On the quasi-stationary distribution of the stochastic logistic epidemic

An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R 0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-statio...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences Vol. 156; no. 1; pp. 21 - 40
Main Author Nåsell, Ingemar
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R 0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given. Mathematics subject classification: 60J27; 92D30
AbstractList An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R 0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given. Mathematics subject classification: 60J27; 92D30
An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given.An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given.
An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given.
Author Nåsell, Ingemar
Author_xml – sequence: 1
  givenname: Ingemar
  surname: Nåsell
  fullname: Nåsell, Ingemar
  organization: The Royal Institute of Technology, Department of Mathematics, 10044 Stockholm, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10204386$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LxDAQhoMo7vrxE5SeRA_VpEnTFg8ii1-wsAf1HNLpxI10m90kFfz37oeKeNnTzMDzvjDPAdntXIeEnDB6ySiTV8-UZnma51KcV-UFozSv0mKHDFlZVClnXOyS4S8yIAchvFPKCsbkPhkwmlHBSzkkj5MuiVNMFr0ONg1RR-s67T-Txobobd2v7sSZNRSig6kO0ULSuje7XnBuG5xZOCJ7RrcBj7_nIXm9v3sZPabjycPT6HacApcspoYbwXkNWSZANGCMrmWmQYrCaDRG1CVkvMgLhCoTAgtGhcmbLBdUGkDD-SE52_TOvVv0GKKa2QDYtrpD1wclK1nxUqzA02-wr2fYqLm3s-Vj6uf3JZBvAPAuBI_mD6JWjtXasVoJVFWp1o5Vscxd_8uB3XiLXtt2a_pmk8alpA-LXgWw2AE21iNE1Ti7peEL25iWYQ
CitedBy_id crossref_primary_10_1016_j_epidem_2015_03_003
crossref_primary_10_1073_pnas_082412899
crossref_primary_10_1137_030602800
crossref_primary_10_1007_s11538_021_00964_7
crossref_primary_10_1017_S0001867800007023
crossref_primary_10_1016_j_epidem_2018_02_002
crossref_primary_10_3934_mbe_2023075
crossref_primary_10_1093_cid_ciae031
crossref_primary_10_1186_1471_2458_9_S1_S2
crossref_primary_10_1371_journal_pcbi_1000895
crossref_primary_10_1007_s10144_015_0500_7
crossref_primary_10_1016_j_mbs_2009_12_004
crossref_primary_10_1016_j_tpb_2007_02_003
crossref_primary_10_1088_1742_5468_2009_01_P01005
crossref_primary_10_1142_S1793524521500844
crossref_primary_10_1017_S0021900200000735
crossref_primary_10_1080_10236190412331335373
crossref_primary_10_1073_pnas_1221509110
crossref_primary_10_1103_PhysRevLett_101_078101
crossref_primary_10_1155_2017_4253167
crossref_primary_10_1098_rspa_2022_0577
crossref_primary_10_1186_1756_3305_6_141
crossref_primary_10_1017_S002190020001977X
crossref_primary_10_1214_23_AAP2035
crossref_primary_10_1016_j_physa_2019_123488
crossref_primary_10_1007_s11538_005_9043_y
crossref_primary_10_1016_j_physa_2012_05_004
crossref_primary_10_1017_apr_2017_28
crossref_primary_10_1239_jap_1011994180
crossref_primary_10_1007_s00285_007_0136_0
crossref_primary_10_1007_s10441_010_9116_7
crossref_primary_10_1137_20M1339015
crossref_primary_10_1103_PhysRevE_87_062810
crossref_primary_10_1007_s11009_010_9177_8
crossref_primary_10_1155_2013_502635
crossref_primary_10_1214_10_PS158
crossref_primary_10_1239_jap_1127322023
crossref_primary_10_1098_rsif_2020_0690
crossref_primary_10_1017_S0021900200019112
crossref_primary_10_1142_S1793524509000662
crossref_primary_10_1371_journal_pcbi_1002271
crossref_primary_10_1017_S0269964816000188
crossref_primary_10_1016_j_epidem_2011_03_004
crossref_primary_10_1017_jpr_2020_112
crossref_primary_10_1080_03610918_2013_835409
crossref_primary_10_1371_journal_pntd_0003682
crossref_primary_10_3934_dcdsb_2015_20_2859
crossref_primary_10_1103_PhysRevE_92_012722
crossref_primary_10_1155_2013_470646
crossref_primary_10_1093_cid_ciab189
crossref_primary_10_1017_S0021900200003107
crossref_primary_10_1007_s12648_013_0275_7
crossref_primary_10_1239_jap_1183667415
crossref_primary_10_1239_jap_1059060909
crossref_primary_10_1098_rsif_2013_0943
crossref_primary_10_1103_PhysRevE_84_031907
crossref_primary_10_1186_1471_2334_7_91
crossref_primary_10_1007_s11538_009_9415_9
crossref_primary_10_1016_j_mbs_2012_02_001
crossref_primary_10_1016_j_idm_2018_03_002
crossref_primary_10_1016_j_jtbi_2010_06_030
crossref_primary_10_1007_s11284_010_0789_9
crossref_primary_10_4269_ajtmh_19_0758
crossref_primary_10_1016_j_tpb_2013_06_005
crossref_primary_10_1016_S0096_3003_01_00192_8
crossref_primary_10_1006_jtbi_2001_2328
crossref_primary_10_1103_PhysRevE_94_062314
crossref_primary_10_1239_aap_1396360112
crossref_primary_10_1017_S0021900200117966
crossref_primary_10_4236_jamp_2016_49186
crossref_primary_10_1103_PhysRevE_108_034406
crossref_primary_10_1016_S0025_5564_03_00088_9
crossref_primary_10_1016_j_jtbi_2007_05_007
crossref_primary_10_1016_S0025_5564_02_00098_6
crossref_primary_10_1016_j_amc_2015_11_094
crossref_primary_10_1142_S0219493717500411
crossref_primary_10_1007_s00285_009_0313_4
crossref_primary_10_1016_j_mbs_2020_108480
crossref_primary_10_1016_j_ejor_2013_01_032
crossref_primary_10_1111_j_2007_0030_1299_16081_x
crossref_primary_10_1088_1742_6596_2084_1_012019
crossref_primary_10_1016_S0025_5564_99_00047_4
Cites_doi 10.2307/1426635
10.2307/3214374
10.1016/0025-5564(71)90087-3
10.1239/jap/1032265214
10.1016/0378-4371(77)90001-2
10.1016/0025-5564(93)90018-6
10.2307/1428186
10.1080/0022250X.1976.9989853
10.2307/1427019
ContentType Journal Article
Copyright 1999 Elsevier Science Inc.
Copyright_xml – notice: 1999 Elsevier Science Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/S0025-5564(98)10059-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1879-3134
EndPage 40
ExternalDocumentID 10204386
10_1016_S0025_5564_98_10059_7
S0025556498100597
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.GJ
.~1
0R~
186
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AETEA
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LW9
M26
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SME
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XOL
XSW
YQT
ZCG
ZGI
ZXP
ZY4
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c361t-f3f433bc224c4dcffab62ac647faeff4b8c23757ec9244e7104f5d25406fcef33
IEDL.DBID .~1
ISSN 0025-5564
IngestDate Fri Jul 11 00:30:34 EDT 2025
Wed Feb 19 01:30:09 EST 2025
Tue Jul 01 03:34:08 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Fri Feb 23 02:21:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transition region
Quasi-stationary distribution
Asymptotic approximation
SIS model
Time to extinction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f3f433bc224c4dcffab62ac647faeff4b8c23757ec9244e7104f5d25406fcef33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 10204386
PQID 69693843
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_69693843
pubmed_primary_10204386
crossref_primary_10_1016_S0025_5564_98_10059_7
crossref_citationtrail_10_1016_S0025_5564_98_10059_7
elsevier_sciencedirect_doi_10_1016_S0025_5564_98_10059_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-03-01
PublicationDateYYYYMMDD 1999-03-01
PublicationDate_xml – month: 03
  year: 1999
  text: 1999-03-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences
PublicationTitleAlternate Math Biosci
PublicationYear 1999
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References I. Nåsell, On the time to extinction in recurrent epidemics, to appear in J. Roy. Stat. Soc., Series B
Nåsell (BIB2) 1996; 28
Bartholomew (BIB4) 1976; 4
Weiss, Dishon (BIB3) 1971; 11
Jacquez, Simon (BIB9) 1993; 117
Norden (BIB7) 1982; 14
I. Nåsell, The threshold concept in stochastic epidemic and endemic models. in: D. Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge, 1995
Kryscio, Lefèvre (BIB8) 1989; 26
Oppenheim, Shuler, Weiss (BIB5) 1977; 88
Cavender (BIB6) 1978; 10
R. Ross, The Prevention of Malaria, 2nd ed., John Murray, London, 1911
M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965
Andersson, Djehiche (BIB10) 1998; 35
Oppenheim (10.1016/S0025-5564(98)10059-7_BIB5) 1977; 88
10.1016/S0025-5564(98)10059-7_BIB1
Cavender (10.1016/S0025-5564(98)10059-7_BIB6) 1978; 10
Nåsell (10.1016/S0025-5564(98)10059-7_BIB2) 1996; 28
Andersson (10.1016/S0025-5564(98)10059-7_BIB10) 1998; 35
Weiss (10.1016/S0025-5564(98)10059-7_BIB3) 1971; 11
Jacquez (10.1016/S0025-5564(98)10059-7_BIB9) 1993; 117
Bartholomew (10.1016/S0025-5564(98)10059-7_BIB4) 1976; 4
Kryscio (10.1016/S0025-5564(98)10059-7_BIB8) 1989; 26
10.1016/S0025-5564(98)10059-7_BIB13
Norden (10.1016/S0025-5564(98)10059-7_BIB7) 1982; 14
10.1016/S0025-5564(98)10059-7_BIB12
10.1016/S0025-5564(98)10059-7_BIB11
References_xml – volume: 4
  start-page: 187
  year: 1976
  ident: BIB4
  article-title: Continuous time diffusion models with random duration of interest
  publication-title: J. Math. Sociol.
– volume: 88
  start-page: 191
  year: 1977
  ident: BIB5
  article-title: Stochastic theory of nonlinear rate processes with multiple stationary states
  publication-title: Physica A
– reference: I. Nåsell, On the time to extinction in recurrent epidemics, to appear in J. Roy. Stat. Soc., Series B
– volume: 14
  start-page: 687
  year: 1982
  ident: BIB7
  article-title: On the distribution of the time to extinction in the stochastic logistic population model
  publication-title: Adv. Appl. Prob.
– volume: 26
  start-page: 685
  year: 1989
  ident: BIB8
  article-title: On the extinction of the S–I–S stochastic logistic epidemic
  publication-title: J. Appl. Prob.
– reference: I. Nåsell, The threshold concept in stochastic epidemic and endemic models. in: D. Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge, 1995
– volume: 35
  start-page: 662
  year: 1998
  ident: BIB10
  article-title: A threshold limit theorem for the stochastic logistic epidemic
  publication-title: J. Appl. Prob.
– volume: 11
  start-page: 261
  year: 1971
  ident: BIB3
  article-title: On the asymptotic behavior of the stochastic and deterministic models of an epidemic
  publication-title: Math. Biosci.
– volume: 10
  start-page: 570
  year: 1978
  ident: BIB6
  article-title: Quasi-stationary distributions of birth-and-death processes
  publication-title: Adv. Appl. Prob.
– reference: M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965
– volume: 117
  start-page: 77
  year: 1993
  ident: BIB9
  article-title: The stochastic SI model with recruitment and deaths. I. Comparisons with the closed SIS model
  publication-title: Math. Biosci.
– volume: 28
  start-page: 895
  year: 1996
  ident: BIB2
  article-title: The quasi-stationary distribution of the closed endemic SIS model
  publication-title: Adv. Appl. Prob.
– reference: R. Ross, The Prevention of Malaria, 2nd ed., John Murray, London, 1911
– volume: 10
  start-page: 570
  year: 1978
  ident: 10.1016/S0025-5564(98)10059-7_BIB6
  article-title: Quasi-stationary distributions of birth-and-death processes
  publication-title: Adv. Appl. Prob.
  doi: 10.2307/1426635
– volume: 26
  start-page: 685
  year: 1989
  ident: 10.1016/S0025-5564(98)10059-7_BIB8
  article-title: On the extinction of the S–I–S stochastic logistic epidemic
  publication-title: J. Appl. Prob.
  doi: 10.2307/3214374
– volume: 11
  start-page: 261
  year: 1971
  ident: 10.1016/S0025-5564(98)10059-7_BIB3
  article-title: On the asymptotic behavior of the stochastic and deterministic models of an epidemic
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(71)90087-3
– ident: 10.1016/S0025-5564(98)10059-7_BIB1
– volume: 35
  start-page: 662
  year: 1998
  ident: 10.1016/S0025-5564(98)10059-7_BIB10
  article-title: A threshold limit theorem for the stochastic logistic epidemic
  publication-title: J. Appl. Prob.
  doi: 10.1239/jap/1032265214
– volume: 88
  start-page: 191
  year: 1977
  ident: 10.1016/S0025-5564(98)10059-7_BIB5
  article-title: Stochastic theory of nonlinear rate processes with multiple stationary states
  publication-title: Physica A
  doi: 10.1016/0378-4371(77)90001-2
– volume: 117
  start-page: 77
  year: 1993
  ident: 10.1016/S0025-5564(98)10059-7_BIB9
  article-title: The stochastic SI model with recruitment and deaths. I. Comparisons with the closed SIS model
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(93)90018-6
– ident: 10.1016/S0025-5564(98)10059-7_BIB13
– volume: 28
  start-page: 895
  year: 1996
  ident: 10.1016/S0025-5564(98)10059-7_BIB2
  article-title: The quasi-stationary distribution of the closed endemic SIS model
  publication-title: Adv. Appl. Prob.
  doi: 10.2307/1428186
– volume: 4
  start-page: 187
  year: 1976
  ident: 10.1016/S0025-5564(98)10059-7_BIB4
  article-title: Continuous time diffusion models with random duration of interest
  publication-title: J. Math. Sociol.
  doi: 10.1080/0022250X.1976.9989853
– volume: 14
  start-page: 687
  year: 1982
  ident: 10.1016/S0025-5564(98)10059-7_BIB7
  article-title: On the distribution of the time to extinction in the stochastic logistic population model
  publication-title: Adv. Appl. Prob.
  doi: 10.2307/1427019
– ident: 10.1016/S0025-5564(98)10059-7_BIB11
– ident: 10.1016/S0025-5564(98)10059-7_BIB12
SSID ssj0017116
Score 1.8328052
Snippet An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R 0...
An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Asymptotic approximation
Endemic Diseases
Epidemiology
Humans
Logistic Models
Models, Biological
Quasi-stationary distribution
SIS model
Stochastic Processes
Time to extinction
Transition region
Title On the quasi-stationary distribution of the stochastic logistic epidemic
URI https://dx.doi.org/10.1016/S0025-5564(98)10059-7
https://www.ncbi.nlm.nih.gov/pubmed/10204386
https://www.proquest.com/docview/69693843
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSysxEB9EEXwHUd_zWT_38A7vHaLdZjbJHkWUalFBFL2FbJpgQbZq24MX_3YnybY-DyJ42t2QScJMdjJD5jcD8Mcob8jQLRkW1jCUFpmxos3QG0EEbVF2Ajj5_EJ0b_Dsrribg6MpFiaEVTa6P-n0qK2bloOGmwePg0HA-JI5XAgsVR4glAFRjijDLt9_nYV55DKP5U9j2dbQ-x3Fk0aIjX9L9S8OwuRn59Nn9mc8h05WYLkxILPDtMZVmHP1GiymkpIva_DjfJaHdfQTupd1Rp_Z08SMBmyUrt3N80vWD_lym1JX2dDHTmQG2nsT8jZnCRdELy4VkLW_4Obk-Pqoy5raCcxykY-Z5x45ryyd0Bb71ntTiQ5JAaU3znuslO1wWUhnyQFDR3YG-qJP3mJbeOs85-swXw9rtwFZUVTkVbWNKPoVSilLm7uQD0lIT76K8i3AKce0bRKLh_oWD_o9gowYrQOjdal0ZLSWLdifkT2mzBpfEaipOPSHLaJJ-39FujcVn6bfJ9yJmNoNJyMtSlFyhbwFv5NU_1tLgA0rsfn9abdgKWV5CCFr2zA_fp64HbJhxtVu3KS7sHB42utehGfv6rb3BmYA67Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1PT9swFH9CTBNwmBgDVgZrDkyCg6FJHNs5cEBsqIUWLiBxM45ri0pTCqQV6oUvxRfcs52W7VAhTeKWRHnK03v2-xO_934Au0pYhYFuTmimFaFcU6I0axFqFUOCFssT15zcu2Dta3p2k90swMu0F8aVVda2P9h0b63rJ4e1NA_vBwPX44vhcMZoLmLXQsnryspzM3nCvK066vxEJf9IktNfVydtUkMLEJ2yeERsammaFhodmKZ9ba0qWIJMUm6VsZYWQicpz7jRmJ9Qg26Y2qyPyVSLWW2s-wuKdv8DRXPhYBMOnmd1JTGPPd6qx4l17L22DQWW_cO9XOx7rgmf5xDnBbze8Z2uwqc6Yo2Og1A-w4Ip1-BjwLCcrMFKbzb4tfoC7csywtvoYayqAanCOb96nER9N6C3xtaKhta_hHGnvlNuUHQUGpHwwgTEWr0O1-8i0Q1YLIel-QpRlhWYxrUUy_oF5ZznOjZuABPjFpMjYRtApxKTup5k7gA1fsvXkjUUtHSClrmQXtCSN-BgRnYfRnm8RSCm6pD_rEmJ7uYt0uZUfRL3qzuEUaUZjivJcpangqYN2Axa_YsX16cs2Nb_f7YJS-2rXld2Oxfn32A5jJhw9XLbsDh6HJsdDKBGxXe_YCO4fe8d8gdleSdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+quasi-stationary+distribution+of+the+stochastic+logistic+epidemic&rft.jtitle=Mathematical+biosciences&rft.au=N%C3%A5sell%2C+Ingemar&rft.date=1999-03-01&rft.issn=0025-5564&rft.volume=156&rft.issue=1-2&rft.spage=21&rft.epage=40&rft_id=info:doi/10.1016%2FS0025-5564%2898%2910059-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0025_5564_98_10059_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon