On the quasi-stationary distribution of the stochastic logistic epidemic
An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R 0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-statio...
Saved in:
Published in | Mathematical biosciences Vol. 156; no. 1; pp. 21 - 40 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor
R
0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given.
Mathematics subject classification: 60J27; 92D30 |
---|---|
AbstractList | An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor
R
0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given.
Mathematics subject classification: 60J27; 92D30 An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given.An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given. An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given. |
Author | Nåsell, Ingemar |
Author_xml | – sequence: 1 givenname: Ingemar surname: Nåsell fullname: Nåsell, Ingemar organization: The Royal Institute of Technology, Department of Mathematics, 10044 Stockholm, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10204386$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LxDAQhoMo7vrxE5SeRA_VpEnTFg8ii1-wsAf1HNLpxI10m90kFfz37oeKeNnTzMDzvjDPAdntXIeEnDB6ySiTV8-UZnma51KcV-UFozSv0mKHDFlZVClnXOyS4S8yIAchvFPKCsbkPhkwmlHBSzkkj5MuiVNMFr0ONg1RR-s67T-Txobobd2v7sSZNRSig6kO0ULSuje7XnBuG5xZOCJ7RrcBj7_nIXm9v3sZPabjycPT6HacApcspoYbwXkNWSZANGCMrmWmQYrCaDRG1CVkvMgLhCoTAgtGhcmbLBdUGkDD-SE52_TOvVv0GKKa2QDYtrpD1wclK1nxUqzA02-wr2fYqLm3s-Vj6uf3JZBvAPAuBI_mD6JWjtXasVoJVFWp1o5Vscxd_8uB3XiLXtt2a_pmk8alpA-LXgWw2AE21iNE1Ti7peEL25iWYQ |
CitedBy_id | crossref_primary_10_1016_j_epidem_2015_03_003 crossref_primary_10_1073_pnas_082412899 crossref_primary_10_1137_030602800 crossref_primary_10_1007_s11538_021_00964_7 crossref_primary_10_1017_S0001867800007023 crossref_primary_10_1016_j_epidem_2018_02_002 crossref_primary_10_3934_mbe_2023075 crossref_primary_10_1093_cid_ciae031 crossref_primary_10_1186_1471_2458_9_S1_S2 crossref_primary_10_1371_journal_pcbi_1000895 crossref_primary_10_1007_s10144_015_0500_7 crossref_primary_10_1016_j_mbs_2009_12_004 crossref_primary_10_1016_j_tpb_2007_02_003 crossref_primary_10_1088_1742_5468_2009_01_P01005 crossref_primary_10_1142_S1793524521500844 crossref_primary_10_1017_S0021900200000735 crossref_primary_10_1080_10236190412331335373 crossref_primary_10_1073_pnas_1221509110 crossref_primary_10_1103_PhysRevLett_101_078101 crossref_primary_10_1155_2017_4253167 crossref_primary_10_1098_rspa_2022_0577 crossref_primary_10_1186_1756_3305_6_141 crossref_primary_10_1017_S002190020001977X crossref_primary_10_1214_23_AAP2035 crossref_primary_10_1016_j_physa_2019_123488 crossref_primary_10_1007_s11538_005_9043_y crossref_primary_10_1016_j_physa_2012_05_004 crossref_primary_10_1017_apr_2017_28 crossref_primary_10_1239_jap_1011994180 crossref_primary_10_1007_s00285_007_0136_0 crossref_primary_10_1007_s10441_010_9116_7 crossref_primary_10_1137_20M1339015 crossref_primary_10_1103_PhysRevE_87_062810 crossref_primary_10_1007_s11009_010_9177_8 crossref_primary_10_1155_2013_502635 crossref_primary_10_1214_10_PS158 crossref_primary_10_1239_jap_1127322023 crossref_primary_10_1098_rsif_2020_0690 crossref_primary_10_1017_S0021900200019112 crossref_primary_10_1142_S1793524509000662 crossref_primary_10_1371_journal_pcbi_1002271 crossref_primary_10_1017_S0269964816000188 crossref_primary_10_1016_j_epidem_2011_03_004 crossref_primary_10_1017_jpr_2020_112 crossref_primary_10_1080_03610918_2013_835409 crossref_primary_10_1371_journal_pntd_0003682 crossref_primary_10_3934_dcdsb_2015_20_2859 crossref_primary_10_1103_PhysRevE_92_012722 crossref_primary_10_1155_2013_470646 crossref_primary_10_1093_cid_ciab189 crossref_primary_10_1017_S0021900200003107 crossref_primary_10_1007_s12648_013_0275_7 crossref_primary_10_1239_jap_1183667415 crossref_primary_10_1239_jap_1059060909 crossref_primary_10_1098_rsif_2013_0943 crossref_primary_10_1103_PhysRevE_84_031907 crossref_primary_10_1186_1471_2334_7_91 crossref_primary_10_1007_s11538_009_9415_9 crossref_primary_10_1016_j_mbs_2012_02_001 crossref_primary_10_1016_j_idm_2018_03_002 crossref_primary_10_1016_j_jtbi_2010_06_030 crossref_primary_10_1007_s11284_010_0789_9 crossref_primary_10_4269_ajtmh_19_0758 crossref_primary_10_1016_j_tpb_2013_06_005 crossref_primary_10_1016_S0096_3003_01_00192_8 crossref_primary_10_1006_jtbi_2001_2328 crossref_primary_10_1103_PhysRevE_94_062314 crossref_primary_10_1239_aap_1396360112 crossref_primary_10_1017_S0021900200117966 crossref_primary_10_4236_jamp_2016_49186 crossref_primary_10_1103_PhysRevE_108_034406 crossref_primary_10_1016_S0025_5564_03_00088_9 crossref_primary_10_1016_j_jtbi_2007_05_007 crossref_primary_10_1016_S0025_5564_02_00098_6 crossref_primary_10_1016_j_amc_2015_11_094 crossref_primary_10_1142_S0219493717500411 crossref_primary_10_1007_s00285_009_0313_4 crossref_primary_10_1016_j_mbs_2020_108480 crossref_primary_10_1016_j_ejor_2013_01_032 crossref_primary_10_1111_j_2007_0030_1299_16081_x crossref_primary_10_1088_1742_6596_2084_1_012019 crossref_primary_10_1016_S0025_5564_99_00047_4 |
Cites_doi | 10.2307/1426635 10.2307/3214374 10.1016/0025-5564(71)90087-3 10.1239/jap/1032265214 10.1016/0378-4371(77)90001-2 10.1016/0025-5564(93)90018-6 10.2307/1428186 10.1080/0022250X.1976.9989853 10.2307/1427019 |
ContentType | Journal Article |
Copyright | 1999 Elsevier Science Inc. |
Copyright_xml | – notice: 1999 Elsevier Science Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/S0025-5564(98)10059-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1879-3134 |
EndPage | 40 |
ExternalDocumentID | 10204386 10_1016_S0025_5564_98_10059_7 S0025556498100597 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 186 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AETEA AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMJ HVGLF HZ~ H~9 IHE J1W KOM LW9 M26 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SME SPCBC SSA SSZ T5K TN5 UNMZH WH7 WUQ XOL XSW YQT ZCG ZGI ZXP ZY4 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c361t-f3f433bc224c4dcffab62ac647faeff4b8c23757ec9244e7104f5d25406fcef33 |
IEDL.DBID | .~1 |
ISSN | 0025-5564 |
IngestDate | Fri Jul 11 00:30:34 EDT 2025 Wed Feb 19 01:30:09 EST 2025 Tue Jul 01 03:34:08 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Fri Feb 23 02:21:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Transition region Quasi-stationary distribution Asymptotic approximation SIS model Time to extinction |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-f3f433bc224c4dcffab62ac647faeff4b8c23757ec9244e7104f5d25406fcef33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 10204386 |
PQID | 69693843 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_69693843 pubmed_primary_10204386 crossref_primary_10_1016_S0025_5564_98_10059_7 crossref_citationtrail_10_1016_S0025_5564_98_10059_7 elsevier_sciencedirect_doi_10_1016_S0025_5564_98_10059_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1999-03-01 |
PublicationDateYYYYMMDD | 1999-03-01 |
PublicationDate_xml | – month: 03 year: 1999 text: 1999-03-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences |
PublicationTitleAlternate | Math Biosci |
PublicationYear | 1999 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | I. Nåsell, On the time to extinction in recurrent epidemics, to appear in J. Roy. Stat. Soc., Series B Nåsell (BIB2) 1996; 28 Bartholomew (BIB4) 1976; 4 Weiss, Dishon (BIB3) 1971; 11 Jacquez, Simon (BIB9) 1993; 117 Norden (BIB7) 1982; 14 I. Nåsell, The threshold concept in stochastic epidemic and endemic models. in: D. Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge, 1995 Kryscio, Lefèvre (BIB8) 1989; 26 Oppenheim, Shuler, Weiss (BIB5) 1977; 88 Cavender (BIB6) 1978; 10 R. Ross, The Prevention of Malaria, 2nd ed., John Murray, London, 1911 M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965 Andersson, Djehiche (BIB10) 1998; 35 Oppenheim (10.1016/S0025-5564(98)10059-7_BIB5) 1977; 88 10.1016/S0025-5564(98)10059-7_BIB1 Cavender (10.1016/S0025-5564(98)10059-7_BIB6) 1978; 10 Nåsell (10.1016/S0025-5564(98)10059-7_BIB2) 1996; 28 Andersson (10.1016/S0025-5564(98)10059-7_BIB10) 1998; 35 Weiss (10.1016/S0025-5564(98)10059-7_BIB3) 1971; 11 Jacquez (10.1016/S0025-5564(98)10059-7_BIB9) 1993; 117 Bartholomew (10.1016/S0025-5564(98)10059-7_BIB4) 1976; 4 Kryscio (10.1016/S0025-5564(98)10059-7_BIB8) 1989; 26 10.1016/S0025-5564(98)10059-7_BIB13 Norden (10.1016/S0025-5564(98)10059-7_BIB7) 1982; 14 10.1016/S0025-5564(98)10059-7_BIB12 10.1016/S0025-5564(98)10059-7_BIB11 |
References_xml | – volume: 4 start-page: 187 year: 1976 ident: BIB4 article-title: Continuous time diffusion models with random duration of interest publication-title: J. Math. Sociol. – volume: 88 start-page: 191 year: 1977 ident: BIB5 article-title: Stochastic theory of nonlinear rate processes with multiple stationary states publication-title: Physica A – reference: I. Nåsell, On the time to extinction in recurrent epidemics, to appear in J. Roy. Stat. Soc., Series B – volume: 14 start-page: 687 year: 1982 ident: BIB7 article-title: On the distribution of the time to extinction in the stochastic logistic population model publication-title: Adv. Appl. Prob. – volume: 26 start-page: 685 year: 1989 ident: BIB8 article-title: On the extinction of the S–I–S stochastic logistic epidemic publication-title: J. Appl. Prob. – reference: I. Nåsell, The threshold concept in stochastic epidemic and endemic models. in: D. Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge, 1995 – volume: 35 start-page: 662 year: 1998 ident: BIB10 article-title: A threshold limit theorem for the stochastic logistic epidemic publication-title: J. Appl. Prob. – volume: 11 start-page: 261 year: 1971 ident: BIB3 article-title: On the asymptotic behavior of the stochastic and deterministic models of an epidemic publication-title: Math. Biosci. – volume: 10 start-page: 570 year: 1978 ident: BIB6 article-title: Quasi-stationary distributions of birth-and-death processes publication-title: Adv. Appl. Prob. – reference: M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965 – volume: 117 start-page: 77 year: 1993 ident: BIB9 article-title: The stochastic SI model with recruitment and deaths. I. Comparisons with the closed SIS model publication-title: Math. Biosci. – volume: 28 start-page: 895 year: 1996 ident: BIB2 article-title: The quasi-stationary distribution of the closed endemic SIS model publication-title: Adv. Appl. Prob. – reference: R. Ross, The Prevention of Malaria, 2nd ed., John Murray, London, 1911 – volume: 10 start-page: 570 year: 1978 ident: 10.1016/S0025-5564(98)10059-7_BIB6 article-title: Quasi-stationary distributions of birth-and-death processes publication-title: Adv. Appl. Prob. doi: 10.2307/1426635 – volume: 26 start-page: 685 year: 1989 ident: 10.1016/S0025-5564(98)10059-7_BIB8 article-title: On the extinction of the S–I–S stochastic logistic epidemic publication-title: J. Appl. Prob. doi: 10.2307/3214374 – volume: 11 start-page: 261 year: 1971 ident: 10.1016/S0025-5564(98)10059-7_BIB3 article-title: On the asymptotic behavior of the stochastic and deterministic models of an epidemic publication-title: Math. Biosci. doi: 10.1016/0025-5564(71)90087-3 – ident: 10.1016/S0025-5564(98)10059-7_BIB1 – volume: 35 start-page: 662 year: 1998 ident: 10.1016/S0025-5564(98)10059-7_BIB10 article-title: A threshold limit theorem for the stochastic logistic epidemic publication-title: J. Appl. Prob. doi: 10.1239/jap/1032265214 – volume: 88 start-page: 191 year: 1977 ident: 10.1016/S0025-5564(98)10059-7_BIB5 article-title: Stochastic theory of nonlinear rate processes with multiple stationary states publication-title: Physica A doi: 10.1016/0378-4371(77)90001-2 – volume: 117 start-page: 77 year: 1993 ident: 10.1016/S0025-5564(98)10059-7_BIB9 article-title: The stochastic SI model with recruitment and deaths. I. Comparisons with the closed SIS model publication-title: Math. Biosci. doi: 10.1016/0025-5564(93)90018-6 – ident: 10.1016/S0025-5564(98)10059-7_BIB13 – volume: 28 start-page: 895 year: 1996 ident: 10.1016/S0025-5564(98)10059-7_BIB2 article-title: The quasi-stationary distribution of the closed endemic SIS model publication-title: Adv. Appl. Prob. doi: 10.2307/1428186 – volume: 4 start-page: 187 year: 1976 ident: 10.1016/S0025-5564(98)10059-7_BIB4 article-title: Continuous time diffusion models with random duration of interest publication-title: J. Math. Sociol. doi: 10.1080/0022250X.1976.9989853 – volume: 14 start-page: 687 year: 1982 ident: 10.1016/S0025-5564(98)10059-7_BIB7 article-title: On the distribution of the time to extinction in the stochastic logistic population model publication-title: Adv. Appl. Prob. doi: 10.2307/1427019 – ident: 10.1016/S0025-5564(98)10059-7_BIB11 – ident: 10.1016/S0025-5564(98)10059-7_BIB12 |
SSID | ssj0017116 |
Score | 1.8328052 |
Snippet | An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor
R
0... An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21 |
SubjectTerms | Asymptotic approximation Endemic Diseases Epidemiology Humans Logistic Models Models, Biological Quasi-stationary distribution SIS model Stochastic Processes Time to extinction Transition region |
Title | On the quasi-stationary distribution of the stochastic logistic epidemic |
URI | https://dx.doi.org/10.1016/S0025-5564(98)10059-7 https://www.ncbi.nlm.nih.gov/pubmed/10204386 https://www.proquest.com/docview/69693843 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSysxEB9EEXwHUd_zWT_38A7vHaLdZjbJHkWUalFBFL2FbJpgQbZq24MX_3YnybY-DyJ42t2QScJMdjJD5jcD8Mcob8jQLRkW1jCUFpmxos3QG0EEbVF2Ajj5_EJ0b_Dsrribg6MpFiaEVTa6P-n0qK2bloOGmwePg0HA-JI5XAgsVR4glAFRjijDLt9_nYV55DKP5U9j2dbQ-x3Fk0aIjX9L9S8OwuRn59Nn9mc8h05WYLkxILPDtMZVmHP1GiymkpIva_DjfJaHdfQTupd1Rp_Z08SMBmyUrt3N80vWD_lym1JX2dDHTmQG2nsT8jZnCRdELy4VkLW_4Obk-Pqoy5raCcxykY-Z5x45ryyd0Bb71ntTiQ5JAaU3znuslO1wWUhnyQFDR3YG-qJP3mJbeOs85-swXw9rtwFZUVTkVbWNKPoVSilLm7uQD0lIT76K8i3AKce0bRKLh_oWD_o9gowYrQOjdal0ZLSWLdifkT2mzBpfEaipOPSHLaJJ-39FujcVn6bfJ9yJmNoNJyMtSlFyhbwFv5NU_1tLgA0rsfn9abdgKWV5CCFr2zA_fp64HbJhxtVu3KS7sHB42utehGfv6rb3BmYA67Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1PT9swFH9CTBNwmBgDVgZrDkyCg6FJHNs5cEBsqIUWLiBxM45ri0pTCqQV6oUvxRfcs52W7VAhTeKWRHnK03v2-xO_934Au0pYhYFuTmimFaFcU6I0axFqFUOCFssT15zcu2Dta3p2k90swMu0F8aVVda2P9h0b63rJ4e1NA_vBwPX44vhcMZoLmLXQsnryspzM3nCvK066vxEJf9IktNfVydtUkMLEJ2yeERsammaFhodmKZ9ba0qWIJMUm6VsZYWQicpz7jRmJ9Qg26Y2qyPyVSLWW2s-wuKdv8DRXPhYBMOnmd1JTGPPd6qx4l17L22DQWW_cO9XOx7rgmf5xDnBbze8Z2uwqc6Yo2Og1A-w4Ip1-BjwLCcrMFKbzb4tfoC7csywtvoYayqAanCOb96nER9N6C3xtaKhta_hHGnvlNuUHQUGpHwwgTEWr0O1-8i0Q1YLIel-QpRlhWYxrUUy_oF5ZznOjZuABPjFpMjYRtApxKTup5k7gA1fsvXkjUUtHSClrmQXtCSN-BgRnYfRnm8RSCm6pD_rEmJ7uYt0uZUfRL3qzuEUaUZjivJcpangqYN2Axa_YsX16cs2Nb_f7YJS-2rXld2Oxfn32A5jJhw9XLbsDh6HJsdDKBGxXe_YCO4fe8d8gdleSdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+quasi-stationary+distribution+of+the+stochastic+logistic+epidemic&rft.jtitle=Mathematical+biosciences&rft.au=N%C3%A5sell%2C+Ingemar&rft.date=1999-03-01&rft.issn=0025-5564&rft.volume=156&rft.issue=1-2&rft.spage=21&rft.epage=40&rft_id=info:doi/10.1016%2FS0025-5564%2898%2910059-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0025_5564_98_10059_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon |