Research on thermal efficiency and weld forming coefficient prediction of ultra-high strength steel welded joint under different energy inputs
As an ultra-high strength steel, Al–Si coated 22MnB5 hot stamping steel is widely used in the manufacturing of body-in-white structural parts. Compared with traditional welding technology, laser welding is widely used in the field of automobile body-in-white manufacturing due to its high energy dens...
Saved in:
Published in | Journal of materials research and technology Vol. 29; pp. 4102 - 4109 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an ultra-high strength steel, Al–Si coated 22MnB5 hot stamping steel is widely used in the manufacturing of body-in-white structural parts. Compared with traditional welding technology, laser welding is widely used in the field of automobile body-in-white manufacturing due to its high energy density, small heat affected zone, and high weld quality. For ultra-high strength steel laser welded joints, the weld forming coefficient is an important index to reflect the welding quality. In order to investigate the influence of weld forming coefficient on the Al content and the thermal efficiency, laser welding experiments of ultra-high strength steel under different laser energy inputs are carried out. The melting of the base metal and coating under different laser energy inputs is also considered. Particle swarm optimization (PSO) algorithm is introduced into radial basis function (RBF) neural network model to optimize the central parameters as the RBF neural network model alone is not sufficient in predicting the outcomes. The results shows that if the laser power density is constant (7 × 105 W/cm2), when laser energy inputs are 400 J/cm to 1200 J/cm, the Al content in welded joints is 1.458%–1.886%, the melting efficiency of welded joints is 0.23–0.26, the energy conversion efficiency of welded joints is 0.45–0.46. When the laser energy inputs are lower than 522 J/cm, the Al content of the laser welded joint increases gradually. When the laser energy inputs are higher than 522 J/cm, the Al content of the laser welded joint decreases. The root mean square error(RMSE) of PSO-optimized RBF neural network testing sets prediction results is 0.1551, R-square (R2) is 0.771 and mean absolute percentage error (MAPE) is 2.758%. The prediction accuracy of the PSO-optimized RBF neural network model for the upper surface weld width, waist weld width, and lower surface weld width is 93.9%, 91.1%, and 92.2%. |
---|---|
AbstractList | As an ultra-high strength steel, Al–Si coated 22MnB5 hot stamping steel is widely used in the manufacturing of body-in-white structural parts. Compared with traditional welding technology, laser welding is widely used in the field of automobile body-in-white manufacturing due to its high energy density, small heat affected zone, and high weld quality. For ultra-high strength steel laser welded joints, the weld forming coefficient is an important index to reflect the welding quality. In order to investigate the influence of weld forming coefficient on the Al content and the thermal efficiency, laser welding experiments of ultra-high strength steel under different laser energy inputs are carried out. The melting of the base metal and coating under different laser energy inputs is also considered. Particle swarm optimization (PSO) algorithm is introduced into radial basis function (RBF) neural network model to optimize the central parameters as the RBF neural network model alone is not sufficient in predicting the outcomes. The results shows that if the laser power density is constant (7 × 105 W/cm2), when laser energy inputs are 400 J/cm to 1200 J/cm, the Al content in welded joints is 1.458%–1.886%, the melting efficiency of welded joints is 0.23–0.26, the energy conversion efficiency of welded joints is 0.45–0.46. When the laser energy inputs are lower than 522 J/cm, the Al content of the laser welded joint increases gradually. When the laser energy inputs are higher than 522 J/cm, the Al content of the laser welded joint decreases. The root mean square error(RMSE) of PSO-optimized RBF neural network testing sets prediction results is 0.1551, R-square (R2) is 0.771 and mean absolute percentage error (MAPE) is 2.758%. The prediction accuracy of the PSO-optimized RBF neural network model for the upper surface weld width, waist weld width, and lower surface weld width is 93.9%, 91.1%, and 92.2%. |
Author | Pan, Xuanjun Li, Siliang Liu, Haijiang Zhang, Heng Sing, Swee Leong |
Author_xml | – sequence: 1 givenname: Siliang surname: Li fullname: Li, Siliang organization: School of Mechanical Engineering, Tongji University, Shanghai, 201804, PR China – sequence: 2 givenname: Haijiang surname: Liu fullname: Liu, Haijiang email: defensec@tongji.edu.cn organization: School of Mechanical Engineering, Tongji University, Shanghai, 201804, PR China – sequence: 3 givenname: Heng surname: Zhang fullname: Zhang, Heng organization: School of Mechanical Engineering, Tongji University, Shanghai, 201804, PR China – sequence: 4 givenname: Xuanjun surname: Pan fullname: Pan, Xuanjun organization: School of Mechanical Engineering, Tongji University, Shanghai, 201804, PR China – sequence: 5 givenname: Swee Leong surname: Sing fullname: Sing, Swee Leong email: sweeleong.sing@nus.edu.sg organization: Department of Mechanical Engineering, National University of Singapore, 117575, Singapore |
BookMark | eNp9kc-KHCEQhz1sIJvZfYGcfIHulNr2uJBLWPJnYSEQNmdxtOyx6dFBnYR5iTxz7JkkxxxELfk-rPq9ITcxRSTkLYOeARvfzf18yLXnwIceeA9qvCG3nAvVbZUcXpP7UmYAYPJhBMVuya9vWNBku6cp0rrHfDALRe-DDRjtmZro6E9cHPUpH0KcqE1_Xys9ZnTB1tDQ5Olpqdl0-zDtaakZ41TXA-JyEaCjcwoNOkWHmbrgPeZVghHzdKYhHk-13JFX3iwF7__sG_L908eXxy_d89fPT48fnjsrRlY79BKHHXeo2holcgEKDTPcKBCotlY9gNgyM44OGFqwYOSodtxshfdcebEhT1evS2bWxxwOJp91MkFfCilP2uQa7ILaSJCGC7kqhsE7owbBd5ztJHiG7bIh_OqyOZWS0f_zMdBrKHrWayh6DUUD1y2UBr2_Qti6_BEw63KZeBtoRlvbN8L_8N-hj5zc |
Cites_doi | 10.1002/mawe.201800009 10.1016/j.matlet.2021.130896 10.1016/j.jmapro.2021.05.006 10.1016/j.jmatprotec.2011.04.002 10.1016/j.jmrt.2022.07.012 10.1179/136217103225005516 10.1109/ACCESS.2018.2872698 10.1016/j.scitotenv.2021.145534 10.1080/09507116.2011.606151 10.1016/j.matdes.2019.107871 10.3390/ma12091460 10.1016/j.jmatprotec.2017.06.014 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jmrt.2024.02.086 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 4109 |
ExternalDocumentID | oai_doaj_org_article_a505a2350a5644fda8432b21b50f1e84 10_1016_j_jmrt_2024_02_086 S223878542400379X |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ABXRA ACGFS ADBBV ADCUG ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB FNPLU GROUPED_DOAJ GX1 HH5 HZ~ IPNFZ IXB KQ8 M41 NCXOZ O9- OK1 RIG ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c361t-ef5e4b2de82de65e2308ea1a2a803e87c890371a66d01ec0c0a568b2a73ff28f3 |
IEDL.DBID | IXB |
ISSN | 2238-7854 |
IngestDate | Tue Oct 22 15:16:31 EDT 2024 Wed Oct 23 14:18:23 EDT 2024 Sat Oct 26 15:43:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ultra-high strength steel RBF neural network Thermal efficiency Laser energy inputs Weld forming coefficient |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-ef5e4b2de82de65e2308ea1a2a803e87c890371a66d01ec0c0a568b2a73ff28f3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S223878542400379X |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a505a2350a5644fda8432b21b50f1e84 crossref_primary_10_1016_j_jmrt_2024_02_086 elsevier_sciencedirect_doi_10_1016_j_jmrt_2024_02_086 |
PublicationCentury | 2000 |
PublicationDate | March-April 2024 2024-03-00 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March-April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials research and technology |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Liang, Yang, Zhang (bib19) 2018; 6 Huang, Zhang, Zhang (bib20) 2020; 33 Skaar (bib21) 2020-10-26 Daniel Nancy, Franco Carlos, Alanis Alma (bib22) 2018-08-15 Ning, Zhang, Yin (bib9) 2019; 178 Punkari, Weckman, Kerr (bib11) 2003 Aug 1; 8 Tan, Li (bib13) 2011; 38 Kawahito, Matsumoto, Abe (bib5) 2013; 27 Zhang, Cisse, Dauphin, Lopez-Paz (bib18) 2017 Oct 25 Gerhards, Engels, Olschok (bib7) 2019; 50 Wang, Nakanishi, Kawahito (bib16) 2017; 249 Kawahito, Matsumoto, Abe (bib4) 2011; 211 Li, Zhang, Pan, etal (bib8) 2023 Lin (bib14) 2020 Zhong, Xie, Chen (bib2) 2022; 306 Deng, Zhou, Shen (bib17) 2021; 772 Khan, Shahabad, Yavuz (bib1) 2021; 67 Hipp, Mahrle, Beyer (bib10) 2019; 12 Jacques, El Ouafi (bib6) 2018; 6 Lin, Li, Hua (bib3) 2022; 19 Zou, Wu (bib15) 2013; 40 Swift-Hook, Gick (bib12) 1973 Nov; 52 Kawahito (10.1016/j.jmrt.2024.02.086_bib4) 2011; 211 Kawahito (10.1016/j.jmrt.2024.02.086_bib5) 2013; 27 Punkari (10.1016/j.jmrt.2024.02.086_bib11) 2003; 8 Hipp (10.1016/j.jmrt.2024.02.086_bib10) 2019; 12 Lin (10.1016/j.jmrt.2024.02.086_bib14) 2020 Jacques (10.1016/j.jmrt.2024.02.086_bib6) 2018; 6 Tan (10.1016/j.jmrt.2024.02.086_bib13) 2011; 38 Ning (10.1016/j.jmrt.2024.02.086_bib9) 2019; 178 Zhong (10.1016/j.jmrt.2024.02.086_bib2) 2022; 306 Huang (10.1016/j.jmrt.2024.02.086_bib20) 2020; 33 Deng (10.1016/j.jmrt.2024.02.086_bib17) 2021; 772 Khan (10.1016/j.jmrt.2024.02.086_bib1) 2021; 67 Zou (10.1016/j.jmrt.2024.02.086_bib15) 2013; 40 Liang (10.1016/j.jmrt.2024.02.086_bib19) 2018; 6 Wang (10.1016/j.jmrt.2024.02.086_bib16) 2017; 249 Skaar (10.1016/j.jmrt.2024.02.086_bib21) 2020 Gerhards (10.1016/j.jmrt.2024.02.086_bib7) 2019; 50 Zhang (10.1016/j.jmrt.2024.02.086_bib18) 2017 Li (10.1016/j.jmrt.2024.02.086_bib8) 2023 Swift-Hook (10.1016/j.jmrt.2024.02.086_bib12) 1973; 52 Lin (10.1016/j.jmrt.2024.02.086_bib3) 2022; 19 Daniel Nancy (10.1016/j.jmrt.2024.02.086_bib22) 2018 |
References_xml | – year: 2020-10-26 ident: bib21 article-title: A comprehensive guide to neural network modeling contributor: fullname: Skaar – volume: 38 year: 2011 ident: bib13 article-title: Characteristics of fiber laser and CO2 laser welding of AZ31B magnesium alloy publication-title: Chin Laser contributor: fullname: Li – volume: 6 start-page: 58774 year: 2018 end-page: 58783 ident: bib19 article-title: Understanding mixup training methods publication-title: IEEE Access contributor: fullname: Zhang – volume: 19 start-page: 4282 year: 2022 end-page: 4295 ident: bib3 article-title: Laser welding Al–Si coated hot stamping steel in conduction mode: weld formation and Al-rich microstructure publication-title: J Mater Res Technol contributor: fullname: Hua – year: 2020 ident: bib14 article-title: Study on microstructure characteristics and aluminum migration mechanism of Al-Si coating 22MnB5 laser welding contributor: fullname: Lin – volume: 306 year: 2022 ident: bib2 article-title: Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer publication-title: Mater Lett contributor: fullname: Chen – volume: 178 year: 2019 ident: bib9 article-title: Mechanism study on the effects of power modulation on energy coupling efficiency in infrared laser welding of highly-reflective materials publication-title: Mater Des contributor: fullname: Yin – volume: 211 start-page: 1563 year: 2011 end-page: 1568 ident: bib4 article-title: Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy publication-title: J Mater Process Technol contributor: fullname: Abe – volume: 6 start-page: 316 year: 2018 ident: bib6 article-title: ANN based predictive modelling of weld shape and dimensions in laser welding of galvanized steel in butt joint configurations publication-title: J Miner Mater Char Eng contributor: fullname: El Ouafi – volume: 249 start-page: 193 year: 2017 end-page: 201 ident: bib16 article-title: Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser publication-title: J Mater Process Technol contributor: fullname: Kawahito – year: 2023 ident: bib8 article-title: Research on welding quality optimization of ultra-high strength steel welding joint under different laser energy inputs contributor: fullname: etal – volume: 40 start-page: 58 year: 2013 end-page: 62 ident: bib15 article-title: Comparison of melting efficiency of high power fiber laser and CO2 laser welding publication-title: Chin Laser contributor: fullname: Wu – volume: 27 start-page: 129 year: 2013 end-page: 135 ident: bib5 article-title: Laser absorption characteristics in high-power fibre laser welding of stainless steel publication-title: Weld Int contributor: fullname: Abe – volume: 8 start-page: 269 year: 2003 Aug 1 end-page: 281 ident: bib11 article-title: Effects of magnesium content on dual beam Nd: YAG laser welding of Al–Mg alloys publication-title: Sci Technol Weld Join contributor: fullname: Kerr – volume: 50 start-page: 115 year: 2019 end-page: 125 ident: bib7 article-title: Modified laser beam welding of aluminum‐silicon coated 22MnB5 publication-title: Mater Werkst contributor: fullname: Olschok – volume: 12 start-page: 1460 year: 2019 ident: bib10 article-title: Thermal efficiency analysis for laser-assisted plasma arc welding of AISI 304 stainless steel publication-title: Materials contributor: fullname: Beyer – volume: 67 start-page: 535 year: 2021 end-page: 544 ident: bib1 article-title: Numerical modelling and experimental validation of the effect of laser beam defocusing on process optimization during fiber laser welding of automotive press-hardened steels publication-title: J Manuf Process contributor: fullname: Yavuz – volume: 772 year: 2021 ident: bib17 article-title: New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water publication-title: Sci Total Environ contributor: fullname: Shen – volume: 33 start-page: 19365 year: 2020 end-page: 19376 ident: bib20 article-title: Self-adaptive training: beyond empirical risk minimization publication-title: Adv Neural Inf Process Syst contributor: fullname: Zhang – year: 2018-08-15 ident: bib22 article-title: Neural networks for robotics:an engineering perspective contributor: fullname: Alanis Alma – volume: 52 year: 1973 Nov ident: bib12 article-title: Penetration welding with lasers publication-title: Weld J contributor: fullname: Gick – year: 2017 Oct 25 ident: bib18 article-title: mixup: beyond empirical risk minimization contributor: fullname: Lopez-Paz – volume: 50 start-page: 115 issue: 2 year: 2019 ident: 10.1016/j.jmrt.2024.02.086_bib7 article-title: Modified laser beam welding of aluminum‐silicon coated 22MnB5 publication-title: Mater Werkst doi: 10.1002/mawe.201800009 contributor: fullname: Gerhards – volume: 306 year: 2022 ident: 10.1016/j.jmrt.2024.02.086_bib2 article-title: Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer publication-title: Mater Lett doi: 10.1016/j.matlet.2021.130896 contributor: fullname: Zhong – volume: 67 start-page: 535 year: 2021 ident: 10.1016/j.jmrt.2024.02.086_bib1 article-title: Numerical modelling and experimental validation of the effect of laser beam defocusing on process optimization during fiber laser welding of automotive press-hardened steels publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.05.006 contributor: fullname: Khan – volume: 211 start-page: 1563 issue: 10 year: 2011 ident: 10.1016/j.jmrt.2024.02.086_bib4 article-title: Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2011.04.002 contributor: fullname: Kawahito – volume: 19 start-page: 4282 year: 2022 ident: 10.1016/j.jmrt.2024.02.086_bib3 article-title: Laser welding Al–Si coated hot stamping steel in conduction mode: weld formation and Al-rich microstructure publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2022.07.012 contributor: fullname: Lin – volume: 8 start-page: 269 issue: 4 year: 2003 ident: 10.1016/j.jmrt.2024.02.086_bib11 article-title: Effects of magnesium content on dual beam Nd: YAG laser welding of Al–Mg alloys publication-title: Sci Technol Weld Join doi: 10.1179/136217103225005516 contributor: fullname: Punkari – volume: 6 start-page: 58774 year: 2018 ident: 10.1016/j.jmrt.2024.02.086_bib19 article-title: Understanding mixup training methods publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2872698 contributor: fullname: Liang – volume: 772 year: 2021 ident: 10.1016/j.jmrt.2024.02.086_bib17 article-title: New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145534 contributor: fullname: Deng – year: 2017 ident: 10.1016/j.jmrt.2024.02.086_bib18 contributor: fullname: Zhang – volume: 40 start-page: 58 issue: 8 year: 2013 ident: 10.1016/j.jmrt.2024.02.086_bib15 article-title: Comparison of melting efficiency of high power fiber laser and CO2 laser welding publication-title: Chin Laser contributor: fullname: Zou – year: 2020 ident: 10.1016/j.jmrt.2024.02.086_bib21 contributor: fullname: Skaar – volume: 27 start-page: 129 issue: 2 year: 2013 ident: 10.1016/j.jmrt.2024.02.086_bib5 article-title: Laser absorption characteristics in high-power fibre laser welding of stainless steel publication-title: Weld Int doi: 10.1080/09507116.2011.606151 contributor: fullname: Kawahito – volume: 33 start-page: 19365 year: 2020 ident: 10.1016/j.jmrt.2024.02.086_bib20 article-title: Self-adaptive training: beyond empirical risk minimization publication-title: Adv Neural Inf Process Syst contributor: fullname: Huang – year: 2023 ident: 10.1016/j.jmrt.2024.02.086_bib8 contributor: fullname: Li – volume: 178 year: 2019 ident: 10.1016/j.jmrt.2024.02.086_bib9 article-title: Mechanism study on the effects of power modulation on energy coupling efficiency in infrared laser welding of highly-reflective materials publication-title: Mater Des doi: 10.1016/j.matdes.2019.107871 contributor: fullname: Ning – volume: 52 issue: 11 year: 1973 ident: 10.1016/j.jmrt.2024.02.086_bib12 article-title: Penetration welding with lasers publication-title: Weld J contributor: fullname: Swift-Hook – year: 2020 ident: 10.1016/j.jmrt.2024.02.086_bib14 contributor: fullname: Lin – volume: 12 start-page: 1460 issue: 9 year: 2019 ident: 10.1016/j.jmrt.2024.02.086_bib10 article-title: Thermal efficiency analysis for laser-assisted plasma arc welding of AISI 304 stainless steel publication-title: Materials doi: 10.3390/ma12091460 contributor: fullname: Hipp – volume: 38 issue: 6 year: 2011 ident: 10.1016/j.jmrt.2024.02.086_bib13 article-title: Characteristics of fiber laser and CO2 laser welding of AZ31B magnesium alloy publication-title: Chin Laser contributor: fullname: Tan – volume: 249 start-page: 193 year: 2017 ident: 10.1016/j.jmrt.2024.02.086_bib16 article-title: Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2017.06.014 contributor: fullname: Wang – volume: 6 start-page: 316 issue: 3 year: 2018 ident: 10.1016/j.jmrt.2024.02.086_bib6 article-title: ANN based predictive modelling of weld shape and dimensions in laser welding of galvanized steel in butt joint configurations publication-title: J Miner Mater Char Eng contributor: fullname: Jacques – year: 2018 ident: 10.1016/j.jmrt.2024.02.086_bib22 contributor: fullname: Daniel Nancy |
SSID | ssj0001596081 |
Score | 2.3456366 |
Snippet | As an ultra-high strength steel, Al–Si coated 22MnB5 hot stamping steel is widely used in the manufacturing of body-in-white structural parts. Compared with... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 4102 |
SubjectTerms | Laser energy inputs RBF neural network Thermal efficiency Ultra-high strength steel Weld forming coefficient |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVlT-khJGlLN1_okFsRlWXLko9JaAg55JRAbkK2RmWXXXtxveRf9DdHI9nFp_QSg8HY1shoBt4Iv3lDyFVTWi6AO-Y0CFb4wrM6wCSr8lIDKJtJGwmyj-X9c_HwIl9mrb6QE5bkgdPC_bQBoq3IJbcyQLd3Vhe5qEVWS-4z0EkJlFezzVSqDw6ZeexQGuBPM6VlMVbMJHLXetsjkVIUUbATC6lnqBTF-2fgNAOcuyNyOGaK9Dp94TH5BO0J-TzTD_xC_k68Odq1FDO5bRgAURQCKyqpbR19hY2jmJmGEbTppqcD3fX4jwb9QjtP95uhtwzFiymWj7S_B7wA2EQD4Oi6W4VBWHLW06mrykAhlg7SVbvbD3--kue7X0-392xssMCavMwGBl5CUQsHOpylhLAd0WAzK6zmOWjV6AoV_WxZOp5Bwxt0gq6FVbn3Qvv8G1m0XQvfCVWgqsrLWoWjsMrXKDzpPGSVV9YruSQ_pgU2u6SjYSaC2dqgOwy6w3BhgjuW5AZ98O9N1MCON0JkmDEyzP8iY0nk5EEzphMpTQimVu9MfvoRk5-RAzSZ2GrnZDH0e7gI6ctQX8ZIfQNA2-42 priority: 102 providerName: Directory of Open Access Journals |
Title | Research on thermal efficiency and weld forming coefficient prediction of ultra-high strength steel welded joint under different energy inputs |
URI | https://dx.doi.org/10.1016/j.jmrt.2024.02.086 https://doaj.org/article/a505a2350a5644fda8432b21b50f1e84 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07j9QwELZORwMF4imWx8oFHbI28SN2Sm7F6URxFHBSRGM58fiU1V6yymXFv-A343ESWBoKIkVKHI9jeayZcfLNZ0LeN4XLOGSeeQOcySADq6ObZKUoDIB2uXIJIHtdXN3Iz5Wqzsh2yYVBWOVs-yebnqz1XLKZR3NzaNvN1-jYjDZKIgpS6LKKdlhE74xJfNXFn-8sKsboaa9SrM9QYM6dmWBeu7sBIZVcJupOTKk-8U-Jxv_ETZ24nssn5PEcM9KPU7eekjPonpFHJ0yCz8nPBUFH-45iTHcXBSDRQ2BuJXWdpz9g7ynGqFGCNv3ydKSHAf_WoIZoH-hxPw6OIY0xxUSS7nbEC4B9agA83fVtFMLks4Eu-6uMFFISIW27w3G8f0FuLj99216xeasF1ogiHxkEBbLmHkw8CwVxYWLA5Y47kwkwujElcvu5ovBZDk3WZE4VpuZOixC4CeIlOe_6Dl4RqkGXZVC1jod0OtRIQekD5GXQLmi1Ih-WAbaHiVHDLlCznUV1WFSHzbiN6liRC9TB75rIhp0K-uHWztPBuhjGOS4UdkrK4J2Rgtc8r1UWcjByRdSiQfvX5IpNtf94-ev_lHtDHuLdBFV7S87H4QjvYuwy1uu05l-nKbomD6631ZfvvwDnx_Jf |
link.rule.ids | 315,783,787,867,2109,3515,27938,27939,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELWS9ND0UDX9ULdf8SG3ylowNjbHJkq0adNckkh7swweR6w2sKKs-i_6m-sx0G4vORQJCdmMsTyWZ4D3ngk5qXKbcEgccxo4E154VoYwyYos1wDKptJGgOx1vrgTX5dyuUfOJi4MwirHtX9Y0-NqPZbMx9Gcb-p6fhMCm1ZaCkRBZqpY7pMnSLtEXNfl8vTvhxYZkvS4WSkaMLQYyTMDzmv10CGmkouo3Ymc6p0AFXX8d-LUTuy5eEGej0kj_TL064jsQfOSPNuREnxFfk0QOto2FJO6h2AAUR8CyZXUNo7-hLWjmKQGC1q1U21PNx3-rkEX0dbT7brvLEMdY4pMkua-xwuAdWwAHF21dTBC9llHpw1WegqRRUjrZrPtf7wmdxfnt2cLNu61wKosT3sGXoIouQMdzlxCeDPRYFPLrU4y0KrSBYr72Tx3SQpVUiVW5rrkVmXec-2zN-SgaRt4S6gCVRReliocwipfogal85AWXlmv5Ix8ngbYbAZJDTNhzVYG3WHQHSbhJrhjRk7RB3_uRDnsWNB292acD8aGPM7yTGKnhPDOapHxkqelTHwKWsyInDxo_pldoan6kYe_-0-7Y_J0cfv9ylxdXn97Tw6xZsCtfSAHfbeFjyGR6ctPcaL-BvTd8uM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+thermal+efficiency+and+weld+forming+coefficient+prediction+of+ultra-high+strength+steel+welded+joint+under+different+energy+inputs&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Li%2C+Siliang&rft.au=Liu%2C+Haijiang&rft.au=Zhang%2C+Heng&rft.au=Pan%2C+Xuanjun&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=2238-7854&rft.volume=29&rft.spage=4102&rft.epage=4109&rft_id=info:doi/10.1016%2Fj.jmrt.2024.02.086&rft.externalDocID=S223878542400379X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon |