHlrxPwvI3bIzqcB8vYbmuSYPER-JOXWfzxjmyzywJXjUtsdMl9Xb7CLCUVt9-LY-QBQH8qS priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data |
URI | https://www.proquest.com/docview/2422306444 https://doaj.org/article/12dba8ca06d34720ac0beb82b7c679ec |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA9VH2ofSmtbvNYeAX1d3Hzs5vJUtHq1hYr4QX1b8jE5Bd297m0L_ved5HJKKfRhYdkksEySmflNMr8hZA8RF8cHkWoQUEij4vkuotagauUDVLqaxGzk76f1yZX8dl1d54DbIl-rXOnEpKh952KMfB9NSfKWpfw0_1nEqlHxdDWX0FgjG4wrFcHXZPrlMcZSClxgpVyykgpE9_v9IlKYoZnTf9mhRNf_jzZOJmb6irzMviE9WE7ma_IM2i3y4mDWZ34M2CLPc9Hym4c35McRwJxewD0K59bhy-w-JxK1tAs0xm2hp2e3v7uBfu37xKWBTZmjnMbEEnoOOFVw94Cj2wV4emQG85ZcTY8vP58UuU5C4UTNhiLUlVHcBOGU9ZUEo7V1wRj0przXpQZmuRVWM20mDkUYFIeqtCxgk-ccxDuy3nYtbBNqlHGgmWQSgnQ4jAlnpRXxuLKsgx6R3ZXUmvmSDqNBGBFl2zzJdkQOo0Afe0QK6_Sh62dN3hEN497i_5iy9kIqXhpXWrATbpWrlQY3Ijur6Wjyvlo0T6vg_f-bP5BNHpFxuli7Q9aH_hd8RPdhsOO0RsZk4_D49Ox8nED4H8vQyBs |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEJ4oPKAPRlHDIWoTfd2w23a31ycDAjkULgQh8rbpj-lJIrvn3mLCf-90rwcxJj5sstm2yWbazsw37XwD8JEQF6eHkGoQmEmj4vkuodagKuUDlrocx2zk02k1uZRfrsqrFHBbpGuVK504KGrfuhgj3yVTMnjLUn6a_8pi1ah4uppKaDyG9UhVReBrff9wenZ-H2XJBS2xXC55SQXh-91uEUnMyNDpvyzRQNj_jz4ejMzRc3iWvEO2t5zOF_AIm014ujfrEkMGbsJGKlv-4-4lfD9AnLNveEPiuXb0MrtJqUQNawOLkVvs2Nn177Znx103sGlQU2IpZzG1hJ0jTRb-vKPRzQI9OzC9eQWXR4cXnydZqpSQOVEVfRaq0ihugnDK-lKi0dq6YAz5U97rXGNhuRVWF9qMHQkxKI5lbotATZ5zFK9hrWkb3AJmlHGoC1lIDNLRsEI4K62IB5Z5FfQIPqykVs-XhBg1AYko2_pBtiPYjwK97xFJrIcPbTer056oC-4t_Y_JKy-k4rlxuUU75la5Sml0I9hZTUeddtaiflgH2_9vfg8bk4vTk_rkePr1DTzhEScP12x3YK3vbvEtORO9fZdWzB-2M8nd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96Ba0PRavS01YD-rpcNsluLk_Sej1aP46jWuzbko_JWWh3r3ur0P_eyV6uRQQfFpZNAstkMt_5DSHv0ePi-KCnGgRk0qiY30WvNahS-QCFLsbxNvLXWXlyLj9dFBep_mmVyio3MrEX1L5xMUY-QlXSW8tSjkIqi5hPph-WN1nsIBUzramdxkOypWQp2IBsHR3P5md3ERcmkN2YXGOUCvT1R-0qApqh0tN_aaUevP8f2dwrnOlTspMsRXq43tpn5AHUu-TJ4aJNaBmwSx6nFuY_b5-THxOAJf0G10iqS4cvi-t0raimTaAxigstnV_-bjp62rY9sgYOJcRyGq-Z0DPAjYOrW1xdr8DTienMC3I-Pf7-8SRLXRMyJ8q8y0JZGMVNEE5ZX0gwWlsXjEHbynvNNOSWW2F1rs3YIUGD4lAwmwcc8pyDeEkGdVPDHqFGGQc6l7mEIB0uy4Wz0oqYvGRl0EPybkO1arkGx6jQqYi0re5pOyRHkaB3MyKgdf-haRdVOh9Vzr3F_zGs9EIqzoxjFuyYW-VKpcENyf5mO6p0ylbVPU-8-v_wW_IImaX6cjr7_Jps8-gy9xW3-2TQtb_gAO2Kzr5JDPMH2YTOCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Semantic+Segmentation+of+Center+Pivot+Irrigation+Systems+from+Remotely+Sensed+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=de+Albuquerque%2C+Anesmar+Olino&rft.au=de+Carvalho+J%C3%BAnior%2C+Osmar+Ab%C3%ADlio&rft.au=Carvalho%2C+Osmar+Luiz+Ferreira+de&rft.au=de+Bem%2C+Pablo+Pozzobon&rft.date=2020-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=13&rft.spage=2159&rft_id=info:doi/10.3390%2Frs12132159&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12132159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |