Research on thermal efficiency and weld forming coefficient prediction of ultra-high strength steel welded joint under different energy inputs

As an ultra-high strength steel, Al–Si coated 22MnB5 hot stamping steel is widely used in the manufacturing of body-in-white structural parts. Compared with traditional welding technology, laser welding is widely used in the field of automobile body-in-white manufacturing due to its high energy dens...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 29; pp. 4102 - 4109
Main Authors Li, Siliang, Liu, Haijiang, Zhang, Heng, Pan, Xuanjun, Sing, Swee Leong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an ultra-high strength steel, Al–Si coated 22MnB5 hot stamping steel is widely used in the manufacturing of body-in-white structural parts. Compared with traditional welding technology, laser welding is widely used in the field of automobile body-in-white manufacturing due to its high energy density, small heat affected zone, and high weld quality. For ultra-high strength steel laser welded joints, the weld forming coefficient is an important index to reflect the welding quality. In order to investigate the influence of weld forming coefficient on the Al content and the thermal efficiency, laser welding experiments of ultra-high strength steel under different laser energy inputs are carried out. The melting of the base metal and coating under different laser energy inputs is also considered. Particle swarm optimization (PSO) algorithm is introduced into radial basis function (RBF) neural network model to optimize the central parameters as the RBF neural network model alone is not sufficient in predicting the outcomes. The results shows that if the laser power density is constant (7 × 105 W/cm2), when laser energy inputs are 400 J/cm to 1200 J/cm, the Al content in welded joints is 1.458%–1.886%, the melting efficiency of welded joints is 0.23–0.26, the energy conversion efficiency of welded joints is 0.45–0.46. When the laser energy inputs are lower than 522 J/cm, the Al content of the laser welded joint increases gradually. When the laser energy inputs are higher than 522 J/cm, the Al content of the laser welded joint decreases. The root mean square error(RMSE) of PSO-optimized RBF neural network testing sets prediction results is 0.1551, R-square (R2) is 0.771 and mean absolute percentage error (MAPE) is 2.758%. The prediction accuracy of the PSO-optimized RBF neural network model for the upper surface weld width, waist weld width, and lower surface weld width is 93.9%, 91.1%, and 92.2%.
AbstractList As an ultra-high strength steel, Al–Si coated 22MnB5 hot stamping steel is widely used in the manufacturing of body-in-white structural parts. Compared with traditional welding technology, laser welding is widely used in the field of automobile body-in-white manufacturing due to its high energy density, small heat affected zone, and high weld quality. For ultra-high strength steel laser welded joints, the weld forming coefficient is an important index to reflect the welding quality. In order to investigate the influence of weld forming coefficient on the Al content and the thermal efficiency, laser welding experiments of ultra-high strength steel under different laser energy inputs are carried out. The melting of the base metal and coating under different laser energy inputs is also considered. Particle swarm optimization (PSO) algorithm is introduced into radial basis function (RBF) neural network model to optimize the central parameters as the RBF neural network model alone is not sufficient in predicting the outcomes. The results shows that if the laser power density is constant (7 × 105 W/cm2), when laser energy inputs are 400 J/cm to 1200 J/cm, the Al content in welded joints is 1.458%–1.886%, the melting efficiency of welded joints is 0.23–0.26, the energy conversion efficiency of welded joints is 0.45–0.46. When the laser energy inputs are lower than 522 J/cm, the Al content of the laser welded joint increases gradually. When the laser energy inputs are higher than 522 J/cm, the Al content of the laser welded joint decreases. The root mean square error(RMSE) of PSO-optimized RBF neural network testing sets prediction results is 0.1551, R-square (R2) is 0.771 and mean absolute percentage error (MAPE) is 2.758%. The prediction accuracy of the PSO-optimized RBF neural network model for the upper surface weld width, waist weld width, and lower surface weld width is 93.9%, 91.1%, and 92.2%.
Author Pan, Xuanjun
Li, Siliang
Liu, Haijiang
Zhang, Heng
Sing, Swee Leong
Author_xml – sequence: 1
  givenname: Siliang
  surname: Li
  fullname: Li, Siliang
  organization: School of Mechanical Engineering, Tongji University, Shanghai, 201804, PR China
– sequence: 2
  givenname: Haijiang
  surname: Liu
  fullname: Liu, Haijiang
  email: defensec@tongji.edu.cn
  organization: School of Mechanical Engineering, Tongji University, Shanghai, 201804, PR China
– sequence: 3
  givenname: Heng
  surname: Zhang
  fullname: Zhang, Heng
  organization: School of Mechanical Engineering, Tongji University, Shanghai, 201804, PR China
– sequence: 4
  givenname: Xuanjun
  surname: Pan
  fullname: Pan, Xuanjun
  organization: School of Mechanical Engineering, Tongji University, Shanghai, 201804, PR China
– sequence: 5
  givenname: Swee Leong
  surname: Sing
  fullname: Sing, Swee Leong
  email: sweeleong.sing@nus.edu.sg
  organization: Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
BookMark eNp9kc-KHCEQhz1sIJvZfYGcfIHulNr2uJBLWPJnYSEQNmdxtOyx6dFBnYR5iTxz7JkkxxxELfk-rPq9ITcxRSTkLYOeARvfzf18yLXnwIceeA9qvCG3nAvVbZUcXpP7UmYAYPJhBMVuya9vWNBku6cp0rrHfDALRe-DDRjtmZro6E9cHPUpH0KcqE1_Xys9ZnTB1tDQ5Olpqdl0-zDtaakZ41TXA-JyEaCjcwoNOkWHmbrgPeZVghHzdKYhHk-13JFX3iwF7__sG_L908eXxy_d89fPT48fnjsrRlY79BKHHXeo2holcgEKDTPcKBCotlY9gNgyM44OGFqwYOSodtxshfdcebEhT1evS2bWxxwOJp91MkFfCilP2uQa7ILaSJCGC7kqhsE7owbBd5ztJHiG7bIh_OqyOZWS0f_zMdBrKHrWayh6DUUD1y2UBr2_Qti6_BEw63KZeBtoRlvbN8L_8N-hj5zc
Cites_doi 10.1002/mawe.201800009
10.1016/j.matlet.2021.130896
10.1016/j.jmapro.2021.05.006
10.1016/j.jmatprotec.2011.04.002
10.1016/j.jmrt.2022.07.012
10.1179/136217103225005516
10.1109/ACCESS.2018.2872698
10.1016/j.scitotenv.2021.145534
10.1080/09507116.2011.606151
10.1016/j.matdes.2019.107871
10.3390/ma12091460
10.1016/j.jmatprotec.2017.06.014
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jmrt.2024.02.086
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 4109
ExternalDocumentID oai_doaj_org_article_a505a2350a5644fda8432b21b50f1e84
10_1016_j_jmrt_2024_02_086
S223878542400379X
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ABXRA
ACGFS
ADBBV
ADCUG
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FNPLU
GROUPED_DOAJ
GX1
HH5
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c361t-ef5e4b2de82de65e2308ea1a2a803e87c890371a66d01ec0c0a568b2a73ff28f3
IEDL.DBID IXB
ISSN 2238-7854
IngestDate Tue Oct 22 15:16:31 EDT 2024
Wed Oct 23 14:18:23 EDT 2024
Sat Oct 26 15:43:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ultra-high strength steel
RBF neural network
Thermal efficiency
Laser energy inputs
Weld forming coefficient
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-ef5e4b2de82de65e2308ea1a2a803e87c890371a66d01ec0c0a568b2a73ff28f3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S223878542400379X
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_a505a2350a5644fda8432b21b50f1e84
crossref_primary_10_1016_j_jmrt_2024_02_086
elsevier_sciencedirect_doi_10_1016_j_jmrt_2024_02_086
PublicationCentury 2000
PublicationDate March-April 2024
2024-03-00
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March-April 2024
PublicationDecade 2020
PublicationTitle Journal of materials research and technology
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Liang, Yang, Zhang (bib19) 2018; 6
Huang, Zhang, Zhang (bib20) 2020; 33
Skaar (bib21) 2020-10-26
Daniel Nancy, Franco Carlos, Alanis Alma (bib22) 2018-08-15
Ning, Zhang, Yin (bib9) 2019; 178
Punkari, Weckman, Kerr (bib11) 2003 Aug 1; 8
Tan, Li (bib13) 2011; 38
Kawahito, Matsumoto, Abe (bib5) 2013; 27
Zhang, Cisse, Dauphin, Lopez-Paz (bib18) 2017 Oct 25
Gerhards, Engels, Olschok (bib7) 2019; 50
Wang, Nakanishi, Kawahito (bib16) 2017; 249
Kawahito, Matsumoto, Abe (bib4) 2011; 211
Li, Zhang, Pan, etal (bib8) 2023
Lin (bib14) 2020
Zhong, Xie, Chen (bib2) 2022; 306
Deng, Zhou, Shen (bib17) 2021; 772
Khan, Shahabad, Yavuz (bib1) 2021; 67
Hipp, Mahrle, Beyer (bib10) 2019; 12
Jacques, El Ouafi (bib6) 2018; 6
Lin, Li, Hua (bib3) 2022; 19
Zou, Wu (bib15) 2013; 40
Swift-Hook, Gick (bib12) 1973 Nov; 52
Kawahito (10.1016/j.jmrt.2024.02.086_bib4) 2011; 211
Kawahito (10.1016/j.jmrt.2024.02.086_bib5) 2013; 27
Punkari (10.1016/j.jmrt.2024.02.086_bib11) 2003; 8
Hipp (10.1016/j.jmrt.2024.02.086_bib10) 2019; 12
Lin (10.1016/j.jmrt.2024.02.086_bib14) 2020
Jacques (10.1016/j.jmrt.2024.02.086_bib6) 2018; 6
Tan (10.1016/j.jmrt.2024.02.086_bib13) 2011; 38
Ning (10.1016/j.jmrt.2024.02.086_bib9) 2019; 178
Zhong (10.1016/j.jmrt.2024.02.086_bib2) 2022; 306
Huang (10.1016/j.jmrt.2024.02.086_bib20) 2020; 33
Deng (10.1016/j.jmrt.2024.02.086_bib17) 2021; 772
Khan (10.1016/j.jmrt.2024.02.086_bib1) 2021; 67
Zou (10.1016/j.jmrt.2024.02.086_bib15) 2013; 40
Liang (10.1016/j.jmrt.2024.02.086_bib19) 2018; 6
Wang (10.1016/j.jmrt.2024.02.086_bib16) 2017; 249
Skaar (10.1016/j.jmrt.2024.02.086_bib21) 2020
Gerhards (10.1016/j.jmrt.2024.02.086_bib7) 2019; 50
Zhang (10.1016/j.jmrt.2024.02.086_bib18) 2017
Li (10.1016/j.jmrt.2024.02.086_bib8) 2023
Swift-Hook (10.1016/j.jmrt.2024.02.086_bib12) 1973; 52
Lin (10.1016/j.jmrt.2024.02.086_bib3) 2022; 19
Daniel Nancy (10.1016/j.jmrt.2024.02.086_bib22) 2018
References_xml – year: 2020-10-26
  ident: bib21
  article-title: A comprehensive guide to neural network modeling
  contributor:
    fullname: Skaar
– volume: 38
  year: 2011
  ident: bib13
  article-title: Characteristics of fiber laser and CO2 laser welding of AZ31B magnesium alloy
  publication-title: Chin Laser
  contributor:
    fullname: Li
– volume: 6
  start-page: 58774
  year: 2018
  end-page: 58783
  ident: bib19
  article-title: Understanding mixup training methods
  publication-title: IEEE Access
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 4282
  year: 2022
  end-page: 4295
  ident: bib3
  article-title: Laser welding Al–Si coated hot stamping steel in conduction mode: weld formation and Al-rich microstructure
  publication-title: J Mater Res Technol
  contributor:
    fullname: Hua
– year: 2020
  ident: bib14
  article-title: Study on microstructure characteristics and aluminum migration mechanism of Al-Si coating 22MnB5 laser welding
  contributor:
    fullname: Lin
– volume: 306
  year: 2022
  ident: bib2
  article-title: Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer
  publication-title: Mater Lett
  contributor:
    fullname: Chen
– volume: 178
  year: 2019
  ident: bib9
  article-title: Mechanism study on the effects of power modulation on energy coupling efficiency in infrared laser welding of highly-reflective materials
  publication-title: Mater Des
  contributor:
    fullname: Yin
– volume: 211
  start-page: 1563
  year: 2011
  end-page: 1568
  ident: bib4
  article-title: Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy
  publication-title: J Mater Process Technol
  contributor:
    fullname: Abe
– volume: 6
  start-page: 316
  year: 2018
  ident: bib6
  article-title: ANN based predictive modelling of weld shape and dimensions in laser welding of galvanized steel in butt joint configurations
  publication-title: J Miner Mater Char Eng
  contributor:
    fullname: El Ouafi
– volume: 249
  start-page: 193
  year: 2017
  end-page: 201
  ident: bib16
  article-title: Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser
  publication-title: J Mater Process Technol
  contributor:
    fullname: Kawahito
– year: 2023
  ident: bib8
  article-title: Research on welding quality optimization of ultra-high strength steel welding joint under different laser energy inputs
  contributor:
    fullname: etal
– volume: 40
  start-page: 58
  year: 2013
  end-page: 62
  ident: bib15
  article-title: Comparison of melting efficiency of high power fiber laser and CO2 laser welding
  publication-title: Chin Laser
  contributor:
    fullname: Wu
– volume: 27
  start-page: 129
  year: 2013
  end-page: 135
  ident: bib5
  article-title: Laser absorption characteristics in high-power fibre laser welding of stainless steel
  publication-title: Weld Int
  contributor:
    fullname: Abe
– volume: 8
  start-page: 269
  year: 2003 Aug 1
  end-page: 281
  ident: bib11
  article-title: Effects of magnesium content on dual beam Nd: YAG laser welding of Al–Mg alloys
  publication-title: Sci Technol Weld Join
  contributor:
    fullname: Kerr
– volume: 50
  start-page: 115
  year: 2019
  end-page: 125
  ident: bib7
  article-title: Modified laser beam welding of aluminum‐silicon coated 22MnB5
  publication-title: Mater Werkst
  contributor:
    fullname: Olschok
– volume: 12
  start-page: 1460
  year: 2019
  ident: bib10
  article-title: Thermal efficiency analysis for laser-assisted plasma arc welding of AISI 304 stainless steel
  publication-title: Materials
  contributor:
    fullname: Beyer
– volume: 67
  start-page: 535
  year: 2021
  end-page: 544
  ident: bib1
  article-title: Numerical modelling and experimental validation of the effect of laser beam defocusing on process optimization during fiber laser welding of automotive press-hardened steels
  publication-title: J Manuf Process
  contributor:
    fullname: Yavuz
– volume: 772
  year: 2021
  ident: bib17
  article-title: New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water
  publication-title: Sci Total Environ
  contributor:
    fullname: Shen
– volume: 33
  start-page: 19365
  year: 2020
  end-page: 19376
  ident: bib20
  article-title: Self-adaptive training: beyond empirical risk minimization
  publication-title: Adv Neural Inf Process Syst
  contributor:
    fullname: Zhang
– year: 2018-08-15
  ident: bib22
  article-title: Neural networks for robotics:an engineering perspective
  contributor:
    fullname: Alanis Alma
– volume: 52
  year: 1973 Nov
  ident: bib12
  article-title: Penetration welding with lasers
  publication-title: Weld J
  contributor:
    fullname: Gick
– year: 2017 Oct 25
  ident: bib18
  article-title: mixup: beyond empirical risk minimization
  contributor:
    fullname: Lopez-Paz
– volume: 50
  start-page: 115
  issue: 2
  year: 2019
  ident: 10.1016/j.jmrt.2024.02.086_bib7
  article-title: Modified laser beam welding of aluminum‐silicon coated 22MnB5
  publication-title: Mater Werkst
  doi: 10.1002/mawe.201800009
  contributor:
    fullname: Gerhards
– volume: 306
  year: 2022
  ident: 10.1016/j.jmrt.2024.02.086_bib2
  article-title: Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2021.130896
  contributor:
    fullname: Zhong
– volume: 67
  start-page: 535
  year: 2021
  ident: 10.1016/j.jmrt.2024.02.086_bib1
  article-title: Numerical modelling and experimental validation of the effect of laser beam defocusing on process optimization during fiber laser welding of automotive press-hardened steels
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2021.05.006
  contributor:
    fullname: Khan
– volume: 211
  start-page: 1563
  issue: 10
  year: 2011
  ident: 10.1016/j.jmrt.2024.02.086_bib4
  article-title: Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2011.04.002
  contributor:
    fullname: Kawahito
– volume: 19
  start-page: 4282
  year: 2022
  ident: 10.1016/j.jmrt.2024.02.086_bib3
  article-title: Laser welding Al–Si coated hot stamping steel in conduction mode: weld formation and Al-rich microstructure
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2022.07.012
  contributor:
    fullname: Lin
– volume: 8
  start-page: 269
  issue: 4
  year: 2003
  ident: 10.1016/j.jmrt.2024.02.086_bib11
  article-title: Effects of magnesium content on dual beam Nd: YAG laser welding of Al–Mg alloys
  publication-title: Sci Technol Weld Join
  doi: 10.1179/136217103225005516
  contributor:
    fullname: Punkari
– volume: 6
  start-page: 58774
  year: 2018
  ident: 10.1016/j.jmrt.2024.02.086_bib19
  article-title: Understanding mixup training methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872698
  contributor:
    fullname: Liang
– volume: 772
  year: 2021
  ident: 10.1016/j.jmrt.2024.02.086_bib17
  article-title: New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145534
  contributor:
    fullname: Deng
– year: 2017
  ident: 10.1016/j.jmrt.2024.02.086_bib18
  contributor:
    fullname: Zhang
– volume: 40
  start-page: 58
  issue: 8
  year: 2013
  ident: 10.1016/j.jmrt.2024.02.086_bib15
  article-title: Comparison of melting efficiency of high power fiber laser and CO2 laser welding
  publication-title: Chin Laser
  contributor:
    fullname: Zou
– year: 2020
  ident: 10.1016/j.jmrt.2024.02.086_bib21
  contributor:
    fullname: Skaar
– volume: 27
  start-page: 129
  issue: 2
  year: 2013
  ident: 10.1016/j.jmrt.2024.02.086_bib5
  article-title: Laser absorption characteristics in high-power fibre laser welding of stainless steel
  publication-title: Weld Int
  doi: 10.1080/09507116.2011.606151
  contributor:
    fullname: Kawahito
– volume: 33
  start-page: 19365
  year: 2020
  ident: 10.1016/j.jmrt.2024.02.086_bib20
  article-title: Self-adaptive training: beyond empirical risk minimization
  publication-title: Adv Neural Inf Process Syst
  contributor:
    fullname: Huang
– year: 2023
  ident: 10.1016/j.jmrt.2024.02.086_bib8
  contributor:
    fullname: Li
– volume: 178
  year: 2019
  ident: 10.1016/j.jmrt.2024.02.086_bib9
  article-title: Mechanism study on the effects of power modulation on energy coupling efficiency in infrared laser welding of highly-reflective materials
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.107871
  contributor:
    fullname: Ning
– volume: 52
  issue: 11
  year: 1973
  ident: 10.1016/j.jmrt.2024.02.086_bib12
  article-title: Penetration welding with lasers
  publication-title: Weld J
  contributor:
    fullname: Swift-Hook
– year: 2020
  ident: 10.1016/j.jmrt.2024.02.086_bib14
  contributor:
    fullname: Lin
– volume: 12
  start-page: 1460
  issue: 9
  year: 2019
  ident: 10.1016/j.jmrt.2024.02.086_bib10
  article-title: Thermal efficiency analysis for laser-assisted plasma arc welding of AISI 304 stainless steel
  publication-title: Materials
  doi: 10.3390/ma12091460
  contributor:
    fullname: Hipp
– volume: 38
  issue: 6
  year: 2011
  ident: 10.1016/j.jmrt.2024.02.086_bib13
  article-title: Characteristics of fiber laser and CO2 laser welding of AZ31B magnesium alloy
  publication-title: Chin Laser
  contributor:
    fullname: Tan
– volume: 249
  start-page: 193
  year: 2017
  ident: 10.1016/j.jmrt.2024.02.086_bib16
  article-title: Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2017.06.014
  contributor:
    fullname: Wang
– volume: 6
  start-page: 316
  issue: 3
  year: 2018
  ident: 10.1016/j.jmrt.2024.02.086_bib6
  article-title: ANN based predictive modelling of weld shape and dimensions in laser welding of galvanized steel in butt joint configurations
  publication-title: J Miner Mater Char Eng
  contributor:
    fullname: Jacques
– year: 2018
  ident: 10.1016/j.jmrt.2024.02.086_bib22
  contributor:
    fullname: Daniel Nancy
SSID ssj0001596081
Score 2.3456366
Snippet As an ultra-high strength steel, Al–Si coated 22MnB5 hot stamping steel is widely used in the manufacturing of body-in-white structural parts. Compared with...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 4102
SubjectTerms Laser energy inputs
RBF neural network
Thermal efficiency
Ultra-high strength steel
Weld forming coefficient
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVlT-khJGlLN1_okFsRlWXLko9JaAg55JRAbkK2RmWXXXtxveRf9DdHI9nFp_QSg8HY1shoBt4Iv3lDyFVTWi6AO-Y0CFb4wrM6wCSr8lIDKJtJGwmyj-X9c_HwIl9mrb6QE5bkgdPC_bQBoq3IJbcyQLd3Vhe5qEVWS-4z0EkJlFezzVSqDw6ZeexQGuBPM6VlMVbMJHLXetsjkVIUUbATC6lnqBTF-2fgNAOcuyNyOGaK9Dp94TH5BO0J-TzTD_xC_k68Odq1FDO5bRgAURQCKyqpbR19hY2jmJmGEbTppqcD3fX4jwb9QjtP95uhtwzFiymWj7S_B7wA2EQD4Oi6W4VBWHLW06mrykAhlg7SVbvbD3--kue7X0-392xssMCavMwGBl5CUQsHOpylhLAd0WAzK6zmOWjV6AoV_WxZOp5Bwxt0gq6FVbn3Qvv8G1m0XQvfCVWgqsrLWoWjsMrXKDzpPGSVV9YruSQ_pgU2u6SjYSaC2dqgOwy6w3BhgjuW5AZ98O9N1MCON0JkmDEyzP8iY0nk5EEzphMpTQimVu9MfvoRk5-RAzSZ2GrnZDH0e7gI6ctQX8ZIfQNA2-42
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on thermal efficiency and weld forming coefficient prediction of ultra-high strength steel welded joint under different energy inputs
URI https://dx.doi.org/10.1016/j.jmrt.2024.02.086
https://doaj.org/article/a505a2350a5644fda8432b21b50f1e84
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07j9QwELZORwMF4imWx8oFHbI28SN2Sm7F6URxFHBSRGM58fiU1V6yymXFv-A343ESWBoKIkVKHI9jeayZcfLNZ0LeN4XLOGSeeQOcySADq6ObZKUoDIB2uXIJIHtdXN3Iz5Wqzsh2yYVBWOVs-yebnqz1XLKZR3NzaNvN1-jYjDZKIgpS6LKKdlhE74xJfNXFn-8sKsboaa9SrM9QYM6dmWBeu7sBIZVcJupOTKk-8U-Jxv_ETZ24nssn5PEcM9KPU7eekjPonpFHJ0yCz8nPBUFH-45iTHcXBSDRQ2BuJXWdpz9g7ynGqFGCNv3ydKSHAf_WoIZoH-hxPw6OIY0xxUSS7nbEC4B9agA83fVtFMLks4Eu-6uMFFISIW27w3G8f0FuLj99216xeasF1ogiHxkEBbLmHkw8CwVxYWLA5Y47kwkwujElcvu5ovBZDk3WZE4VpuZOixC4CeIlOe_6Dl4RqkGXZVC1jod0OtRIQekD5GXQLmi1Ih-WAbaHiVHDLlCznUV1WFSHzbiN6liRC9TB75rIhp0K-uHWztPBuhjGOS4UdkrK4J2Rgtc8r1UWcjByRdSiQfvX5IpNtf94-ev_lHtDHuLdBFV7S87H4QjvYuwy1uu05l-nKbomD6631ZfvvwDnx_Jf
link.rule.ids 315,783,787,867,2109,3515,27938,27939,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELWS9ND0UDX9ULdf8SG3ylowNjbHJkq0adNckkh7swweR6w2sKKs-i_6m-sx0G4vORQJCdmMsTyWZ4D3ngk5qXKbcEgccxo4E154VoYwyYos1wDKptJGgOx1vrgTX5dyuUfOJi4MwirHtX9Y0-NqPZbMx9Gcb-p6fhMCm1ZaCkRBZqpY7pMnSLtEXNfl8vTvhxYZkvS4WSkaMLQYyTMDzmv10CGmkouo3Ymc6p0AFXX8d-LUTuy5eEGej0kj_TL064jsQfOSPNuREnxFfk0QOto2FJO6h2AAUR8CyZXUNo7-hLWjmKQGC1q1U21PNx3-rkEX0dbT7brvLEMdY4pMkua-xwuAdWwAHF21dTBC9llHpw1WegqRRUjrZrPtf7wmdxfnt2cLNu61wKosT3sGXoIouQMdzlxCeDPRYFPLrU4y0KrSBYr72Tx3SQpVUiVW5rrkVmXec-2zN-SgaRt4S6gCVRReliocwipfogal85AWXlmv5Ix8ngbYbAZJDTNhzVYG3WHQHSbhJrhjRk7RB3_uRDnsWNB292acD8aGPM7yTGKnhPDOapHxkqelTHwKWsyInDxo_pldoan6kYe_-0-7Y_J0cfv9ylxdXn97Tw6xZsCtfSAHfbeFjyGR6ctPcaL-BvTd8uM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+thermal+efficiency+and+weld+forming+coefficient+prediction+of+ultra-high+strength+steel+welded+joint+under+different+energy+inputs&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Li%2C+Siliang&rft.au=Liu%2C+Haijiang&rft.au=Zhang%2C+Heng&rft.au=Pan%2C+Xuanjun&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=2238-7854&rft.volume=29&rft.spage=4102&rft.epage=4109&rft_id=info:doi/10.1016%2Fj.jmrt.2024.02.086&rft.externalDocID=S223878542400379X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon