Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data

The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption and low labor compared to traditional irrigation methods. The CPIS is a leader in mechanized irrigation in Brazil, with growth forecast for...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 13; p. 2159
Main Authors de Albuquerque, Anesmar Olino, de Carvalho Júnior, Osmar Abílio, Carvalho, Osmar Luiz Ferreira de, de Bem, Pablo Pozzobon, Ferreira, Pedro Henrique Guimarães, de Moura, Rebeca dos Santos, Silva, Cristiano Rosa, Trancoso Gomes, Roberto Arnaldo, Fontes Guimarães, Renato
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption and low labor compared to traditional irrigation methods. The CPIS is a leader in mechanized irrigation in Brazil, with growth forecast for the coming years. Therefore, the mapping of center pivot areas is a strategic factor for the estimation of agricultural production, ensuring food security, water resources management, and environmental conservation. In this regard, digital processing of satellite images is the primary tool allowing regional and continuous monitoring with low costs and agility. However, the automatic detection of CPIS using remote sensing images remains a challenge, and much research has adopted visual interpretation. Although CPIS presents a consistent circular shape in the landscape, these areas can have a high internal variation with different plantations that vary over time, which is difficult with just the spectral behavior. Deep learning using convolutional neural networks (CNNs) is an emerging approach that provokes a revolution in image segmentation, surpassing traditional methods, and achieving higher accuracy and efficiency. This research aimed to evaluate the use of deep semantic segmentation of CPIS from CNN-based algorithms using Landsat-8 surface reflectance images (seven bands). The developed methodology can be subdivided into the following steps: (a) Definition of three study areas with a high concentration of CPIS in Central Brazil; (b) acquisition of Landsat-8 images considering the seasonal variations of the rain and drought periods; (c) definition of CPIS datasets containing Landsat images and ground truth mask of 256×256 pixels; (d) training using three CNN architectures (U-net, Deep ResUnet, and SharpMask); (e) accuracy analysis; and (f) large image reconstruction using six stride values (8, 16, 32, 64, 128, and 256). The three methods achieved state-of-the-art results with a slight prevalence of U-net over Deep ResUnet and SharpMask (0.96, 0.95, and 0.92 Kappa coefficients, respectively). A novelty in this research was the overlapping pixel analysis in the large image reconstruction. Lower stride values had improvements quantified by the Receiver Operating Characteristic curve (ROC curve) and Kappa, and fewer errors in the frame edges were also perceptible. The overlapping images significantly improved the accuracy and reduced the error present in the edges of the classified frames. Additionally, we obtained greater accuracy results during the beginning of the dry season. The present study enabled the establishment of a database of center pivot images and an adequate methodology for mapping the center pivot in central Brazil.
AbstractList The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption and low labor compared to traditional irrigation methods. The CPIS is a leader in mechanized irrigation in Brazil, with growth forecast for the coming years. Therefore, the mapping of center pivot areas is a strategic factor for the estimation of agricultural production, ensuring food security, water resources management, and environmental conservation. In this regard, digital processing of satellite images is the primary tool allowing regional and continuous monitoring with low costs and agility. However, the automatic detection of CPIS using remote sensing images remains a challenge, and much research has adopted visual interpretation. Although CPIS presents a consistent circular shape in the landscape, these areas can have a high internal variation with different plantations that vary over time, which is difficult with just the spectral behavior. Deep learning using convolutional neural networks (CNNs) is an emerging approach that provokes a revolution in image segmentation, surpassing traditional methods, and achieving higher accuracy and efficiency. This research aimed to evaluate the use of deep semantic segmentation of CPIS from CNN-based algorithms using Landsat-8 surface reflectance images (seven bands). The developed methodology can be subdivided into the following steps: (a) Definition of three study areas with a high concentration of CPIS in Central Brazil; (b) acquisition of Landsat-8 images considering the seasonal variations of the rain and drought periods; (c) definition of CPIS datasets containing Landsat images and ground truth mask of 256×256 pixels; (d) training using three CNN architectures (U-net, Deep ResUnet, and SharpMask); (e) accuracy analysis; and (f) large image reconstruction using six stride values (8, 16, 32, 64, 128, and 256). The three methods achieved state-of-the-art results with a slight prevalence of U-net over Deep ResUnet and SharpMask (0.96, 0.95, and 0.92 Kappa coefficients, respectively). A novelty in this research was the overlapping pixel analysis in the large image reconstruction. Lower stride values had improvements quantified by the Receiver Operating Characteristic curve (ROC curve) and Kappa, and fewer errors in the frame edges were also perceptible. The overlapping images significantly improved the accuracy and reduced the error present in the edges of the classified frames. Additionally, we obtained greater accuracy results during the beginning of the dry season. The present study enabled the establishment of a database of center pivot images and an adequate methodology for mapping the center pivot in central Brazil.
Author Silva, Cristiano Rosa
Carvalho, Osmar Luiz Ferreira de
Fontes Guimarães, Renato
de Moura, Rebeca dos Santos
Trancoso Gomes, Roberto Arnaldo
de Albuquerque, Anesmar Olino
de Carvalho Júnior, Osmar Abílio
de Bem, Pablo Pozzobon
Ferreira, Pedro Henrique Guimarães
Author_xml – sequence: 1
  givenname: Anesmar Olino
  orcidid: 0000-0003-1561-7583
  surname: de Albuquerque
  fullname: de Albuquerque, Anesmar Olino
– sequence: 2
  givenname: Osmar Abílio
  orcidid: 0000-0002-0346-1684
  surname: de Carvalho Júnior
  fullname: de Carvalho Júnior, Osmar Abílio
– sequence: 3
  givenname: Osmar Luiz Ferreira de
  orcidid: 0000-0002-5619-8525
  surname: Carvalho
  fullname: Carvalho, Osmar Luiz Ferreira de
– sequence: 4
  givenname: Pablo Pozzobon
  orcidid: 0000-0003-3868-8704
  surname: de Bem
  fullname: de Bem, Pablo Pozzobon
– sequence: 5
  givenname: Pedro Henrique Guimarães
  surname: Ferreira
  fullname: Ferreira, Pedro Henrique Guimarães
– sequence: 6
  givenname: Rebeca dos Santos
  surname: de Moura
  fullname: de Moura, Rebeca dos Santos
– sequence: 7
  givenname: Cristiano Rosa
  surname: Silva
  fullname: Silva, Cristiano Rosa
– sequence: 8
  givenname: Roberto Arnaldo
  orcidid: 0000-0003-4724-4064
  surname: Trancoso Gomes
  fullname: Trancoso Gomes, Roberto Arnaldo
– sequence: 9
  givenname: Renato
  orcidid: 0000-0002-9555-043X
  surname: Fontes Guimarães
  fullname: Fontes Guimarães, Renato
BookMark eNpNUVtLQzEMLqLg1L34Cw74Jkzb9FzWR5m3gaB4wceS9qTjjJ3T2VZh_97qRM1LviRfviTkgO0OfiDGjgU_k1Lx8xAFCAmiUjtsBLyBSQkKdv_hfTaOccmzSSkUL0fs9ZJoXTxRj0PqbAaLnoaEqfND4V0xywGF4qH78KmYh9AttqWnTUzUx8IF3xeP1PtEq03uHiK1xSUmPGJ7DleRxj_-kL1cXz3Pbid39zfz2cXdxMpapImrK2wAnbSNaauSUCljHSKfVm2ruCJhwEijhMKp5XXpGqCKG-FyqQUgecjmW93W41KvQ9dj2GiPnf5O-LDQGPJlK9ICWpNVkNetLBvgaLkhMwXT2LpRZLPWyVZrHfzbO8Wkl_49DHl9DSWAzPPLMrNOtywbfIyB3O9UwfXXH_TfH-Qna4Z8iA
CitedBy_id crossref_primary_10_3390_rs12244145
crossref_primary_10_1109_LGRS_2022_3172207
crossref_primary_10_1016_j_rsase_2021_100537
crossref_primary_10_3390_w16131897
crossref_primary_10_1109_JSTARS_2022_3169128
crossref_primary_10_1080_15481603_2023_2165256
crossref_primary_10_20396_labore_v18i00_8674282
crossref_primary_10_1016_j_jag_2022_102695
crossref_primary_10_3390_ijgi10120813
crossref_primary_10_3390_rs15051240
crossref_primary_10_3390_rs13061088
crossref_primary_10_3390_rs14040965
crossref_primary_10_1016_j_isprsjprs_2021_02_019
crossref_primary_10_3390_s20247089
crossref_primary_10_1016_j_ocecoaman_2022_106381
crossref_primary_10_1016_j_geomorph_2024_109212
crossref_primary_10_3390_rs13010039
crossref_primary_10_1016_j_isprsjprs_2022_02_002
crossref_primary_10_3390_rs12162576
crossref_primary_10_3390_w13030298
crossref_primary_10_1080_10106049_2021_1943009
crossref_primary_10_3390_s22010094
crossref_primary_10_1061_JIDEDH_IRENG_10155
crossref_primary_10_1088_1755_1315_614_1_012138
crossref_primary_10_3390_rs13040612
crossref_primary_10_3390_rs15030731
crossref_primary_10_1109_JSTARS_2021_3104726
crossref_primary_10_1016_j_compag_2022_106977
crossref_primary_10_1109_JSTARS_2024_3382096
crossref_primary_10_3390_en14102960
Cites_doi 10.1016/j.jclepro.2018.07.066
10.3390/su10041084
10.3390/rs11030240
10.1109/LGRS.2018.2879492
10.1007/978-3-319-24574-4_28
10.3390/w10040377
10.1590/S1415-43662004000200026
10.1016/S0034-4257(01)00295-4
10.1016/j.rse.2016.04.008
10.3390/rs11040403
10.3390/rs70912160
10.3390/w11091758
10.1016/j.landusepol.2016.10.046
10.3390/rs3112473
10.1590/S0100-204X2011001100015
10.1146/annurev-publhealth-031816-044356
10.1007/s11263-015-0816-y
10.1016/j.rse.2008.04.010
10.3390/agriculture8100147
10.1155/2014/863141
10.1109/LGRS.2018.2802944
10.1016/j.isprsjprs.2020.01.013
10.3390/ijgi7050181
10.3390/rs11151774
10.3390/rs12101544
10.1016/j.asoc.2018.05.018
10.1109/ACCESS.2019.2903127
10.1016/j.rse.2014.04.008
10.3390/rs2092274
10.3390/rs11151836
10.1016/j.isprsjprs.2018.04.002
10.1002/ird.26
10.1016/j.compag.2008.04.001
10.3390/w7030975
10.1016/j.isprsjprs.2019.04.015
10.3390/rs10010144
10.3390/rs11070887
10.15809/irriga.2016v21n2p300-311
10.15809/irriga.2019v1n1p56-61
10.3390/rs2102388
10.1016/j.jhydrol.2009.07.031
10.1590/S0100-69162011000400015
10.1016/j.isprsjprs.2019.02.017
10.3390/rs2010211
10.3390/rs10091495
10.3390/rs11030274
10.1016/j.rse.2018.04.050
10.3390/rs11020118
10.1590/S1982-45132009000300007
10.1117/1.JRS.14.036509
10.3390/rs12060901
10.1109/LGRS.2017.2681128
10.1109/JSTARS.2017.2686488
10.1007/s10584-017-1947-7
10.1016/j.rse.2019.03.039
10.3390/app9152972
10.1590/S0100-69162005000200025
10.1007/978-3-319-46454-1
10.3390/rs11111382
10.1016/j.neucom.2015.09.116
10.3390/w11050933
10.3390/rs10121953
10.3390/rs11172053
10.3390/rs11091015
10.22409/engevista.v17i2.633
10.1016/j.rse.2017.10.030
10.1080/01431161.2010.531783
10.1109/IGARSS.2019.8898392
10.1109/LGRS.2017.2657778
10.1590/S0102-261X2008000400010
10.1007/s11263-009-0275-4
10.1016/j.rse.2007.05.017
10.1016/j.rse.2011.06.007
10.5194/hess-15-1117-2011
10.1007/s13735-017-0141-z
10.3390/rs11060626
10.1038/s41561-017-0004-5
10.1126/science.aal2011
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs12132159
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_12dba8ca06d34720ac0beb82b7c679ec
10_3390_rs12132159
GeographicLocations Brazil
Cerrado Biome
GeographicLocations_xml – name: Cerrado Biome
– name: Brazil
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-f65a72af3c7bd54ea99bcfaa085dd909e1b2b3b919a8c064f72e50b1f09ed22e3
IEDL.DBID 8FG
ISSN 2072-4292
IngestDate Tue Oct 22 15:17:22 EDT 2024
Sat Nov 09 15:43:21 EST 2024
Thu Sep 26 21:29:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f65a72af3c7bd54ea99bcfaa085dd909e1b2b3b919a8c064f72e50b1f09ed22e3
ORCID 0000-0002-5619-8525
0000-0003-3868-8704
0000-0002-9555-043X
0000-0003-1561-7583
0000-0002-0346-1684
0000-0003-4724-4064
OpenAccessLink https://www.proquest.com/docview/2422306444?pq-origsite=%requestingapplication%
PQID 2422306444
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_12dba8ca06d34720ac0beb82b7c679ec
proquest_journals_2422306444
crossref_primary_10_3390_rs12132159
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Hadria (ref_30) 2010; 12
Guo (ref_37) 2018; 7
Siebert (ref_5) 2010; 384
Cotterman (ref_12) 2018; 146
ref_57
ref_56
ref_11
Pervez (ref_22) 2010; 2
ref_10
ref_52
Bernardes (ref_70) 2011; 46
ref_51
Mancosu (ref_8) 2015; 7
Alexandridis (ref_1) 2008; 64
Vermote (ref_73) 2016; 185
Russakovsky (ref_90) 2015; 115
Ozdogan (ref_21) 2008; 112
Chen (ref_20) 2018; 204
Gillespie (ref_93) 2011; 3
Congalton (ref_86) 1983; 49
Fieuzal (ref_29) 2011; 15
Crist (ref_6) 2017; 356
Sano (ref_66) 2005; 25
Gomes (ref_60) 2015; 17
ref_25
Xie (ref_55) 2017; 10
ref_24
Zhang (ref_77) 2018; 15
Huang (ref_45) 2018; 214
ref_65
ref_63
Rundquist (ref_19) 1989; 55
Martins (ref_31) 2016; 21
Li (ref_44) 2019; 7
ref_28
ref_27
Ma (ref_39) 2019; 152
Brunckhorst (ref_64) 2014; 33
Ambast (ref_14) 2002; 51
ref_26
Arvor (ref_69) 2011; 32
Sampaio (ref_75) 2008; 26
Thenkabail (ref_16) 2010; 2
Schmidt (ref_34) 2004; 8
Diakogiannis (ref_85) 2020; 162
ref_72
Althoff (ref_2) 2019; 1
Ferreira (ref_32) 2011; 31
Abade (ref_74) 2015; 7
Stehman (ref_91) 2011; 115
ref_35
ref_79
Ye (ref_92) 2018; 141
Heller (ref_18) 1979; 45
ref_78
Kussul (ref_41) 2017; 14
Li (ref_42) 2020; 14
ref_76
Pervez (ref_23) 2014; 149
Li (ref_54) 2019; 150
Oprea (ref_36) 2018; 70
Guo (ref_38) 2016; 187
Scott (ref_43) 2017; 14
(ref_7) 2018; 198
ref_83
Foody (ref_87) 2002; 80
ref_82
ref_81
Gomes (ref_59) 2014; 66
Feng (ref_80) 2018; 16
Everingham (ref_88) 2010; 88
Ozdogan (ref_15) 2010; 2
Jeppesen (ref_53) 2019; 229
Silva (ref_67) 2015; 17
ref_47
ref_46
ref_89
Galford (ref_68) 2008; 112
Gusso (ref_71) 2014; 2014
ref_40
ref_84
Myers (ref_13) 2017; 38
ref_3
Menke (ref_62) 2009; 21
Davis (ref_17) 2017; 10
Hessel (ref_58) 2012; 26
ref_49
ref_48
ref_9
Sano (ref_33) 2005; 25
Gomes (ref_61) 2017; 61
ref_4
References_xml – volume: 198
  start-page: 1120
  year: 2018
  ident: ref_7
  article-title: Economic analysis of sustainable water use: A review of worldwide research
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.066
– ident: ref_11
  doi: 10.3390/su10041084
– ident: ref_51
  doi: 10.3390/rs11030240
– volume: 16
  start-page: 618
  year: 2018
  ident: ref_80
  article-title: Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2879492
  contributor:
    fullname: Feng
– ident: ref_76
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_10
  doi: 10.3390/w10040377
– volume: 8
  start-page: 330
  year: 2004
  ident: ref_34
  article-title: Spatial distribution of center pivots in Brazil: I-southeast region
  publication-title: Rev. Bras. Eng. Agríc. Ambient.
  doi: 10.1590/S1415-43662004000200026
  contributor:
    fullname: Schmidt
– volume: 80
  start-page: 185
  year: 2002
  ident: ref_87
  article-title: Status of land cover classification accuracy assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00295-4
  contributor:
    fullname: Foody
– volume: 185
  start-page: 46
  year: 2016
  ident: ref_73
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
  contributor:
    fullname: Vermote
– ident: ref_81
  doi: 10.3390/rs11040403
– volume: 7
  start-page: 12160
  year: 2015
  ident: ref_74
  article-title: Comparative Analysis of MODIS Time-Series Classification Using Support Vector Machines and Methods Based upon Distance and Similarity Measures in the Brazilian Cerrado-Caatinga Boundary
  publication-title: Remote Sens.
  doi: 10.3390/rs70912160
  contributor:
    fullname: Abade
– ident: ref_9
  doi: 10.3390/w11091758
– volume: 61
  start-page: 40
  year: 2017
  ident: ref_61
  article-title: Deforestation analysis in protected areas and scenario simulation for structural corridors in the agricultural frontier of Western Bahia, Brazil
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2016.10.046
  contributor:
    fullname: Gomes
– volume: 3
  start-page: 2473
  year: 2011
  ident: ref_93
  article-title: A New approach to change vector analysis using distance and similarity measures
  publication-title: Remote Sens.
  doi: 10.3390/rs3112473
  contributor:
    fullname: Gillespie
– ident: ref_65
– volume: 46
  start-page: 1530
  year: 2011
  ident: ref_70
  article-title: Imagens mono e multitemporais MODIS para estimativa da área com soja no Estado de Mato Grosso
  publication-title: Pesqui. Agropecu. Bras.
  doi: 10.1590/S0100-204X2011001100015
  contributor:
    fullname: Bernardes
– volume: 38
  start-page: 259
  year: 2017
  ident: ref_13
  article-title: Climate change and global food systems: Potential impacts on food security and undernutrition
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev-publhealth-031816-044356
  contributor:
    fullname: Myers
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_90
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: Russakovsky
– volume: 112
  start-page: 3520
  year: 2008
  ident: ref_21
  article-title: A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.04.010
  contributor:
    fullname: Ozdogan
– ident: ref_56
  doi: 10.3390/agriculture8100147
– volume: 17
  start-page: 411
  year: 2015
  ident: ref_60
  article-title: Landscape-fragmentation change detection from agricultural expansion in the Brazilian savanna, Western Bahia, Brazil (1988–2011)
  publication-title: Reg. Environ. Chang.
  contributor:
    fullname: Gomes
– volume: 2014
  start-page: 863141
  year: 2014
  ident: ref_71
  article-title: Assessing the modis crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil
  publication-title: Sci. World J.
  doi: 10.1155/2014/863141
  contributor:
    fullname: Gusso
– volume: 15
  start-page: 749
  year: 2018
  ident: ref_77
  article-title: Road extraction by deep residual U-Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
  contributor:
    fullname: Zhang
– volume: 162
  start-page: 94
  year: 2020
  ident: ref_85
  article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.013
  contributor:
    fullname: Diakogiannis
– ident: ref_52
  doi: 10.3390/ijgi7050181
– ident: ref_57
  doi: 10.3390/rs11151774
– ident: ref_47
  doi: 10.3390/rs12101544
– volume: 33
  start-page: 228
  year: 2014
  ident: ref_64
  article-title: Aplicação de SIG na gestão de conflitos pelo uso da água na porção goiana da bacia hidrográfica do rio São Marcos, município de Cristalina–GO
  publication-title: Geociências
  contributor:
    fullname: Brunckhorst
– ident: ref_4
– volume: 70
  start-page: 41
  year: 2018
  ident: ref_36
  article-title: A survey on deep learning techniques for image and video semantic segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.018
  contributor:
    fullname: Oprea
– volume: 7
  start-page: 36274
  year: 2019
  ident: ref_44
  article-title: Deep learning-based classification methods for remote sensing images in urban built-up areas
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903127
  contributor:
    fullname: Li
– volume: 149
  start-page: 155
  year: 2014
  ident: ref_23
  article-title: Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.008
  contributor:
    fullname: Pervez
– volume: 2
  start-page: 2274
  year: 2010
  ident: ref_15
  article-title: Remote sensing of irrigated agriculture: Opportunities and challenges
  publication-title: Remote Sens.
  doi: 10.3390/rs2092274
  contributor:
    fullname: Ozdogan
– ident: ref_24
  doi: 10.3390/rs11151836
– volume: 141
  start-page: 137
  year: 2018
  ident: ref_92
  article-title: A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.002
  contributor:
    fullname: Ye
– volume: 51
  start-page: 25
  year: 2002
  ident: ref_14
  article-title: Satellite remote sensing to support management of irrigation systems: Concepts and approaches
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.26
  contributor:
    fullname: Ambast
– volume: 64
  start-page: 93
  year: 2008
  ident: ref_1
  article-title: Mapping irrigated area in Mediterranean basins using low cost satellite Earth Observation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.04.001
  contributor:
    fullname: Alexandridis
– volume: 26
  start-page: 128
  year: 2012
  ident: ref_58
  article-title: Dinâmica e sucessão dos padrões da paisagem agrícola no município de Cocos (Bahia)
  publication-title: RAE GA
  contributor:
    fullname: Hessel
– ident: ref_72
– volume: 7
  start-page: 975
  year: 2015
  ident: ref_8
  article-title: Water scarcity and future challenges for food production
  publication-title: Water
  doi: 10.3390/w7030975
  contributor:
    fullname: Mancosu
– volume: 152
  start-page: 166
  year: 2019
  ident: ref_39
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.015
  contributor:
    fullname: Ma
– volume: 55
  start-page: 587
  year: 1989
  ident: ref_19
  article-title: The Nebraska Center-Pivot Inventory: An example of operational satellite remote sensing on a long-term basis
  publication-title: Photogramm. Eng. Remote Sens.
  contributor:
    fullname: Rundquist
– ident: ref_46
  doi: 10.3390/rs10010144
– ident: ref_25
  doi: 10.3390/rs11070887
– volume: 21
  start-page: 300
  year: 2016
  ident: ref_31
  article-title: Levantamento da área irrigada por pivô central no Estado do Rio Grande do Sul
  publication-title: IRRIGA
  doi: 10.15809/irriga.2016v21n2p300-311
  contributor:
    fullname: Martins
– volume: 1
  start-page: 56
  year: 2019
  ident: ref_2
  article-title: The expansion of center-pivot irrigation in the Cerrado biome
  publication-title: IRRIGA
  doi: 10.15809/irriga.2019v1n1p56-61
  contributor:
    fullname: Althoff
– volume: 2
  start-page: 2388
  year: 2010
  ident: ref_22
  article-title: Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics
  publication-title: Remote Sens.
  doi: 10.3390/rs2102388
  contributor:
    fullname: Pervez
– ident: ref_3
– volume: 384
  start-page: 198
  year: 2010
  ident: ref_5
  article-title: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.07.031
  contributor:
    fullname: Siebert
– volume: 31
  start-page: 771
  year: 2011
  ident: ref_32
  article-title: Cadastral maps of irrigated areas by center pivots in the State of Minas Gerais, using CBERS-2B/CCD satellite imaging
  publication-title: Eng. Agríc
  doi: 10.1590/S0100-69162011000400015
  contributor:
    fullname: Ferreira
– volume: 150
  start-page: 197
  year: 2019
  ident: ref_54
  article-title: Deep learning-based cloud detection for medium and high-resolution remote sensing images of different sensors
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.017
  contributor:
    fullname: Li
– volume: 49
  start-page: 1671
  year: 1983
  ident: ref_86
  article-title: Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques
  publication-title: Photogramm. Eng. Remote Sensing
  contributor:
    fullname: Congalton
– volume: 2
  start-page: 211
  year: 2010
  ident: ref_16
  article-title: A Holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches
  publication-title: Remote Sens.
  doi: 10.3390/rs2010211
  contributor:
    fullname: Thenkabail
– ident: ref_27
  doi: 10.3390/rs10091495
– volume: 12
  start-page: S32
  year: 2010
  ident: ref_30
  article-title: Potentiality of optical and radar satellite data at high spatio-temporal resolutions for the monitoring of irrigated wheat crops in Morocco
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Hadria
– ident: ref_40
  doi: 10.3390/rs11030274
– volume: 214
  start-page: 73
  year: 2018
  ident: ref_45
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.050
  contributor:
    fullname: Huang
– ident: ref_28
  doi: 10.3390/rs11020118
– volume: 21
  start-page: 315
  year: 2009
  ident: ref_62
  article-title: Análise das mudanças do uso agrícola da terra a partir de dados de sensoriamento remoto multitemporal no município de Luís EduardoMagalhães (BA–Brasil)
  publication-title: Soc. Nat.
  doi: 10.1590/S1982-45132009000300007
  contributor:
    fullname: Menke
– volume: 14
  start-page: 1
  year: 2020
  ident: ref_42
  article-title: Comparison of land use classification based on convolutional neural network
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.14.036509
  contributor:
    fullname: Li
– ident: ref_48
  doi: 10.3390/rs12060901
– volume: 14
  start-page: 778
  year: 2017
  ident: ref_41
  article-title: Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2681128
  contributor:
    fullname: Kussul
– volume: 10
  start-page: 3631
  year: 2017
  ident: ref_55
  article-title: Multilevel cloud detection in remote sensing images based on deep learning
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2686488
  contributor:
    fullname: Xie
– volume: 146
  start-page: 187
  year: 2018
  ident: ref_12
  article-title: Groundwater depletion and climate change: Future prospects of crop production in the Central High Plains Aquifer
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-017-1947-7
  contributor:
    fullname: Cotterman
– volume: 229
  start-page: 247
  year: 2019
  ident: ref_53
  article-title: A cloud detection algorithm for satellite imagery based on deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.03.039
  contributor:
    fullname: Jeppesen
– ident: ref_83
  doi: 10.3390/app9152972
– volume: 25
  start-page: 508
  year: 2005
  ident: ref_66
  article-title: Estimativa da Variação na Demanda de Água para Irrigação por Pivô-Central no Distrito Federal entre 1992 e 2002
  publication-title: Eng. Agríc.
  doi: 10.1590/S0100-69162005000200025
  contributor:
    fullname: Sano
– ident: ref_78
  doi: 10.1007/978-3-319-46454-1
– ident: ref_50
  doi: 10.3390/rs11111382
– volume: 187
  start-page: 27
  year: 2016
  ident: ref_38
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
  contributor:
    fullname: Guo
– ident: ref_63
  doi: 10.3390/w11050933
– ident: ref_26
  doi: 10.3390/rs10121953
– ident: ref_82
  doi: 10.3390/rs11172053
– ident: ref_79
  doi: 10.3390/rs11091015
– volume: 17
  start-page: 166
  year: 2015
  ident: ref_67
  article-title: Conflito pelo uso da água na bacia hidrográfica do rio São Marcos: O estudo de caso da UHE batalha
  publication-title: Engevista
  doi: 10.22409/engevista.v17i2.633
  contributor:
    fullname: Silva
– volume: 204
  start-page: 197
  year: 2018
  ident: ref_20
  article-title: Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.030
  contributor:
    fullname: Chen
– ident: ref_89
– volume: 32
  start-page: 7847
  year: 2011
  ident: ref_69
  article-title: Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.531783
  contributor:
    fullname: Arvor
– ident: ref_84
  doi: 10.1109/IGARSS.2019.8898392
– volume: 14
  start-page: 549
  year: 2017
  ident: ref_43
  article-title: Training deep convolutional neural networks for land–cover classification of high-resolution imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2657778
  contributor:
    fullname: Scott
– volume: 26
  start-page: 505
  year: 2008
  ident: ref_75
  article-title: Classificação de padrões de savana usando assinaturas temporais NDVI do sensor MODIS no Parque Nacional Chapada dos Veadeiros
  publication-title: Rev. Bras. Geof.
  doi: 10.1590/S0102-261X2008000400010
  contributor:
    fullname: Sampaio
– volume: 88
  start-page: 303
  year: 2010
  ident: ref_88
  article-title: The PASCAL visual object classes (VOC) challenge
  publication-title: IJCV
  doi: 10.1007/s11263-009-0275-4
  contributor:
    fullname: Everingham
– volume: 25
  start-page: 508
  year: 2005
  ident: ref_33
  article-title: Estimative variation in the water demand for irrigation by center pivot in Distrito Federal-Brazil, between 1992 and 2002
  publication-title: Eng. Agríc.
  doi: 10.1590/S0100-69162005000200025
  contributor:
    fullname: Sano
– volume: 112
  start-page: 576
  year: 2008
  ident: ref_68
  article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.05.017
  contributor:
    fullname: Galford
– volume: 115
  start-page: 3044
  year: 2011
  ident: ref_91
  article-title: Pixels, blocks of pixels, and polygons: Choosing a spatial unit for thematic accuracy assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.06.007
  contributor:
    fullname: Stehman
– volume: 66
  start-page: 1157
  year: 2014
  ident: ref_59
  article-title: Detecção de mudança do uso e cobertura da terra usando o método de pós-classificação na fronteira agrícola do Oeste da Bahia sobre o Grupo Urucuia durante o período 1988–2011
  publication-title: Rev. Bras. Cartogr.
  contributor:
    fullname: Gomes
– volume: 15
  start-page: 1117
  year: 2011
  ident: ref_29
  article-title: Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-1117-2011
  contributor:
    fullname: Fieuzal
– volume: 7
  start-page: 87
  year: 2018
  ident: ref_37
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int. J. Multimed. Inf. Retr.
  doi: 10.1007/s13735-017-0141-z
  contributor:
    fullname: Guo
– ident: ref_49
  doi: 10.3390/rs11060626
– ident: ref_35
  doi: 10.1016/j.asoc.2018.05.018
– volume: 10
  start-page: 919
  year: 2017
  ident: ref_17
  article-title: Increased food production and reduced water use through optimized crop distribution
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-017-0004-5
  contributor:
    fullname: Davis
– volume: 356
  start-page: 260
  year: 2017
  ident: ref_6
  article-title: The interaction of human population, food production, and biodiversity protection
  publication-title: Science
  doi: 10.1126/science.aal2011
  contributor:
    fullname: Crist
– volume: 45
  start-page: 1379
  year: 1979
  ident: ref_18
  article-title: Estimating irrigated land acreage from Landsat imagery
  publication-title: Photogramm. Eng. Remote Sens.
  contributor:
    fullname: Heller
SSID ssj0000331904
Score 2.4552104
Snippet The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2159
SubjectTerms Agricultural management
Agricultural production
Agriculture
Algorithms
Artificial neural networks
Center-pivot irrigation
Classification
Consumption
Deep learning
Digital imaging
Drought
Dry season
Environmental management
Error reduction
Food security
Food supply
Freshwater resources
Ground truth
Groundwater
Image acquisition
Image detection
Image processing
Image reconstruction
Image segmentation
Irrigation
Irrigation systems
Landsat
Landsat satellites
Landsat-8
Machine learning
Mapping
Neural networks
Pixels
Plantations
Precision farming
Remote sensing
Resource conservation
Resource management
ResUnet
Satellite imagery
Seasonal variations
Semantic segmentation
Semantics
SharpMask
U-net
Vegetation
Water consumption
Water resources
Water resources management
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE9cXAb0uNo82m6OvRQVFfODeSpJOVHC7S7cK---dpFVXPHjxUChNQ8s36cx8TeYLIQfIuDgeyFS9gK40KszvImv1KlOFh1SnvVCNfHWdnT_Iy0E6mNnqK6wJa-SBG-AOGS-s6TmTZIWQiifGJRZsj1vlMqXBRe-b6BkyFX2wwKGVyEaPVCCvP6wmQbwMA5z-EYGiUP8vPxyDS3-ZLLVZIT1q3maFzEG5ShbaDcqfp2vk8RRgTO9giEC8ODx5GrZFQyUdeRr-0UJFb17eRzW9qKqom4FNrR45DUUk9BbQLPA6xd7lBAp6amqzTh76Z_cn5912T4SuExmruz5LjeLGC6dskUowWlvnjcHMqSh0ooFZboXVTCNomG54xSFNLPPYVHAOYoPMl6MSNgk1yjjQTDIJXjrsxoSz0oowNZlkXnfI_idO-biRvsiRMgQ08280O-Q4QPh1R5CrjhfQiHlrxPwvI3bIzqcB8vYbmuSYPER-JOXWfzxjmyzywJXjUtsdMl9Xb7CLCUVt9-LY-QBQH8qS
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data
URI https://www.proquest.com/docview/2422306444
https://doaj.org/article/12dba8ca06d34720ac0beb82b7c679ec
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA9VH2ofSmtbvNYeAX1d3Hzs5vJUtHq1hYr4QX1b8jE5Bd297m0L_ved5HJKKfRhYdkksEySmflNMr8hZA8RF8cHkWoQUEij4vkuotagauUDVLqaxGzk76f1yZX8dl1d54DbIl-rXOnEpKh952KMfB9NSfKWpfw0_1nEqlHxdDWX0FgjG4wrFcHXZPrlMcZSClxgpVyykgpE9_v9IlKYoZnTf9mhRNf_jzZOJmb6irzMviE9WE7ma_IM2i3y4mDWZ34M2CLPc9Hym4c35McRwJxewD0K59bhy-w-JxK1tAs0xm2hp2e3v7uBfu37xKWBTZmjnMbEEnoOOFVw94Cj2wV4emQG85ZcTY8vP58UuU5C4UTNhiLUlVHcBOGU9ZUEo7V1wRj0przXpQZmuRVWM20mDkUYFIeqtCxgk-ccxDuy3nYtbBNqlHGgmWQSgnQ4jAlnpRXxuLKsgx6R3ZXUmvmSDqNBGBFl2zzJdkQOo0Afe0QK6_Sh62dN3hEN497i_5iy9kIqXhpXWrATbpWrlQY3Ijur6Wjyvlo0T6vg_f-bP5BNHpFxuli7Q9aH_hd8RPdhsOO0RsZk4_D49Ox8nED4H8vQyBs
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEJ4oPKAPRlHDIWoTfd2w23a31ycDAjkULgQh8rbpj-lJIrvn3mLCf-90rwcxJj5sstm2yWbazsw37XwD8JEQF6eHkGoQmEmj4vkuodagKuUDlrocx2zk02k1uZRfrsqrFHBbpGuVK504KGrfuhgj3yVTMnjLUn6a_8pi1ah4uppKaDyG9UhVReBrff9wenZ-H2XJBS2xXC55SQXh-91uEUnMyNDpvyzRQNj_jz4ejMzRc3iWvEO2t5zOF_AIm014ujfrEkMGbsJGKlv-4-4lfD9AnLNveEPiuXb0MrtJqUQNawOLkVvs2Nn177Znx103sGlQU2IpZzG1hJ0jTRb-vKPRzQI9OzC9eQWXR4cXnydZqpSQOVEVfRaq0ihugnDK-lKi0dq6YAz5U97rXGNhuRVWF9qMHQkxKI5lbotATZ5zFK9hrWkb3AJmlHGoC1lIDNLRsEI4K62IB5Z5FfQIPqykVs-XhBg1AYko2_pBtiPYjwK97xFJrIcPbTer056oC-4t_Y_JKy-k4rlxuUU75la5Sml0I9hZTUeddtaiflgH2_9vfg8bk4vTk_rkePr1DTzhEScP12x3YK3vbvEtORO9fZdWzB-2M8nd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96Ba0PRavS01YD-rpcNsluLk_Sej1aP46jWuzbko_JWWh3r3ur0P_eyV6uRQQfFpZNAstkMt_5DSHv0ePi-KCnGgRk0qiY30WvNahS-QCFLsbxNvLXWXlyLj9dFBep_mmVyio3MrEX1L5xMUY-QlXSW8tSjkIqi5hPph-WN1nsIBUzramdxkOypWQp2IBsHR3P5md3ERcmkN2YXGOUCvT1R-0qApqh0tN_aaUevP8f2dwrnOlTspMsRXq43tpn5AHUu-TJ4aJNaBmwSx6nFuY_b5-THxOAJf0G10iqS4cvi-t0raimTaAxigstnV_-bjp62rY9sgYOJcRyGq-Z0DPAjYOrW1xdr8DTienMC3I-Pf7-8SRLXRMyJ8q8y0JZGMVNEE5ZX0gwWlsXjEHbynvNNOSWW2F1rs3YIUGD4lAwmwcc8pyDeEkGdVPDHqFGGQc6l7mEIB0uy4Wz0oqYvGRl0EPybkO1arkGx6jQqYi0re5pOyRHkaB3MyKgdf-haRdVOh9Vzr3F_zGs9EIqzoxjFuyYW-VKpcENyf5mO6p0ylbVPU-8-v_wW_IImaX6cjr7_Jps8-gy9xW3-2TQtb_gAO2Kzr5JDPMH2YTOCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Semantic+Segmentation+of+Center+Pivot+Irrigation+Systems+from+Remotely+Sensed+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=de+Albuquerque%2C+Anesmar+Olino&rft.au=de+Carvalho+J%C3%BAnior%2C+Osmar+Ab%C3%ADlio&rft.au=Carvalho%2C+Osmar+Luiz+Ferreira+de&rft.au=de+Bem%2C+Pablo+Pozzobon&rft.date=2020-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=13&rft.spage=2159&rft_id=info:doi/10.3390%2Frs12132159&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12132159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon