Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm
The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast...
Saved in:
Published in | Energies (Basel) Vol. 13; no. 8; p. 1879 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast PV power output. First, the historical PV power data and associated weather information are classified into five weather types, such as rainy, heavy cloudy, cloudy, light cloudy and sunny. The CNN classification is then used to determine the prediction for the next day’s weather type. Five models of CNN regression are established to accommodate the prediction for different weather types. Each CNN regression is optimized using a salp swarm algorithm (SSA) to tune the best parameter. To evaluate the performance of the proposed method, comparisons were made to the SSA based support vector machine (SVM-SSA) and long short-term memory neural network (LSTM-SSA) methods. The proposed method was tested on a PV power generation system with a 500 kWp capacity located in south Taiwan. The results showed that the proposed CNN-SSA could accommodate the actual generation pattern better than the SVM-SSA and LSTM-SSA methods. |
---|---|
AbstractList | The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast PV power output. First, the historical PV power data and associated weather information are classified into five weather types, such as rainy, heavy cloudy, cloudy, light cloudy and sunny. The CNN classification is then used to determine the prediction for the next day’s weather type. Five models of CNN regression are established to accommodate the prediction for different weather types. Each CNN regression is optimized using a salp swarm algorithm (SSA) to tune the best parameter. To evaluate the performance of the proposed method, comparisons were made to the SSA based support vector machine (SVM-SSA) and long short-term memory neural network (LSTM-SSA) methods. The proposed method was tested on a PV power generation system with a 500 kWp capacity located in south Taiwan. The results showed that the proposed CNN-SSA could accommodate the actual generation pattern better than the SVM-SSA and LSTM-SSA methods. |
Author | Huang, Chao-Ming Aprillia, Happy Yang, Hong-Tzer |
Author_xml | – sequence: 1 givenname: Happy orcidid: 0000-0002-5263-0608 surname: Aprillia fullname: Aprillia, Happy – sequence: 2 givenname: Hong-Tzer surname: Yang fullname: Yang, Hong-Tzer – sequence: 3 givenname: Chao-Ming orcidid: 0000-0002-4371-9475 surname: Huang fullname: Huang, Chao-Ming |
BookMark | eNpNUU1v2zAMFYYWWJf2sl9gYLcB7vRhS9YxCJY1QLEWSHsWaJlOnDlmJikNdut_6D_cL5nbFGt54COIx0eQ7xM7GWhAxj4LfqmU5d9wEIpXojL2AzsT1upccKNO3tUf2UWMGz6GUkIpdcZwuaaQ8jsM2-x2TYkeqE_Q-eyWDhiyOQX0EFM3rLL7-Jwhm9EwkvapowH67CfuwwukA4Vffx-fltDvsuUBRsFpv6LQpfX2nJ220Ee8eMUJu59_v5td5dc3Pxaz6XXulRYpx8Zjra2yYLFsBGChi9ZAITlKrKVsjDW8MKDACF03vuG15Ny0xpe-rQSqCVscdRuCjduFbgvhjyPo3EuDwspBSJ3v0VVFzce5sm5MVZTSVjU0XJdWK1_rtjSj1pej1i7Q7z3G5Da0D-PJ0cnx20qXspAj6-uR5QPFGLD9v1Vw9-yKe3NF_QPNJYJS |
CitedBy_id | crossref_primary_10_1016_j_engappai_2020_104000 crossref_primary_10_3390_en13154017 crossref_primary_10_1109_ACCESS_2021_3117004 crossref_primary_10_1016_j_solener_2022_08_042 crossref_primary_10_1080_15325008_2023_2217193 crossref_primary_10_3390_en15145008 crossref_primary_10_4108_ew_3809 crossref_primary_10_1063_5_0082629 crossref_primary_10_1016_j_seta_2021_101354 crossref_primary_10_3390_en13112857 crossref_primary_10_1002_er_7254 crossref_primary_10_1016_j_ref_2023_04_010 crossref_primary_10_1109_ACCESS_2022_3195053 crossref_primary_10_3390_en14051222 crossref_primary_10_1155_2021_6638436 crossref_primary_10_3390_en15041460 crossref_primary_10_1016_j_egyr_2023_05_063 crossref_primary_10_3390_en14113086 crossref_primary_10_1016_j_egyr_2023_08_003 crossref_primary_10_3390_su15129234 crossref_primary_10_1080_15325008_2024_2317369 crossref_primary_10_1007_s40313_024_01099_5 crossref_primary_10_3390_su15010771 crossref_primary_10_1063_5_0090126 crossref_primary_10_3390_app10238400 crossref_primary_10_1049_rpg2_12736 crossref_primary_10_3390_en15114171 crossref_primary_10_3390_en17133073 crossref_primary_10_1109_ACCESS_2023_3270714 crossref_primary_10_1016_j_enconman_2024_118207 crossref_primary_10_1016_j_energy_2023_126980 crossref_primary_10_3390_en17102392 crossref_primary_10_3390_en13246603 crossref_primary_10_3390_en14112998 crossref_primary_10_1016_j_seta_2021_101048 crossref_primary_10_1109_ACCESS_2021_3122826 crossref_primary_10_1109_ACCESS_2024_3420693 crossref_primary_10_3390_en14164733 crossref_primary_10_3390_en17010097 crossref_primary_10_1109_TIA_2022_3186662 crossref_primary_10_1109_ACCESS_2022_3156942 crossref_primary_10_3390_sym14050955 crossref_primary_10_3390_en15062150 crossref_primary_10_1016_j_apenergy_2021_117410 |
Cites_doi | 10.1049/iet-smt.2013.0135 10.3390/app8101869 10.3390/sym10120748 10.3390/en12091621 10.1109/ACCESS.2018.2883330 10.3390/en8021138 10.3390/electronics8030292 10.1113/jphysiol.1959.sp006308 10.1016/j.solener.2010.02.006 10.1109/TSG.2018.2815434 10.3390/en13030723 10.1109/ACCESS.2019.2921238 10.1007/BF00994018 10.1016/j.apenergy.2017.03.034 10.1109/TPWRS.2018.2869195 10.3390/electronics8080876 10.1016/j.solener.2016.06.069 10.3390/en12234490 10.1109/ACCESS.2018.2888978 10.1016/j.egypro.2018.09.173 10.2172/986925 10.1109/TIA.2018.2870348 10.1109/TSG.2018.2851512 10.3390/en12244815 10.3390/en11051143 10.3390/su11051501 10.1016/j.ijforecast.2016.02.001 10.1016/j.enconman.2017.10.008 10.3390/en6020733 10.1016/j.enconman.2017.11.019 10.3390/s18072220 10.1016/j.epsr.2012.03.009 10.3390/en11112982 10.1109/ACCESS.2018.2869424 10.1109/ACCESS.2019.2931985 10.1016/j.solener.2016.06.073 10.1109/TSTE.2015.2433957 10.1109/TSG.2018.2844877 10.1109/ACCESS.2019.2901920 10.1016/j.solener.2015.09.047 10.1109/TSG.2014.2377178 10.21629/JSEE.2017.01.18 10.1016/j.solener.2014.03.018 10.1016/j.renene.2012.10.009 10.3390/en12132538 10.1109/ACCESS.2019.2926137 10.1016/j.advengsoft.2017.07.002 10.1109/ACCESS.2019.2949065 10.1049/iet-gtd.2018.5847 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en13081879 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_84b07c55bd7845298bad065963cb6f57 10_3390_en13081879 |
GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c361t-edceb6939a9e5d1ae464f7a420e2eb22d797047a3a716bdcd0b2007f7c5cf81e3 |
IEDL.DBID | 8FG |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:15:34 EDT 2024 Thu Oct 10 21:08:45 EDT 2024 Fri Aug 23 04:59:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-edceb6939a9e5d1ae464f7a420e2eb22d797047a3a716bdcd0b2007f7c5cf81e3 |
ORCID | 0000-0002-4371-9475 0000-0002-5263-0608 |
OpenAccessLink | https://www.proquest.com/docview/2390365242?pq-origsite=%requestingapplication% |
PQID | 2390365242 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_84b07c55bd7845298bad065963cb6f57 proquest_journals_2390365242 crossref_primary_10_3390_en13081879 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Huang (ref_23) 2019; 7 Hernandez (ref_38) 2012; 89 Wang (ref_36) 2017; 153 Saez (ref_34) 2015; 6 Zeng (ref_16) 2013; 52 ref_51 ref_18 ref_17 Nguyen (ref_9) 2019; 34 ref_15 Luna (ref_8) 2019; 55 Hong (ref_35) 2016; 32 Raza (ref_11) 2016; 136 Gao (ref_4) 2019; 7 Malvoni (ref_10) 2014; 8 ref_24 Dolara (ref_14) 2015; 8 Yan (ref_20) 2019; 7 Sobri (ref_12) 2018; 156 Han (ref_21) 2019; 7 Du (ref_26) 2018; 6 Antonanzas (ref_39) 2016; 136 Zhang (ref_6) 2015; 122 ref_29 ref_28 Mirjalili (ref_33) 2017; 114 Cortes (ref_47) 1995; 20 Lee (ref_27) 2018; 6 Ju (ref_19) 2019; 7 Yang (ref_7) 2015; 6 Mellit (ref_13) 2014; 105 ref_32 ref_30 Zhong (ref_44) 2018; 152 Zhao (ref_31) 2017; 28 Bracale (ref_37) 2013; 6 Chakraborty (ref_3) 2019; 10 Alkaabi (ref_1) 2019; 10 Zhang (ref_22) 2018; 12 Hubel (ref_45) 1959; 148 ref_46 Chen (ref_48) 2017; 195 Deng (ref_25) 2019; 7 ref_43 ref_42 Mellit (ref_40) 2010; 84 ref_41 ref_49 Fleischhacker (ref_2) 2019; 10 ref_5 |
References_xml | – volume: 8 start-page: 90 year: 2014 ident: ref_10 article-title: Photovoltaic power forecasting using statistical methods: Impact of weather data publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2013.0135 contributor: fullname: Malvoni – ident: ref_28 doi: 10.3390/app8101869 – ident: ref_51 – ident: ref_17 doi: 10.3390/sym10120748 – ident: ref_15 doi: 10.3390/en12091621 – volume: 6 start-page: 73068 year: 2018 ident: ref_27 article-title: Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883330 contributor: fullname: Lee – volume: 8 start-page: 1138 year: 2015 ident: ref_14 article-title: A physical hybrid artificial neural network for short term forecasting of PV plant power output publication-title: Energies doi: 10.3390/en8021138 contributor: fullname: Dolara – ident: ref_43 doi: 10.3390/electronics8030292 – volume: 148 start-page: 574 year: 1959 ident: ref_45 article-title: Receptive Fields of Single Neurons in The Cat’s Striate Cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1959.sp006308 contributor: fullname: Hubel – volume: 84 start-page: 807 year: 2010 ident: ref_40 article-title: A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected {PV} plant at Trieste, Italy publication-title: Sol. Energy doi: 10.1016/j.solener.2010.02.006 contributor: fullname: Mellit – volume: 10 start-page: 2923 year: 2019 ident: ref_1 article-title: Short-Term Reactive Power Planning to Minimize Cost of Energy Losses Considering PV Systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2815434 contributor: fullname: Alkaabi – ident: ref_30 doi: 10.3390/en13030723 – volume: 7 start-page: 74822 year: 2019 ident: ref_23 article-title: Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921238 contributor: fullname: Huang – volume: 20 start-page: 273 year: 1995 ident: ref_47 article-title: Support vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 contributor: fullname: Cortes – volume: 195 start-page: 659 year: 2017 ident: ref_48 article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.034 contributor: fullname: Chen – volume: 34 start-page: 718 year: 2019 ident: ref_9 article-title: Exact Optimal Power Dispatch in Unbalanced Distribution Systems with High PV Penetration publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2869195 contributor: fullname: Nguyen – ident: ref_24 doi: 10.3390/electronics8080876 – volume: 136 start-page: 78 year: 2016 ident: ref_39 article-title: Review of photovoltaic power forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2016.06.069 contributor: fullname: Antonanzas – ident: ref_49 doi: 10.3390/en12234490 – volume: 7 start-page: 4045 year: 2019 ident: ref_21 article-title: Enhanced Deep Networks for Short-Term and Medium-Term Load Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888978 contributor: fullname: Han – volume: 152 start-page: 1224 year: 2018 ident: ref_44 article-title: Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network publication-title: Energy Procedia doi: 10.1016/j.egypro.2018.09.173 contributor: fullname: Zhong – ident: ref_5 doi: 10.2172/986925 – volume: 55 start-page: 60 year: 2019 ident: ref_8 article-title: Improving Grid Integration of Hybrid PV-Storage Systems Through a Suitable Energy Management Strategy publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2018.2870348 contributor: fullname: Luna – volume: 10 start-page: 4175 year: 2019 ident: ref_3 article-title: Analysis of Solar Energy Aggregation Under Various Billing Mechanisms publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2851512 contributor: fullname: Chakraborty – ident: ref_32 doi: 10.3390/en12244815 – ident: ref_41 doi: 10.3390/en11051143 – ident: ref_42 doi: 10.3390/su11051501 – volume: 32 start-page: 896 year: 2016 ident: ref_35 article-title: Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2016.02.001 contributor: fullname: Hong – volume: 153 start-page: 409 year: 2017 ident: ref_36 article-title: Deterministic and Probabilistic Forecasting of Photovoltaic Power Based on Deep Convolutional Neural Network publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.10.008 contributor: fullname: Wang – volume: 6 start-page: 733 year: 2013 ident: ref_37 article-title: A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control publication-title: Energies doi: 10.3390/en6020733 contributor: fullname: Bracale – volume: 156 start-page: 459 year: 2018 ident: ref_12 article-title: Solar photovoltaic generation forecasting methods: A review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.11.019 contributor: fullname: Sobri – ident: ref_46 doi: 10.3390/s18072220 – volume: 89 start-page: 129 year: 2012 ident: ref_38 article-title: Probabilistic load flow for photovoltaic distributed generation using the Cornish-Fisher expansion publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2012.03.009 contributor: fullname: Hernandez – ident: ref_29 doi: 10.3390/en11112982 – volume: 6 start-page: 52639 year: 2018 ident: ref_26 article-title: Deep Power Forecasting Model for Building Attached Photovoltaic System publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869424 contributor: fullname: Du – volume: 7 start-page: 105019 year: 2019 ident: ref_4 article-title: Techno-Economic Evaluation of Mixed AC and DC Power Distribution Network for Integrating Large-Scale Photovoltaic Power Generation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931985 contributor: fullname: Gao – volume: 136 start-page: 125 year: 2016 ident: ref_11 article-title: On recent advances in PV output power forecast publication-title: Sol. Energy doi: 10.1016/j.solener.2016.06.073 contributor: fullname: Raza – volume: 6 start-page: 1346 year: 2015 ident: ref_7 article-title: MF-APSO-Based Multiobjective Optimization for PV System Reactive Power Regulation publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2015.2433957 contributor: fullname: Yang – volume: 10 start-page: 3963 year: 2019 ident: ref_2 article-title: Sharing Solar PV and Energy Storage in Apartment Buildings: Resource Allocation and Pricing publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2844877 contributor: fullname: Fleischhacker – ident: ref_50 – volume: 7 start-page: 28309 year: 2019 ident: ref_19 article-title: A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901920 contributor: fullname: Ju – volume: 122 start-page: 804 year: 2015 ident: ref_6 article-title: Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2015.09.047 contributor: fullname: Zhang – volume: 6 start-page: 548 year: 2015 ident: ref_34 article-title: Fuzzy Prediction Interval Models for Forecasting Renewable Resources and Loads in Microgrids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2377178 contributor: fullname: Saez – volume: 28 start-page: 162169 year: 2017 ident: ref_31 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.01.18 contributor: fullname: Zhao – volume: 105 start-page: 401 year: 2014 ident: ref_13 article-title: Short-term forecasting of power production in a large-scale photovoltaic plant publication-title: Sol. Energy doi: 10.1016/j.solener.2014.03.018 contributor: fullname: Mellit – volume: 52 start-page: 118 year: 2013 ident: ref_16 article-title: Short-term solar power prediction using a support vector machine publication-title: Renew. Energy doi: 10.1016/j.renene.2012.10.009 contributor: fullname: Zeng – ident: ref_18 doi: 10.3390/en12132538 – volume: 7 start-page: 88058 year: 2019 ident: ref_25 article-title: Multi-Scale Convolutional Neural Network with Time-Cognition for Multi-Step Short-Term Load Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926137 contributor: fullname: Deng – volume: 114 start-page: 163 year: 2017 ident: ref_33 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 contributor: fullname: Mirjalili – volume: 7 start-page: 157633 year: 2019 ident: ref_20 article-title: A Hybrid LSTM Neural Network for Energy Consumption Forecasting of Individual Households publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949065 contributor: fullname: Yan – volume: 12 start-page: 4557 year: 2018 ident: ref_22 article-title: Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2018.5847 contributor: fullname: Zhang |
SSID | ssj0000331333 |
Score | 2.4820147 |
Snippet | The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1879 |
SubjectTerms | Accuracy Algorithms Clean energy Climate change Climate models convolutional neural network day ahead forecasting Deep learning Economic forecasting Forecasting Humidity Long short-term memory Meteorological data Methods Neural networks Outdoor air quality Photovoltaics Power PV power forecasting Regression analysis renewable energy salp swarm algorithm Short term Support vector machines Variables Weather forecasting |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ1arLOh1aZJ9JDnWYikepNAWegv7ihVqUtqoV_-D_9Bf4uwm1YoHL54CIeyGmcnsfNlvv0HoWglYRUQgCZTHlDCbWqICGRMOASI550IZz7a4F4MJu5vy6UarL8cJq-WBa8N1EqaCWHOuTJy4TcJESeP2AgXVSuS8PkcepBtgyudgSgF80VqPlAKu79gCsnXiemv_WIG8UP-vPOwXl_4-2muqQtyt3-YAbdniEO1uaAUeITuaQaVMxpBJ8XBWViXkFYD1Gg9dnzPsWmxquXIkZuxpAFjiXlm8NJEFgzsZDn_xvO-Pt_eRnC_w6FXCgN35Q7l8rGZPx2jSvx33BqTpkUA0FWFFHIlTiZSmMrXchNIywfJYsiiwEYDmyMRpHLBYUgnASBltAuX-TuZgUp0noaUnaLsoC3uKcKiEgGRndWIoszRPHJyIAEGoXIZhalroam23bFFLYWQAIZx1s2_rttCNM-nXE06-2t8Ap2aNU7O_nNpC7bVDsuabWmURTEQFh5ri7D_mOEc7kcPOnoXTRtvV8tleQIFRqUsfS5-hTs-K priority: 102 providerName: Directory of Open Access Journals |
Title | Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm |
URI | https://www.proquest.com/docview/2390365242 https://doaj.org/article/84b07c55bd7845298bad065963cb6f57 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEF614UIPqLQgAiFaqb2usL3eXftUJYiAekBRA1Ju1v6ZHMAOiaHXvkPfkCfpzMZJQEi92JJtrbyzszPzzX6aIeS7keBFZKQZhMecpT73zERaMQEKooUQ0rjAtriWV7fpz6mYtgm3ZUurXNvEYKhdbTFHfpYAOOdSgEf5MX9k2DUKT1fbFhofyU6cKIXgKxtdbnIsEecAwfiqKimHAc58BTY7ww7bb_xQKNf_zhoHFzP6TPba2JAOVou5Tz746gv59Kpi4FfiJzOIl9kN2FM6ntVNDdYFwL2lY-x2RrHRptVLpDLTQAagmp7X1XOrXzA4FuMIt8D-fvnzd6Lv53TyW8OAg_s7mHEzezggt6OLm_Mr1nZKYJbLuGFI5TQy57nOvXCx9qlMS6XTJPIJQOfEqVxFqdJcAzwyzrrIYI6yVFbYMos9PySdqq78EaGxkRJMnreZ46nnZYagIgEcYUodx7nrkm9ruRXzVUGMAoAESrfYSrdLhijSzRdYxDo8qBd3Rbsniiw1EfyBME5leP6bGe3wmFdya2QpVJf01gtStDtrWWz14Pj_r0_IboLYOLBseqTTLJ78KQQQjekHLemTneHF9fhXP8BwuF5O438gPMsD |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BOQCHqrzU9AErwXUV2_uwfUKlahqgRJWSSrmt9uXk0Nqhcdsr_6H_sL-EmY3TgJA4WbKtlXd2dma-2c8zhHyyCryISgyD8JgzEcrAbGJyJkFBjJRSWR_ZFiM1vBDfpnLaJdyWHa1ybROjofaNwxx5PwNwzpUEj_J58ZNh1yg8Xe1aaDwlzwQHX41_ig9OH3MsCecAwfiqKimHAfqhBptdYIftv_xQLNf_jzWOLmawQ7a72JAerRbzFXkS6tfk5R8VA9-QMJ5DvMwmYE_p-bxpG7AuAO4dPcduZxQbbTqzRCozjWQAauhxU992-gWDYzGOeIns74df92NzuaDjOwMDHl3OYMbt_OotuRicTI6HrOuUwBxMu2VI5bSq5KUpg_SpCUKJKjciS0IG0DnzeZknIjfcADyy3vnEYo6yyp10VZEG_o5s1U0ddglNrVJg8oIrPBeBVwWCigxwhK1Mmpa-Rz6u5aYXq4IYGoAESldvpNsjX1Ckj29gEet4o7me6W5P6ELYBL5AWp8XeP5bWOPxmFdxZ1Ul8x45WC-I7nbWUm_0YO__jz-Q58PJjzN99nX0fZ-8yBAnR8bNAdlqr2_CIQQTrX0fNeY30RXKZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUoSFV7qEpbxLa0WKJXa5M4dpJTxUdTaNFqpV0kbpa_wh5osmXTcuU_9B_yS5jxeqEVEqdISWQl4_GbefbTDCGfjYQoIhPNID3mLPeVZybRBRPgIFoIIY0LaouRPD7Lv5-L86h_WkRZ5QoTA1C7zuIe-TADcs6lgIgybKIsYnxUf5n_YthBCk9aYzuNZ2QDoqJEny_rb_f7LQnnQMf4skIph8GGvgX8LrHb9n8xKZTuf4TMIdzUr8mrmCfS_eXEbpI1374hL_-pHviW-MkMcmc2BWyl41nXd4A0QPQtHWPnM4pNN61eoKyZBmEA1fSwa_9EX4PBsTBHuAQl-O3N34m-nNPJtYYB9y8v4I_72c935Kz-Oj08ZrFrArNcpj1DWaeRFa905YVLtc9l3hQ6zxKfAY3OXFEVSV5oroEqGWddYnC_simssE2Zer5F1tuu9duEpkZKgD9vS8dzz5sSCUYGnMI0Ok0rNyB7K7up-bI4hgJSgdZVD9YdkAM06f0bWNA63OiuLlRcH6rMTQJfIIwrSjwLLo12eOQruTWyEcWA7KwmRMVVtlAPPvH-6ce75Dk4izo9Gf34QF5kSJmD-GaHrPdXv_1HyCt68yk4zB0Bg86d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Photovoltaic+Power+Forecasting+Using+a+Convolutional+Neural+Network%E2%80%93Salp+Swarm+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Aprillia%2C+Happy&rft.au=Hong-Tzer+Yang&rft.au=Chao-Ming%2C+Huang&rft.date=2020-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=8&rft.spage=1879&rft_id=info:doi/10.3390%2Fen13081879&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |