Performance Comparison of Advanced Transcritical Power Cycles with High-Temperature Working Fluids for the Engine Waste Heat Recovery

To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed, based on the recuperative cycle. Performances of the two cycles are analyzed and compared through the development of thermodynamic models. Under...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 18; p. 5886
Main Authors Lin, Xinxing, Chen, Chonghui, Yu, Aofang, Yin, Likun, Su, Wen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed, based on the recuperative cycle. Performances of the two cycles are analyzed and compared through the development of thermodynamic models. Under given gas conditions, seven high-temperature working fluids, namely propane, butane, isobutane, pentane, isopentane, neopentane, and cyclopentane, are selected for the two cycles. At the design system parameters, the highest work 48.71 kW, is obtained by the split cycle with butane. For most of fluids, the split cycle has a higher work than the dual pressure cycle. Furthermore, with the increase of turbine inlet pressure, net work of the split cycle goes up firstly and then decreases, while the work of dual pressure cycle increases slowly. For the split cycle, there exists a split ratio to get the maximum network. However, for the dual pressure cycle, the larger the evaporation temperature, the higher the net work. On this basis, system parameters are optimized by genetic algorithm to maximize net work. The results indicate that the highest work 49.96 kW of split cycle is obtained by pentane. For the considered fluids, except cyclopentane, split cycle always has a higher work than dual pressure cycle. Due to the higher net work and fewer system components, split cycle is recommended for the engine waste heat recovery.
AbstractList To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed, based on the recuperative cycle. Performances of the two cycles are analyzed and compared through the development of thermodynamic models. Under given gas conditions, seven high-temperature working fluids, namely propane, butane, isobutane, pentane, isopentane, neopentane, and cyclopentane, are selected for the two cycles. At the design system parameters, the highest work 48.71 kW, is obtained by the split cycle with butane. For most of fluids, the split cycle has a higher work than the dual pressure cycle. Furthermore, with the increase of turbine inlet pressure, net work of the split cycle goes up firstly and then decreases, while the work of dual pressure cycle increases slowly. For the split cycle, there exists a split ratio to get the maximum network. However, for the dual pressure cycle, the larger the evaporation temperature, the higher the net work. On this basis, system parameters are optimized by genetic algorithm to maximize net work. The results indicate that the highest work 49.96 kW of split cycle is obtained by pentane. For the considered fluids, except cyclopentane, split cycle always has a higher work than dual pressure cycle. Due to the higher net work and fewer system components, split cycle is recommended for the engine waste heat recovery.
Author Su, Wen
Yu, Aofang
Lin, Xinxing
Chen, Chonghui
Yin, Likun
Author_xml – sequence: 1
  givenname: Xinxing
  surname: Lin
  fullname: Lin, Xinxing
– sequence: 2
  givenname: Chonghui
  surname: Chen
  fullname: Chen, Chonghui
– sequence: 3
  givenname: Aofang
  surname: Yu
  fullname: Yu, Aofang
– sequence: 4
  givenname: Likun
  surname: Yin
  fullname: Yin, Likun
– sequence: 5
  givenname: Wen
  orcidid: 0000-0003-0685-1431
  surname: Su
  fullname: Su, Wen
BookMark eNptUVFrFDEQDlLBWvviLwj4JqxuNrvZ5LEcrVcoWOTExzCbTO5y7iVnkmu5H-D_NvUURZyXGWa-72NmvpfkLMSAhLxm7TvOVfseA-uZHKQUz8g5U0o0rB352V_1C3KZ87atwTnjnJ-T7_eYXEw7CAbpIu72kHyOgUZHr-zDU9fSVYKQTfLFG5jpfXzERBdHM2Omj75s6NKvN80Kd3tMUA4J6ZeYvvqwpjfzwdtMqz4tG6TXYe1DnUIuSJcIhX5CEx8wHV-R5w7mjJe_8gX5fHO9Wiybu48fbhdXd43hgpUG0bERBsElnxh0gGbsrRKOq046kMIiQDeN1vHeSpimiQ-oKkYMOI1GdPyC3J50bYSt3ie_g3TUEbz-2YhprSHVM2fUxkjTKuv6boR-5HyS1tUPShx6ZdSEVevNSWuf4rcD5qK38ZBCXV93wyi46nsuKqo9oUyKOSd02vgCxcdQEvhZs1Y_eaf_eFcpb_-h_F70P-AfJGSd1A
CitedBy_id crossref_primary_10_1016_j_energy_2022_125017
crossref_primary_10_3390_su15010814
crossref_primary_10_3390_e23111551
crossref_primary_10_1016_j_ecmx_2022_100245
crossref_primary_10_1115_1_4053600
crossref_primary_10_1016_j_applthermaleng_2023_120456
crossref_primary_10_3390_su14010299
crossref_primary_10_1016_j_ecmx_2023_100426
Cites_doi 10.1016/j.enconman.2019.112057
10.1016/j.energy.2020.118484
10.1016/j.energy.2020.118946
10.1016/j.applthermaleng.2021.116993
10.1016/j.enconman.2017.01.056
10.1016/j.energy.2020.118559
10.1016/j.energy.2016.05.119
10.1016/j.energy.2021.120718
10.1016/j.apenergy.2021.116532
10.1016/j.apenergy.2015.11.004
10.1016/j.enconman.2020.113612
10.1016/j.apenergy.2019.01.071
10.4271/2017-01-0568
10.1016/j.energy.2019.03.016
10.1016/j.apenergy.2015.04.055
10.1016/j.energy.2016.07.152
10.1016/j.enconman.2021.113880
10.1016/j.enconman.2013.07.036
10.1016/j.enconman.2020.112999
10.1016/j.energy.2016.04.062
10.1016/j.enconman.2018.02.010
10.1007/s11630-019-1090-z
10.1016/j.energy.2020.117335
10.1109/TCST.2016.2574760
10.1016/j.energy.2020.117666
10.1016/j.apenergy.2013.12.056
10.1016/j.energy.2014.09.034
10.1007/s11630-019-1119-3
10.1016/j.pecs.2021.100906
10.1016/j.rser.2019.109611
10.1016/j.enconman.2019.111850
10.1016/j.applthermaleng.2016.08.195
10.1016/j.enconman.2014.05.081
10.1016/j.apenergy.2016.03.049
10.1016/j.rser.2018.04.023
10.1016/j.enconman.2020.112887
10.3390/en9070527
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14185886
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_cc8c09df427a4733b8df0738e549c9be
10_3390_en14185886
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-eef17a56383b1a2aec74d96f3928fa86deaa2b7df34d8abbb35e9c7465eb7c623
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:32:19 EDT 2025
Mon Jun 30 07:29:06 EDT 2025
Tue Jul 01 01:18:20 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-eef17a56383b1a2aec74d96f3928fa86deaa2b7df34d8abbb35e9c7465eb7c623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0685-1431
OpenAccessLink https://www.proquest.com/docview/2576394436?pq-origsite=%requestingapplication%
PQID 2576394436
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_cc8c09df427a4733b8df0738e549c9be
proquest_journals_2576394436
crossref_citationtrail_10_3390_en14185886
crossref_primary_10_3390_en14185886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hernandez (ref_7) 2021; 193
Shu (ref_28) 2013; 76
Shu (ref_15) 2017; 186
Benato (ref_24) 2015; 151
(ref_11) 2016; 111
Yang (ref_12) 2016; 113
Liu (ref_21) 2019; 174
Razmi (ref_36) 2020; 210
Chen (ref_20) 2017; 138
Tian (ref_14) 2021; 84
ref_39
Shi (ref_4) 2018; 92
Jankowski (ref_35) 2020; 202
Dai (ref_23) 2019; 28
Xu (ref_6) 2021; 286
Song (ref_18) 2020; 218
Balafkandeh (ref_38) 2019; 200
Zhang (ref_9) 2014; 77
Pan (ref_30) 2020; 198
Grelet (ref_22) 2016; 165
Oyewunmi (ref_34) 2019; 251
Yang (ref_13) 2017; 114
Houck (ref_33) 2008; 9
Lan (ref_3) 2020; 211
Li (ref_16) 2021; 229
ref_25
Liu (ref_37) 2020; 214
Zhang (ref_32) 2021; 227
Zhu (ref_2) 2020; 120
Liu (ref_10) 2019; 28
Shu (ref_26) 2016; 107
Li (ref_29) 2018; 161
Tian (ref_17) 2014; 86
Peralez (ref_8) 2017; 25
Fatigati (ref_19) 2021; 232
ref_5
Wang (ref_31) 2019; 197
Zhang (ref_1) 2020; 209
Shu (ref_27) 2014; 119
References_xml – volume: 200
  start-page: 112057
  year: 2019
  ident: ref_38
  article-title: Multi-objective optimization of a tri-generation system based on biomass gasification/digestion combined with S-CO2 cycle and absorption chiller
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112057
– volume: 209
  start-page: 118484
  year: 2020
  ident: ref_1
  article-title: Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118484
– volume: 211
  start-page: 118946
  year: 2020
  ident: ref_3
  article-title: Investigation on fuel injection quantity of low-speed diesel engine fuel system based on response surface prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118946
– volume: 193
  start-page: 116993
  year: 2021
  ident: ref_7
  article-title: Experimental validation of a multiple model predictive control for waste heat recovery organic Rankine cycle systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116993
– volume: 138
  start-page: 210
  year: 2017
  ident: ref_20
  article-title: A novel cascade organic Rankine cycle (ORC) system for waste heat recovery of truck diesel engines
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.01.056
– volume: 210
  start-page: 118559
  year: 2020
  ident: ref_36
  article-title: Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118559
– volume: 111
  start-page: 923
  year: 2016
  ident: ref_11
  article-title: Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.119
– volume: 229
  start-page: 120718
  year: 2021
  ident: ref_16
  article-title: Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120718
– volume: 286
  start-page: 116532
  year: 2021
  ident: ref_6
  article-title: A Q-learning based transient power optimization method for organic Rankine cycle waste heat recovery system in heavy duty diesel engine applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116532
– volume: 165
  start-page: 878
  year: 2016
  ident: ref_22
  article-title: Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.004
– volume: 227
  start-page: 113612
  year: 2021
  ident: ref_32
  article-title: Thermodynamic analysis and multi-objective optimization of a transcritical CO2 waste heat recovery system for cruise ship application
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113612
– volume: 251
  start-page: 112513
  year: 2019
  ident: ref_34
  article-title: Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.071
– ident: ref_5
  doi: 10.4271/2017-01-0568
– volume: 174
  start-page: 543
  year: 2019
  ident: ref_21
  article-title: How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.016
– volume: 151
  start-page: 119
  year: 2015
  ident: ref_24
  article-title: Analysis of hot spots in boilers of organic Rankine cycle units during transient operation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.055
– volume: 113
  start-page: 1109
  year: 2016
  ident: ref_12
  article-title: Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.152
– volume: 232
  start-page: 113880
  year: 2021
  ident: ref_19
  article-title: An improvement to waste heat recovery in internal combustion engines via combined technologies
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.113880
– volume: 9
  start-page: 95
  year: 2008
  ident: ref_33
  article-title: A genetic algorithm for function optimization: A Matlab implementation
  publication-title: NCSU.IE. TR
– ident: ref_39
– volume: 76
  start-page: 234
  year: 2013
  ident: ref_28
  article-title: Analysis of regenerative dual-loop organic Rankine cycles (DORCs) used in engine waste heat recovery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.07.036
– volume: 218
  start-page: 112999
  year: 2020
  ident: ref_18
  article-title: Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112999
– volume: 107
  start-page: 693
  year: 2016
  ident: ref_26
  article-title: Experimental investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.062
– volume: 161
  start-page: 254
  year: 2018
  ident: ref_29
  article-title: Experimental comparison of dynamic responses of CO2 transcritical power cycle systems used for engine waste heat recovery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.02.010
– volume: 28
  start-page: 494
  year: 2019
  ident: ref_10
  article-title: Carbon Dioxide as Working Fluids in Transcritical Rankine Cycle for Diesel Engine Multiple Waste Heat Recovery in Comparison to Hydrocarbons
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-019-1090-z
– volume: 198
  start-page: 117335
  year: 2020
  ident: ref_30
  article-title: Experimental verification of the self-condensing CO2 transcritical power cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117335
– volume: 25
  start-page: 952
  year: 2017
  ident: ref_8
  article-title: Organic Rankine Cycle for Vehicles: Control Design and Experimental Results
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2574760
– volume: 202
  start-page: 117666
  year: 2020
  ident: ref_35
  article-title: Multi-objective analysis of an influence of a geothermal water salinity on optimal operating parameters in low-temperature ORC power plant
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117666
– volume: 119
  start-page: 204
  year: 2014
  ident: ref_27
  article-title: Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.12.056
– volume: 77
  start-page: 499
  year: 2014
  ident: ref_9
  article-title: Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.034
– volume: 28
  start-page: 597
  year: 2019
  ident: ref_23
  article-title: Review of the working fluid thermal stability for Organic Rankine Cycles
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-019-1119-3
– volume: 84
  start-page: 100906
  year: 2021
  ident: ref_14
  article-title: Challenges and opportunities of Rankine cycle for waste heat recovery from internal combustion engine
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2021.100906
– volume: 120
  start-page: 109611
  year: 2020
  ident: ref_2
  article-title: A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109611
– volume: 197
  start-page: 111850
  year: 2019
  ident: ref_31
  article-title: Performance investigation of transcritical and dual-pressure Organic Rankine Cycles from the aspect of thermal match
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111850
– volume: 114
  start-page: 1343
  year: 2017
  ident: ref_13
  article-title: Economic research of the transcritical Rankine cycle systems to recover waste heat from the marine medium-speed diesel engine
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.08.195
– volume: 86
  start-page: 764
  year: 2014
  ident: ref_17
  article-title: Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.05.081
– volume: 186
  start-page: 423
  year: 2017
  ident: ref_15
  article-title: Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.049
– volume: 92
  start-page: 95
  year: 2018
  ident: ref_4
  article-title: A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.023
– volume: 214
  start-page: 112887
  year: 2020
  ident: ref_37
  article-title: Performance analysis and optimization of an electricity-cooling cogeneration system for waste heat recovery of marine engine
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112887
– ident: ref_25
  doi: 10.3390/en9070527
SSID ssj0000331333
Score 2.3208313
Snippet To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5886
SubjectTerms Consumption
Cooling
Diesel engines
dual pressure cycle
Efficiency
Fluids
Heat
Heat recovery systems
split cycle
thermodynamic analysis
waste heat recovery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekx7ET6xWGdCLh9Amm2w2x1osRVB6aLG3sJ8glFRse-gP8H87k6RtQMGL1zBkw-7szHub2TeM3SuE-F5KHhipkKCo0AfSSh-EScoTkyFAiOju8MurGE7i52kybbT6opqwSh64mriOMdJ0M-vjKFVxyrmW1qNbSofExmTaUfTFnNcgU2UM5hzJF6_0SDny-o4rQtJpkXRpupGBSqH-H3G4TC6DY3ZUo0LoVV9zwvZcccoOG1qBZ-xrtCvxh_62eyDMPfTq__hQJh5TNy-AETVAg_6a6t6AzluBijqCsUOkXCkpQ31UDoPZ6t0uAN8PCAihGhjeFLoADDFaA7FUdPr1OZsMnsb9YVD3UAgMF-EycM6HqUpwl3Edqkg5k8Y2Ex5hkfRKCuuUinRqPY-tVFprnrgMbUTidGoQG12w_WJeuEsG3a7JPJcmSVQam67SSijBOWIoa4SJ4xZ72MxrbmqBcepzMcuRaNAa5Ls1aLG7re1HJavxq9UjLc_WgqSwywfoIHntIPlfDtJi7c3i5vX-XOREs-hKMBdX_zHGNTuIqNalrD1rs_3l58rdIFhZ6tvSL78BNMvqdQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Performance Comparison of Advanced Transcritical Power Cycles with High-Temperature Working Fluids for the Engine Waste Heat Recovery
URI https://www.proquest.com/docview/2576394436
https://doaj.org/article/cc8c09df427a4733b8df0738e549c9be
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwELUKXOgBQQvqFliN1F56iEjixHFOCFYsK6SiVQVib5E9tqtKaJeyy4EP4L-ZSby7SFS95JCMEiljj98bj98I8d0QxA9aywS1IYJispBop0OSlZUssSaAkPPZ4Z_XanRbXE3KSUy4zWNZ5TImtoHazZBz5CcMjPkQp1SnD38T7hrFu6uxhcaG2KIQrIl8bZ1fXI9_rbIsqZREwmSnSyqJ35_4acZ6LZoPT79ZiVrB_nfxuF1khrtiJ6JDOOvcuSc--Okn8fGNZuBn8TJel_rDYNVFEGYBzuJ-PrQLEMYmBjDmRmgweOb6N-C8K3BxR3LjCTF3isoQU-YwvH_64-ZA7wcChtB9GO4MDQUYUdQGZqs0-J_3xe3w4mYwSmIvhQSlyhaJ9yGrTEmzTdrM5MZjVbhaBYJHOhitnDcmt5ULsnDaWGtl6WuyUaW3FRJGOhCb09nUfxGQplgHqbEsTVVgaqxRRklJWMqhwqLoiR_L_9pgFBrnfhf3DREO9kGz9kFPfFvZPnTyGv-0Omf3rCxYEru9MXv83cQZ1iBqTGsXirwyRSWl1S5Q_NKeGDDW1vfE0dK5TZyn82Y9qr7-__Gh2M65mqWtLjsSm4vHJ39McGRh-2JDDy_7ceT1W1JP18tJ9grb5uWa
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcUHmJhQIjAQcOUZPYcZwDQmVh2dKHetiK3oI9thFStVu6W6H9AfwdfiMzeexWAnHrNbYSyTOe-WYyM58QryxB_GiMTNBYClBsFhPjTUyyopQFVgQQcu4dPjrW41P1-aw42xC_-14YLqvsbWJjqP0MOUe-y8CYmzilfnfxI2HWKP672lNotGpxEJY_KWSbv93_QPJ9neejj5PhOOlYBRKUOlskIcSstAXpnXSZzW3AUvlKRwIKJlqjfbA2d6WPUnljnXOyCBXt0UVwJWoedEAmf0tJWfGNMqNPq5xOKiWFfLKdgkrr6W6YZjwdxnCr9jW_19AD_GX9G5c22hZ3OywKe63y3BMbYXpf3Lk2ofCB-HWybiyA4YqzEGYR9rrqAWjcHXaUCXDCtGswXHK1HXCWF7iUJJkEwuft_GboEvQwOr_67udA7weCodB-GL5YUjwYk48Ajo3pqi0fitMbOeNHYnM6m4bHAtIUqygNFoUtFabWWW21lITcPGpUaiDe9OdaYzfWnNk1zmsKb1gG9VoGA_FytfeiHebxz13vWTyrHTyAu3kwu_xWd_e5RjSYVj6qvLSqlNIZH8lamkDxNlYuDMROL9y6swrzeq3DT_6__ELcGk-ODuvD_eODp-J2znU0TV3bjthcXF6FZwSEFu55o30gvt60uv8BRgAgeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VqYTggMqfCBQYCThwsGJ77d31AaE2bZRSiCLUit7M_iKkKilNqioPwEvxdMzY66QSiFuv9siWPLMz34xnvmHsjUaIH5TiiVUaExSdhUQ5FZKslLy0FQKEnGaHP0_E-LT4eFaebbHf3SwMtVV2PrFx1G5uqUY-IGBMQ5xcDEJsi5gejD5c_ExogxT9ae3WabQmcuxX15i-Ld4fHaCu3-b56PBkOE7ihoHEcpEtE-9DJnWJNshNpnPtrSxcJQKCBhW0Es5rnRvpAi-c0sYYXvoKZUTpjbSCSA_Q_W9LzIrSHtveP5xMv6wrPCnnmADylhOV8yod-FlGXDGKBrdvRMFmWcBfsaAJcKMddj8iU9hrTekB2_Kzh-zeDb7CR-zXdDNmAMP1BkOYB9iLvQTQBD8bFyjAlJawwXBFvXdANV-gxpLkxCNab9mcIZbrYXR-9cMtAJ8PCEqhfTF81WiGMMaIAZQp48FbPWant_KVn7DebD7zTxmkqa0CV7YstSxsqo0WWnCOOM5ZYYuiz95137W2keScdm2c15jskA7qjQ767PVa9qKl9vin1D6pZy1BdNzNhfnl9zqe7tpaZdPKhSKXupCcG-UC-k7lMfu2lfF9ttspt44-YlFvLPrZ_2-_YnfQ1OtPR5Pj5-xuTk01TZPbLustL6_8C0RFS_Mymh-wb7dt8X8ADhsmCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Comparison+of+Advanced+Transcritical+Power+Cycles+with+High-Temperature+Working+Fluids+for+the+Engine+Waste+Heat+Recovery&rft.jtitle=Energies+%28Basel%29&rft.au=Lin%2C+Xinxing&rft.au=Chen%2C+Chonghui&rft.au=Yu%2C+Aofang&rft.au=Yin%2C+Likun&rft.date=2021-09-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=18&rft.spage=5886&rft_id=info:doi/10.3390%2Fen14185886&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14185886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon