Performance Comparison of Advanced Transcritical Power Cycles with High-Temperature Working Fluids for the Engine Waste Heat Recovery
To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed, based on the recuperative cycle. Performances of the two cycles are analyzed and compared through the development of thermodynamic models. Under...
Saved in:
Published in | Energies (Basel) Vol. 14; no. 18; p. 5886 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed, based on the recuperative cycle. Performances of the two cycles are analyzed and compared through the development of thermodynamic models. Under given gas conditions, seven high-temperature working fluids, namely propane, butane, isobutane, pentane, isopentane, neopentane, and cyclopentane, are selected for the two cycles. At the design system parameters, the highest work 48.71 kW, is obtained by the split cycle with butane. For most of fluids, the split cycle has a higher work than the dual pressure cycle. Furthermore, with the increase of turbine inlet pressure, net work of the split cycle goes up firstly and then decreases, while the work of dual pressure cycle increases slowly. For the split cycle, there exists a split ratio to get the maximum network. However, for the dual pressure cycle, the larger the evaporation temperature, the higher the net work. On this basis, system parameters are optimized by genetic algorithm to maximize net work. The results indicate that the highest work 49.96 kW of split cycle is obtained by pentane. For the considered fluids, except cyclopentane, split cycle always has a higher work than dual pressure cycle. Due to the higher net work and fewer system components, split cycle is recommended for the engine waste heat recovery. |
---|---|
AbstractList | To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed, based on the recuperative cycle. Performances of the two cycles are analyzed and compared through the development of thermodynamic models. Under given gas conditions, seven high-temperature working fluids, namely propane, butane, isobutane, pentane, isopentane, neopentane, and cyclopentane, are selected for the two cycles. At the design system parameters, the highest work 48.71 kW, is obtained by the split cycle with butane. For most of fluids, the split cycle has a higher work than the dual pressure cycle. Furthermore, with the increase of turbine inlet pressure, net work of the split cycle goes up firstly and then decreases, while the work of dual pressure cycle increases slowly. For the split cycle, there exists a split ratio to get the maximum network. However, for the dual pressure cycle, the larger the evaporation temperature, the higher the net work. On this basis, system parameters are optimized by genetic algorithm to maximize net work. The results indicate that the highest work 49.96 kW of split cycle is obtained by pentane. For the considered fluids, except cyclopentane, split cycle always has a higher work than dual pressure cycle. Due to the higher net work and fewer system components, split cycle is recommended for the engine waste heat recovery. |
Author | Su, Wen Yu, Aofang Lin, Xinxing Chen, Chonghui Yin, Likun |
Author_xml | – sequence: 1 givenname: Xinxing surname: Lin fullname: Lin, Xinxing – sequence: 2 givenname: Chonghui surname: Chen fullname: Chen, Chonghui – sequence: 3 givenname: Aofang surname: Yu fullname: Yu, Aofang – sequence: 4 givenname: Likun surname: Yin fullname: Yin, Likun – sequence: 5 givenname: Wen orcidid: 0000-0003-0685-1431 surname: Su fullname: Su, Wen |
BookMark | eNptUVFrFDEQDlLBWvviLwj4JqxuNrvZ5LEcrVcoWOTExzCbTO5y7iVnkmu5H-D_NvUURZyXGWa-72NmvpfkLMSAhLxm7TvOVfseA-uZHKQUz8g5U0o0rB352V_1C3KZ87atwTnjnJ-T7_eYXEw7CAbpIu72kHyOgUZHr-zDU9fSVYKQTfLFG5jpfXzERBdHM2Omj75s6NKvN80Kd3tMUA4J6ZeYvvqwpjfzwdtMqz4tG6TXYe1DnUIuSJcIhX5CEx8wHV-R5w7mjJe_8gX5fHO9Wiybu48fbhdXd43hgpUG0bERBsElnxh0gGbsrRKOq046kMIiQDeN1vHeSpimiQ-oKkYMOI1GdPyC3J50bYSt3ie_g3TUEbz-2YhprSHVM2fUxkjTKuv6boR-5HyS1tUPShx6ZdSEVevNSWuf4rcD5qK38ZBCXV93wyi46nsuKqo9oUyKOSd02vgCxcdQEvhZs1Y_eaf_eFcpb_-h_F70P-AfJGSd1A |
CitedBy_id | crossref_primary_10_1016_j_energy_2022_125017 crossref_primary_10_3390_su15010814 crossref_primary_10_3390_e23111551 crossref_primary_10_1016_j_ecmx_2022_100245 crossref_primary_10_1115_1_4053600 crossref_primary_10_1016_j_applthermaleng_2023_120456 crossref_primary_10_3390_su14010299 crossref_primary_10_1016_j_ecmx_2023_100426 |
Cites_doi | 10.1016/j.enconman.2019.112057 10.1016/j.energy.2020.118484 10.1016/j.energy.2020.118946 10.1016/j.applthermaleng.2021.116993 10.1016/j.enconman.2017.01.056 10.1016/j.energy.2020.118559 10.1016/j.energy.2016.05.119 10.1016/j.energy.2021.120718 10.1016/j.apenergy.2021.116532 10.1016/j.apenergy.2015.11.004 10.1016/j.enconman.2020.113612 10.1016/j.apenergy.2019.01.071 10.4271/2017-01-0568 10.1016/j.energy.2019.03.016 10.1016/j.apenergy.2015.04.055 10.1016/j.energy.2016.07.152 10.1016/j.enconman.2021.113880 10.1016/j.enconman.2013.07.036 10.1016/j.enconman.2020.112999 10.1016/j.energy.2016.04.062 10.1016/j.enconman.2018.02.010 10.1007/s11630-019-1090-z 10.1016/j.energy.2020.117335 10.1109/TCST.2016.2574760 10.1016/j.energy.2020.117666 10.1016/j.apenergy.2013.12.056 10.1016/j.energy.2014.09.034 10.1007/s11630-019-1119-3 10.1016/j.pecs.2021.100906 10.1016/j.rser.2019.109611 10.1016/j.enconman.2019.111850 10.1016/j.applthermaleng.2016.08.195 10.1016/j.enconman.2014.05.081 10.1016/j.apenergy.2016.03.049 10.1016/j.rser.2018.04.023 10.1016/j.enconman.2020.112887 10.3390/en9070527 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en14185886 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_cc8c09df427a4733b8df0738e549c9be 10_3390_en14185886 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-eef17a56383b1a2aec74d96f3928fa86deaa2b7df34d8abbb35e9c7465eb7c623 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:32:19 EDT 2025 Mon Jun 30 07:29:06 EDT 2025 Tue Jul 01 01:18:20 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-eef17a56383b1a2aec74d96f3928fa86deaa2b7df34d8abbb35e9c7465eb7c623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0685-1431 |
OpenAccessLink | https://www.proquest.com/docview/2576394436?pq-origsite=%requestingapplication% |
PQID | 2576394436 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cc8c09df427a4733b8df0738e549c9be proquest_journals_2576394436 crossref_citationtrail_10_3390_en14185886 crossref_primary_10_3390_en14185886 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hernandez (ref_7) 2021; 193 Shu (ref_28) 2013; 76 Shu (ref_15) 2017; 186 Benato (ref_24) 2015; 151 (ref_11) 2016; 111 Yang (ref_12) 2016; 113 Liu (ref_21) 2019; 174 Razmi (ref_36) 2020; 210 Chen (ref_20) 2017; 138 Tian (ref_14) 2021; 84 ref_39 Shi (ref_4) 2018; 92 Jankowski (ref_35) 2020; 202 Dai (ref_23) 2019; 28 Xu (ref_6) 2021; 286 Song (ref_18) 2020; 218 Balafkandeh (ref_38) 2019; 200 Zhang (ref_9) 2014; 77 Pan (ref_30) 2020; 198 Grelet (ref_22) 2016; 165 Oyewunmi (ref_34) 2019; 251 Yang (ref_13) 2017; 114 Houck (ref_33) 2008; 9 Lan (ref_3) 2020; 211 Li (ref_16) 2021; 229 ref_25 Liu (ref_37) 2020; 214 Zhang (ref_32) 2021; 227 Zhu (ref_2) 2020; 120 Liu (ref_10) 2019; 28 Shu (ref_26) 2016; 107 Li (ref_29) 2018; 161 Tian (ref_17) 2014; 86 Peralez (ref_8) 2017; 25 Fatigati (ref_19) 2021; 232 ref_5 Wang (ref_31) 2019; 197 Zhang (ref_1) 2020; 209 Shu (ref_27) 2014; 119 |
References_xml | – volume: 200 start-page: 112057 year: 2019 ident: ref_38 article-title: Multi-objective optimization of a tri-generation system based on biomass gasification/digestion combined with S-CO2 cycle and absorption chiller publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112057 – volume: 209 start-page: 118484 year: 2020 ident: ref_1 article-title: Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines publication-title: Energy doi: 10.1016/j.energy.2020.118484 – volume: 211 start-page: 118946 year: 2020 ident: ref_3 article-title: Investigation on fuel injection quantity of low-speed diesel engine fuel system based on response surface prediction model publication-title: Energy doi: 10.1016/j.energy.2020.118946 – volume: 193 start-page: 116993 year: 2021 ident: ref_7 article-title: Experimental validation of a multiple model predictive control for waste heat recovery organic Rankine cycle systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116993 – volume: 138 start-page: 210 year: 2017 ident: ref_20 article-title: A novel cascade organic Rankine cycle (ORC) system for waste heat recovery of truck diesel engines publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.01.056 – volume: 210 start-page: 118559 year: 2020 ident: ref_36 article-title: Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system publication-title: Energy doi: 10.1016/j.energy.2020.118559 – volume: 111 start-page: 923 year: 2016 ident: ref_11 article-title: Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat publication-title: Energy doi: 10.1016/j.energy.2016.05.119 – volume: 229 start-page: 120718 year: 2021 ident: ref_16 article-title: Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept publication-title: Energy doi: 10.1016/j.energy.2021.120718 – volume: 286 start-page: 116532 year: 2021 ident: ref_6 article-title: A Q-learning based transient power optimization method for organic Rankine cycle waste heat recovery system in heavy duty diesel engine applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116532 – volume: 165 start-page: 878 year: 2016 ident: ref_22 article-title: Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.004 – volume: 227 start-page: 113612 year: 2021 ident: ref_32 article-title: Thermodynamic analysis and multi-objective optimization of a transcritical CO2 waste heat recovery system for cruise ship application publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113612 – volume: 251 start-page: 112513 year: 2019 ident: ref_34 article-title: Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.071 – ident: ref_5 doi: 10.4271/2017-01-0568 – volume: 174 start-page: 543 year: 2019 ident: ref_21 article-title: How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2019.03.016 – volume: 151 start-page: 119 year: 2015 ident: ref_24 article-title: Analysis of hot spots in boilers of organic Rankine cycle units during transient operation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.055 – volume: 113 start-page: 1109 year: 2016 ident: ref_12 article-title: Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2016.07.152 – volume: 232 start-page: 113880 year: 2021 ident: ref_19 article-title: An improvement to waste heat recovery in internal combustion engines via combined technologies publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.113880 – volume: 9 start-page: 95 year: 2008 ident: ref_33 article-title: A genetic algorithm for function optimization: A Matlab implementation publication-title: NCSU.IE. TR – ident: ref_39 – volume: 76 start-page: 234 year: 2013 ident: ref_28 article-title: Analysis of regenerative dual-loop organic Rankine cycles (DORCs) used in engine waste heat recovery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.07.036 – volume: 218 start-page: 112999 year: 2020 ident: ref_18 article-title: Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112999 – volume: 107 start-page: 693 year: 2016 ident: ref_26 article-title: Experimental investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine publication-title: Energy doi: 10.1016/j.energy.2016.04.062 – volume: 161 start-page: 254 year: 2018 ident: ref_29 article-title: Experimental comparison of dynamic responses of CO2 transcritical power cycle systems used for engine waste heat recovery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.02.010 – volume: 28 start-page: 494 year: 2019 ident: ref_10 article-title: Carbon Dioxide as Working Fluids in Transcritical Rankine Cycle for Diesel Engine Multiple Waste Heat Recovery in Comparison to Hydrocarbons publication-title: J. Therm. Sci. doi: 10.1007/s11630-019-1090-z – volume: 198 start-page: 117335 year: 2020 ident: ref_30 article-title: Experimental verification of the self-condensing CO2 transcritical power cycle publication-title: Energy doi: 10.1016/j.energy.2020.117335 – volume: 25 start-page: 952 year: 2017 ident: ref_8 article-title: Organic Rankine Cycle for Vehicles: Control Design and Experimental Results publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2016.2574760 – volume: 202 start-page: 117666 year: 2020 ident: ref_35 article-title: Multi-objective analysis of an influence of a geothermal water salinity on optimal operating parameters in low-temperature ORC power plant publication-title: Energy doi: 10.1016/j.energy.2020.117666 – volume: 119 start-page: 204 year: 2014 ident: ref_27 article-title: Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.12.056 – volume: 77 start-page: 499 year: 2014 ident: ref_9 article-title: Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine publication-title: Energy doi: 10.1016/j.energy.2014.09.034 – volume: 28 start-page: 597 year: 2019 ident: ref_23 article-title: Review of the working fluid thermal stability for Organic Rankine Cycles publication-title: J. Therm. Sci. doi: 10.1007/s11630-019-1119-3 – volume: 84 start-page: 100906 year: 2021 ident: ref_14 article-title: Challenges and opportunities of Rankine cycle for waste heat recovery from internal combustion engine publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2021.100906 – volume: 120 start-page: 109611 year: 2020 ident: ref_2 article-title: A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109611 – volume: 197 start-page: 111850 year: 2019 ident: ref_31 article-title: Performance investigation of transcritical and dual-pressure Organic Rankine Cycles from the aspect of thermal match publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111850 – volume: 114 start-page: 1343 year: 2017 ident: ref_13 article-title: Economic research of the transcritical Rankine cycle systems to recover waste heat from the marine medium-speed diesel engine publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.08.195 – volume: 86 start-page: 764 year: 2014 ident: ref_17 article-title: Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.05.081 – volume: 186 start-page: 423 year: 2017 ident: ref_15 article-title: Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.03.049 – volume: 92 start-page: 95 year: 2018 ident: ref_4 article-title: A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR) publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.023 – volume: 214 start-page: 112887 year: 2020 ident: ref_37 article-title: Performance analysis and optimization of an electricity-cooling cogeneration system for waste heat recovery of marine engine publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112887 – ident: ref_25 doi: 10.3390/en9070527 |
SSID | ssj0000331333 |
Score | 2.3208313 |
Snippet | To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5886 |
SubjectTerms | Consumption Cooling Diesel engines dual pressure cycle Efficiency Fluids Heat Heat recovery systems split cycle thermodynamic analysis waste heat recovery |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekx7ET6xWGdCLh9Amm2w2x1osRVB6aLG3sJ8glFRse-gP8H87k6RtQMGL1zBkw-7szHub2TeM3SuE-F5KHhipkKCo0AfSSh-EScoTkyFAiOju8MurGE7i52kybbT6opqwSh64mriOMdJ0M-vjKFVxyrmW1qNbSofExmTaUfTFnNcgU2UM5hzJF6_0SDny-o4rQtJpkXRpupGBSqH-H3G4TC6DY3ZUo0LoVV9zwvZcccoOG1qBZ-xrtCvxh_62eyDMPfTq__hQJh5TNy-AETVAg_6a6t6AzluBijqCsUOkXCkpQ31UDoPZ6t0uAN8PCAihGhjeFLoADDFaA7FUdPr1OZsMnsb9YVD3UAgMF-EycM6HqUpwl3Edqkg5k8Y2Ex5hkfRKCuuUinRqPY-tVFprnrgMbUTidGoQG12w_WJeuEsG3a7JPJcmSVQam67SSijBOWIoa4SJ4xZ72MxrbmqBcepzMcuRaNAa5Ls1aLG7re1HJavxq9UjLc_WgqSwywfoIHntIPlfDtJi7c3i5vX-XOREs-hKMBdX_zHGNTuIqNalrD1rs_3l58rdIFhZ6tvSL78BNMvqdQ priority: 102 providerName: Directory of Open Access Journals |
Title | Performance Comparison of Advanced Transcritical Power Cycles with High-Temperature Working Fluids for the Engine Waste Heat Recovery |
URI | https://www.proquest.com/docview/2576394436 https://doaj.org/article/cc8c09df427a4733b8df0738e549c9be |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwELUKXOgBQQvqFliN1F56iEjixHFOCFYsK6SiVQVib5E9tqtKaJeyy4EP4L-ZSby7SFS95JCMEiljj98bj98I8d0QxA9aywS1IYJispBop0OSlZUssSaAkPPZ4Z_XanRbXE3KSUy4zWNZ5TImtoHazZBz5CcMjPkQp1SnD38T7hrFu6uxhcaG2KIQrIl8bZ1fXI9_rbIsqZREwmSnSyqJ35_4acZ6LZoPT79ZiVrB_nfxuF1khrtiJ6JDOOvcuSc--Okn8fGNZuBn8TJel_rDYNVFEGYBzuJ-PrQLEMYmBjDmRmgweOb6N-C8K3BxR3LjCTF3isoQU-YwvH_64-ZA7wcChtB9GO4MDQUYUdQGZqs0-J_3xe3w4mYwSmIvhQSlyhaJ9yGrTEmzTdrM5MZjVbhaBYJHOhitnDcmt5ULsnDaWGtl6WuyUaW3FRJGOhCb09nUfxGQplgHqbEsTVVgaqxRRklJWMqhwqLoiR_L_9pgFBrnfhf3DREO9kGz9kFPfFvZPnTyGv-0Omf3rCxYEru9MXv83cQZ1iBqTGsXirwyRSWl1S5Q_NKeGDDW1vfE0dK5TZyn82Y9qr7-__Gh2M65mqWtLjsSm4vHJ39McGRh-2JDDy_7ceT1W1JP18tJ9grb5uWa |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcUHmJhQIjAQcOUZPYcZwDQmVh2dKHetiK3oI9thFStVu6W6H9AfwdfiMzeexWAnHrNbYSyTOe-WYyM58QryxB_GiMTNBYClBsFhPjTUyyopQFVgQQcu4dPjrW41P1-aw42xC_-14YLqvsbWJjqP0MOUe-y8CYmzilfnfxI2HWKP672lNotGpxEJY_KWSbv93_QPJ9neejj5PhOOlYBRKUOlskIcSstAXpnXSZzW3AUvlKRwIKJlqjfbA2d6WPUnljnXOyCBXt0UVwJWoedEAmf0tJWfGNMqNPq5xOKiWFfLKdgkrr6W6YZjwdxnCr9jW_19AD_GX9G5c22hZ3OywKe63y3BMbYXpf3Lk2ofCB-HWybiyA4YqzEGYR9rrqAWjcHXaUCXDCtGswXHK1HXCWF7iUJJkEwuft_GboEvQwOr_67udA7weCodB-GL5YUjwYk48Ajo3pqi0fitMbOeNHYnM6m4bHAtIUqygNFoUtFabWWW21lITcPGpUaiDe9OdaYzfWnNk1zmsKb1gG9VoGA_FytfeiHebxz13vWTyrHTyAu3kwu_xWd_e5RjSYVj6qvLSqlNIZH8lamkDxNlYuDMROL9y6swrzeq3DT_6__ELcGk-ODuvD_eODp-J2znU0TV3bjthcXF6FZwSEFu55o30gvt60uv8BRgAgeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VqYTggMqfCBQYCThwsGJ77d31AaE2bZRSiCLUit7M_iKkKilNqioPwEvxdMzY66QSiFuv9siWPLMz34xnvmHsjUaIH5TiiVUaExSdhUQ5FZKslLy0FQKEnGaHP0_E-LT4eFaebbHf3SwMtVV2PrFx1G5uqUY-IGBMQ5xcDEJsi5gejD5c_ExogxT9ae3WabQmcuxX15i-Ld4fHaCu3-b56PBkOE7ihoHEcpEtE-9DJnWJNshNpnPtrSxcJQKCBhW0Es5rnRvpAi-c0sYYXvoKZUTpjbSCSA_Q_W9LzIrSHtveP5xMv6wrPCnnmADylhOV8yod-FlGXDGKBrdvRMFmWcBfsaAJcKMddj8iU9hrTekB2_Kzh-zeDb7CR-zXdDNmAMP1BkOYB9iLvQTQBD8bFyjAlJawwXBFvXdANV-gxpLkxCNab9mcIZbrYXR-9cMtAJ8PCEqhfTF81WiGMMaIAZQp48FbPWant_KVn7DebD7zTxmkqa0CV7YstSxsqo0WWnCOOM5ZYYuiz95137W2keScdm2c15jskA7qjQ767PVa9qKl9vin1D6pZy1BdNzNhfnl9zqe7tpaZdPKhSKXupCcG-UC-k7lMfu2lfF9ttspt44-YlFvLPrZ_2-_YnfQ1OtPR5Pj5-xuTk01TZPbLustL6_8C0RFS_Mymh-wb7dt8X8ADhsmCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Comparison+of+Advanced+Transcritical+Power+Cycles+with+High-Temperature+Working+Fluids+for+the+Engine+Waste+Heat+Recovery&rft.jtitle=Energies+%28Basel%29&rft.au=Lin%2C+Xinxing&rft.au=Chen%2C+Chonghui&rft.au=Yu%2C+Aofang&rft.au=Yin%2C+Likun&rft.date=2021-09-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=18&rft.spage=5886&rft_id=info:doi/10.3390%2Fen14185886&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14185886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |