Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm

The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 13; no. 8; p. 1879
Main Authors Aprillia, Happy, Yang, Hong-Tzer, Huang, Chao-Ming
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast PV power output. First, the historical PV power data and associated weather information are classified into five weather types, such as rainy, heavy cloudy, cloudy, light cloudy and sunny. The CNN classification is then used to determine the prediction for the next day’s weather type. Five models of CNN regression are established to accommodate the prediction for different weather types. Each CNN regression is optimized using a salp swarm algorithm (SSA) to tune the best parameter. To evaluate the performance of the proposed method, comparisons were made to the SSA based support vector machine (SVM-SSA) and long short-term memory neural network (LSTM-SSA) methods. The proposed method was tested on a PV power generation system with a 500 kWp capacity located in south Taiwan. The results showed that the proposed CNN-SSA could accommodate the actual generation pattern better than the SVM-SSA and LSTM-SSA methods.
AbstractList The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast PV power output. First, the historical PV power data and associated weather information are classified into five weather types, such as rainy, heavy cloudy, cloudy, light cloudy and sunny. The CNN classification is then used to determine the prediction for the next day’s weather type. Five models of CNN regression are established to accommodate the prediction for different weather types. Each CNN regression is optimized using a salp swarm algorithm (SSA) to tune the best parameter. To evaluate the performance of the proposed method, comparisons were made to the SSA based support vector machine (SVM-SSA) and long short-term memory neural network (LSTM-SSA) methods. The proposed method was tested on a PV power generation system with a 500 kWp capacity located in south Taiwan. The results showed that the proposed CNN-SSA could accommodate the actual generation pattern better than the SVM-SSA and LSTM-SSA methods.
Author Huang, Chao-Ming
Aprillia, Happy
Yang, Hong-Tzer
Author_xml – sequence: 1
  givenname: Happy
  orcidid: 0000-0002-5263-0608
  surname: Aprillia
  fullname: Aprillia, Happy
– sequence: 2
  givenname: Hong-Tzer
  surname: Yang
  fullname: Yang, Hong-Tzer
– sequence: 3
  givenname: Chao-Ming
  orcidid: 0000-0002-4371-9475
  surname: Huang
  fullname: Huang, Chao-Ming
BookMark eNpNUU1v2zAMFYYWWJf2sl9gYLcB7vRhS9YxCJY1QLEWSHsWaJlOnDlmJikNdut_6D_cL5nbFGt54COIx0eQ7xM7GWhAxj4LfqmU5d9wEIpXojL2AzsT1upccKNO3tUf2UWMGz6GUkIpdcZwuaaQ8jsM2-x2TYkeqE_Q-eyWDhiyOQX0EFM3rLL7-Jwhm9EwkvapowH67CfuwwukA4Vffx-fltDvsuUBRsFpv6LQpfX2nJ220Ee8eMUJu59_v5td5dc3Pxaz6XXulRYpx8Zjra2yYLFsBGChi9ZAITlKrKVsjDW8MKDACF03vuG15Ny0xpe-rQSqCVscdRuCjduFbgvhjyPo3EuDwspBSJ3v0VVFzce5sm5MVZTSVjU0XJdWK1_rtjSj1pej1i7Q7z3G5Da0D-PJ0cnx20qXspAj6-uR5QPFGLD9v1Vw9-yKe3NF_QPNJYJS
CitedBy_id crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_3390_en13154017
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_1016_j_solener_2022_08_042
crossref_primary_10_1080_15325008_2023_2217193
crossref_primary_10_3390_en15145008
crossref_primary_10_4108_ew_3809
crossref_primary_10_1063_5_0082629
crossref_primary_10_1016_j_seta_2021_101354
crossref_primary_10_3390_en13112857
crossref_primary_10_1002_er_7254
crossref_primary_10_1016_j_ref_2023_04_010
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_3390_en14051222
crossref_primary_10_1155_2021_6638436
crossref_primary_10_3390_en15041460
crossref_primary_10_1016_j_egyr_2023_05_063
crossref_primary_10_3390_en14113086
crossref_primary_10_1016_j_egyr_2023_08_003
crossref_primary_10_3390_su15129234
crossref_primary_10_1080_15325008_2024_2317369
crossref_primary_10_1007_s40313_024_01099_5
crossref_primary_10_3390_su15010771
crossref_primary_10_1063_5_0090126
crossref_primary_10_3390_app10238400
crossref_primary_10_1049_rpg2_12736
crossref_primary_10_3390_en15114171
crossref_primary_10_3390_en17133073
crossref_primary_10_1109_ACCESS_2023_3270714
crossref_primary_10_1016_j_enconman_2024_118207
crossref_primary_10_1016_j_energy_2023_126980
crossref_primary_10_3390_en17102392
crossref_primary_10_3390_en13246603
crossref_primary_10_3390_en14112998
crossref_primary_10_1016_j_seta_2021_101048
crossref_primary_10_1109_ACCESS_2021_3122826
crossref_primary_10_1109_ACCESS_2024_3420693
crossref_primary_10_3390_en14164733
crossref_primary_10_3390_en17010097
crossref_primary_10_1109_TIA_2022_3186662
crossref_primary_10_1109_ACCESS_2022_3156942
crossref_primary_10_3390_sym14050955
crossref_primary_10_3390_en15062150
crossref_primary_10_1016_j_apenergy_2021_117410
Cites_doi 10.1049/iet-smt.2013.0135
10.3390/app8101869
10.3390/sym10120748
10.3390/en12091621
10.1109/ACCESS.2018.2883330
10.3390/en8021138
10.3390/electronics8030292
10.1113/jphysiol.1959.sp006308
10.1016/j.solener.2010.02.006
10.1109/TSG.2018.2815434
10.3390/en13030723
10.1109/ACCESS.2019.2921238
10.1007/BF00994018
10.1016/j.apenergy.2017.03.034
10.1109/TPWRS.2018.2869195
10.3390/electronics8080876
10.1016/j.solener.2016.06.069
10.3390/en12234490
10.1109/ACCESS.2018.2888978
10.1016/j.egypro.2018.09.173
10.2172/986925
10.1109/TIA.2018.2870348
10.1109/TSG.2018.2851512
10.3390/en12244815
10.3390/en11051143
10.3390/su11051501
10.1016/j.ijforecast.2016.02.001
10.1016/j.enconman.2017.10.008
10.3390/en6020733
10.1016/j.enconman.2017.11.019
10.3390/s18072220
10.1016/j.epsr.2012.03.009
10.3390/en11112982
10.1109/ACCESS.2018.2869424
10.1109/ACCESS.2019.2931985
10.1016/j.solener.2016.06.073
10.1109/TSTE.2015.2433957
10.1109/TSG.2018.2844877
10.1109/ACCESS.2019.2901920
10.1016/j.solener.2015.09.047
10.1109/TSG.2014.2377178
10.21629/JSEE.2017.01.18
10.1016/j.solener.2014.03.018
10.1016/j.renene.2012.10.009
10.3390/en12132538
10.1109/ACCESS.2019.2926137
10.1016/j.advengsoft.2017.07.002
10.1109/ACCESS.2019.2949065
10.1049/iet-gtd.2018.5847
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en13081879
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_84b07c55bd7845298bad065963cb6f57
10_3390_en13081879
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IAO
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-edceb6939a9e5d1ae464f7a420e2eb22d797047a3a716bdcd0b2007f7c5cf81e3
IEDL.DBID 8FG
ISSN 1996-1073
IngestDate Tue Oct 22 15:15:34 EDT 2024
Thu Oct 10 21:08:45 EDT 2024
Fri Aug 23 04:59:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-edceb6939a9e5d1ae464f7a420e2eb22d797047a3a716bdcd0b2007f7c5cf81e3
ORCID 0000-0002-4371-9475
0000-0002-5263-0608
OpenAccessLink https://www.proquest.com/docview/2390365242?pq-origsite=%requestingapplication%
PQID 2390365242
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_84b07c55bd7845298bad065963cb6f57
proquest_journals_2390365242
crossref_primary_10_3390_en13081879
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Huang (ref_23) 2019; 7
Hernandez (ref_38) 2012; 89
Wang (ref_36) 2017; 153
Saez (ref_34) 2015; 6
Zeng (ref_16) 2013; 52
ref_51
ref_18
ref_17
Nguyen (ref_9) 2019; 34
ref_15
Luna (ref_8) 2019; 55
Hong (ref_35) 2016; 32
Raza (ref_11) 2016; 136
Gao (ref_4) 2019; 7
Malvoni (ref_10) 2014; 8
ref_24
Dolara (ref_14) 2015; 8
Yan (ref_20) 2019; 7
Sobri (ref_12) 2018; 156
Han (ref_21) 2019; 7
Du (ref_26) 2018; 6
Antonanzas (ref_39) 2016; 136
Zhang (ref_6) 2015; 122
ref_29
ref_28
Mirjalili (ref_33) 2017; 114
Cortes (ref_47) 1995; 20
Lee (ref_27) 2018; 6
Ju (ref_19) 2019; 7
Yang (ref_7) 2015; 6
Mellit (ref_13) 2014; 105
ref_32
ref_30
Zhong (ref_44) 2018; 152
Zhao (ref_31) 2017; 28
Bracale (ref_37) 2013; 6
Chakraborty (ref_3) 2019; 10
Alkaabi (ref_1) 2019; 10
Zhang (ref_22) 2018; 12
Hubel (ref_45) 1959; 148
ref_46
Chen (ref_48) 2017; 195
Deng (ref_25) 2019; 7
ref_43
ref_42
Mellit (ref_40) 2010; 84
ref_41
ref_49
Fleischhacker (ref_2) 2019; 10
ref_5
References_xml – volume: 8
  start-page: 90
  year: 2014
  ident: ref_10
  article-title: Photovoltaic power forecasting using statistical methods: Impact of weather data
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2013.0135
  contributor:
    fullname: Malvoni
– ident: ref_28
  doi: 10.3390/app8101869
– ident: ref_51
– ident: ref_17
  doi: 10.3390/sym10120748
– ident: ref_15
  doi: 10.3390/en12091621
– volume: 6
  start-page: 73068
  year: 2018
  ident: ref_27
  article-title: Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883330
  contributor:
    fullname: Lee
– volume: 8
  start-page: 1138
  year: 2015
  ident: ref_14
  article-title: A physical hybrid artificial neural network for short term forecasting of PV plant power output
  publication-title: Energies
  doi: 10.3390/en8021138
  contributor:
    fullname: Dolara
– ident: ref_43
  doi: 10.3390/electronics8030292
– volume: 148
  start-page: 574
  year: 1959
  ident: ref_45
  article-title: Receptive Fields of Single Neurons in The Cat’s Striate Cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1959.sp006308
  contributor:
    fullname: Hubel
– volume: 84
  start-page: 807
  year: 2010
  ident: ref_40
  article-title: A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected {PV} plant at Trieste, Italy
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.02.006
  contributor:
    fullname: Mellit
– volume: 10
  start-page: 2923
  year: 2019
  ident: ref_1
  article-title: Short-Term Reactive Power Planning to Minimize Cost of Energy Losses Considering PV Systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2815434
  contributor:
    fullname: Alkaabi
– ident: ref_30
  doi: 10.3390/en13030723
– volume: 7
  start-page: 74822
  year: 2019
  ident: ref_23
  article-title: Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921238
  contributor:
    fullname: Huang
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_47
  article-title: Support vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
  contributor:
    fullname: Cortes
– volume: 195
  start-page: 659
  year: 2017
  ident: ref_48
  article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.034
  contributor:
    fullname: Chen
– volume: 34
  start-page: 718
  year: 2019
  ident: ref_9
  article-title: Exact Optimal Power Dispatch in Unbalanced Distribution Systems with High PV Penetration
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2869195
  contributor:
    fullname: Nguyen
– ident: ref_24
  doi: 10.3390/electronics8080876
– volume: 136
  start-page: 78
  year: 2016
  ident: ref_39
  article-title: Review of photovoltaic power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.069
  contributor:
    fullname: Antonanzas
– ident: ref_49
  doi: 10.3390/en12234490
– volume: 7
  start-page: 4045
  year: 2019
  ident: ref_21
  article-title: Enhanced Deep Networks for Short-Term and Medium-Term Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888978
  contributor:
    fullname: Han
– volume: 152
  start-page: 1224
  year: 2018
  ident: ref_44
  article-title: Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.09.173
  contributor:
    fullname: Zhong
– ident: ref_5
  doi: 10.2172/986925
– volume: 55
  start-page: 60
  year: 2019
  ident: ref_8
  article-title: Improving Grid Integration of Hybrid PV-Storage Systems Through a Suitable Energy Management Strategy
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2018.2870348
  contributor:
    fullname: Luna
– volume: 10
  start-page: 4175
  year: 2019
  ident: ref_3
  article-title: Analysis of Solar Energy Aggregation Under Various Billing Mechanisms
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2851512
  contributor:
    fullname: Chakraborty
– ident: ref_32
  doi: 10.3390/en12244815
– ident: ref_41
  doi: 10.3390/en11051143
– ident: ref_42
  doi: 10.3390/su11051501
– volume: 32
  start-page: 896
  year: 2016
  ident: ref_35
  article-title: Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.02.001
  contributor:
    fullname: Hong
– volume: 153
  start-page: 409
  year: 2017
  ident: ref_36
  article-title: Deterministic and Probabilistic Forecasting of Photovoltaic Power Based on Deep Convolutional Neural Network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.008
  contributor:
    fullname: Wang
– volume: 6
  start-page: 733
  year: 2013
  ident: ref_37
  article-title: A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control
  publication-title: Energies
  doi: 10.3390/en6020733
  contributor:
    fullname: Bracale
– volume: 156
  start-page: 459
  year: 2018
  ident: ref_12
  article-title: Solar photovoltaic generation forecasting methods: A review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.11.019
  contributor:
    fullname: Sobri
– ident: ref_46
  doi: 10.3390/s18072220
– volume: 89
  start-page: 129
  year: 2012
  ident: ref_38
  article-title: Probabilistic load flow for photovoltaic distributed generation using the Cornish-Fisher expansion
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2012.03.009
  contributor:
    fullname: Hernandez
– ident: ref_29
  doi: 10.3390/en11112982
– volume: 6
  start-page: 52639
  year: 2018
  ident: ref_26
  article-title: Deep Power Forecasting Model for Building Attached Photovoltaic System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869424
  contributor:
    fullname: Du
– volume: 7
  start-page: 105019
  year: 2019
  ident: ref_4
  article-title: Techno-Economic Evaluation of Mixed AC and DC Power Distribution Network for Integrating Large-Scale Photovoltaic Power Generation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931985
  contributor:
    fullname: Gao
– volume: 136
  start-page: 125
  year: 2016
  ident: ref_11
  article-title: On recent advances in PV output power forecast
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.073
  contributor:
    fullname: Raza
– volume: 6
  start-page: 1346
  year: 2015
  ident: ref_7
  article-title: MF-APSO-Based Multiobjective Optimization for PV System Reactive Power Regulation
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2433957
  contributor:
    fullname: Yang
– volume: 10
  start-page: 3963
  year: 2019
  ident: ref_2
  article-title: Sharing Solar PV and Energy Storage in Apartment Buildings: Resource Allocation and Pricing
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2844877
  contributor:
    fullname: Fleischhacker
– ident: ref_50
– volume: 7
  start-page: 28309
  year: 2019
  ident: ref_19
  article-title: A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901920
  contributor:
    fullname: Ju
– volume: 122
  start-page: 804
  year: 2015
  ident: ref_6
  article-title: Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.09.047
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 548
  year: 2015
  ident: ref_34
  article-title: Fuzzy Prediction Interval Models for Forecasting Renewable Resources and Loads in Microgrids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2377178
  contributor:
    fullname: Saez
– volume: 28
  start-page: 162169
  year: 2017
  ident: ref_31
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
  contributor:
    fullname: Zhao
– volume: 105
  start-page: 401
  year: 2014
  ident: ref_13
  article-title: Short-term forecasting of power production in a large-scale photovoltaic plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.03.018
  contributor:
    fullname: Mellit
– volume: 52
  start-page: 118
  year: 2013
  ident: ref_16
  article-title: Short-term solar power prediction using a support vector machine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.10.009
  contributor:
    fullname: Zeng
– ident: ref_18
  doi: 10.3390/en12132538
– volume: 7
  start-page: 88058
  year: 2019
  ident: ref_25
  article-title: Multi-Scale Convolutional Neural Network with Time-Cognition for Multi-Step Short-Term Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926137
  contributor:
    fullname: Deng
– volume: 114
  start-page: 163
  year: 2017
  ident: ref_33
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
  contributor:
    fullname: Mirjalili
– volume: 7
  start-page: 157633
  year: 2019
  ident: ref_20
  article-title: A Hybrid LSTM Neural Network for Energy Consumption Forecasting of Individual Households
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949065
  contributor:
    fullname: Yan
– volume: 12
  start-page: 4557
  year: 2018
  ident: ref_22
  article-title: Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.5847
  contributor:
    fullname: Zhang
SSID ssj0000331333
Score 2.4820147
Snippet The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 1879
SubjectTerms Accuracy
Algorithms
Clean energy
Climate change
Climate models
convolutional neural network
day ahead forecasting
Deep learning
Economic forecasting
Forecasting
Humidity
Long short-term memory
Meteorological data
Methods
Neural networks
Outdoor air quality
Photovoltaics
Power
PV power forecasting
Regression analysis
renewable energy
salp swarm algorithm
Short term
Support vector machines
Variables
Weather forecasting
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ1arLOh1aZJ9JDnWYikepNAWegv7ihVqUtqoV_-D_9Bf4uwm1YoHL54CIeyGmcnsfNlvv0HoWglYRUQgCZTHlDCbWqICGRMOASI550IZz7a4F4MJu5vy6UarL8cJq-WBa8N1EqaCWHOuTJy4TcJESeP2AgXVSuS8PkcepBtgyudgSgF80VqPlAKu79gCsnXiemv_WIG8UP-vPOwXl_4-2muqQtyt3-YAbdniEO1uaAUeITuaQaVMxpBJ8XBWViXkFYD1Gg9dnzPsWmxquXIkZuxpAFjiXlm8NJEFgzsZDn_xvO-Pt_eRnC_w6FXCgN35Q7l8rGZPx2jSvx33BqTpkUA0FWFFHIlTiZSmMrXchNIywfJYsiiwEYDmyMRpHLBYUgnASBltAuX-TuZgUp0noaUnaLsoC3uKcKiEgGRndWIoszRPHJyIAEGoXIZhalroam23bFFLYWQAIZx1s2_rttCNM-nXE06-2t8Ap2aNU7O_nNpC7bVDsuabWmURTEQFh5ri7D_mOEc7kcPOnoXTRtvV8tleQIFRqUsfS5-hTs-K
  priority: 102
  providerName: Directory of Open Access Journals
Title Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm
URI https://www.proquest.com/docview/2390365242
https://doaj.org/article/84b07c55bd7845298bad065963cb6f57
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEF614UIPqLQgAiFaqb2usL3eXftUJYiAekBRA1Ju1v6ZHMAOiaHXvkPfkCfpzMZJQEi92JJtrbyzszPzzX6aIeS7keBFZKQZhMecpT73zERaMQEKooUQ0rjAtriWV7fpz6mYtgm3ZUurXNvEYKhdbTFHfpYAOOdSgEf5MX9k2DUKT1fbFhofyU6cKIXgKxtdbnIsEecAwfiqKimHAc58BTY7ww7bb_xQKNf_zhoHFzP6TPba2JAOVou5Tz746gv59Kpi4FfiJzOIl9kN2FM6ntVNDdYFwL2lY-x2RrHRptVLpDLTQAagmp7X1XOrXzA4FuMIt8D-fvnzd6Lv53TyW8OAg_s7mHEzezggt6OLm_Mr1nZKYJbLuGFI5TQy57nOvXCx9qlMS6XTJPIJQOfEqVxFqdJcAzwyzrrIYI6yVFbYMos9PySdqq78EaGxkRJMnreZ46nnZYagIgEcYUodx7nrkm9ruRXzVUGMAoAESrfYSrdLhijSzRdYxDo8qBd3Rbsniiw1EfyBME5leP6bGe3wmFdya2QpVJf01gtStDtrWWz14Pj_r0_IboLYOLBseqTTLJ78KQQQjekHLemTneHF9fhXP8BwuF5O438gPMsD
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BOQCHqrzU9AErwXUV2_uwfUKlahqgRJWSSrmt9uXk0Nqhcdsr_6H_sL-EmY3TgJA4WbKtlXd2dma-2c8zhHyyCryISgyD8JgzEcrAbGJyJkFBjJRSWR_ZFiM1vBDfpnLaJdyWHa1ybROjofaNwxx5PwNwzpUEj_J58ZNh1yg8Xe1aaDwlzwQHX41_ig9OH3MsCecAwfiqKimHAfqhBptdYIftv_xQLNf_jzWOLmawQ7a72JAerRbzFXkS6tfk5R8VA9-QMJ5DvMwmYE_p-bxpG7AuAO4dPcduZxQbbTqzRCozjWQAauhxU992-gWDYzGOeIns74df92NzuaDjOwMDHl3OYMbt_OotuRicTI6HrOuUwBxMu2VI5bSq5KUpg_SpCUKJKjciS0IG0DnzeZknIjfcADyy3vnEYo6yyp10VZEG_o5s1U0ddglNrVJg8oIrPBeBVwWCigxwhK1Mmpa-Rz6u5aYXq4IYGoAESldvpNsjX1Ckj29gEet4o7me6W5P6ELYBL5AWp8XeP5bWOPxmFdxZ1Ul8x45WC-I7nbWUm_0YO__jz-Q58PJjzN99nX0fZ-8yBAnR8bNAdlqr2_CIQQTrX0fNeY30RXKZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUoSFV7qEpbxLa0WKJXa5M4dpJTxUdTaNFqpV0kbpa_wh5osmXTcuU_9B_yS5jxeqEVEqdISWQl4_GbefbTDCGfjYQoIhPNID3mLPeVZybRBRPgIFoIIY0LaouRPD7Lv5-L86h_WkRZ5QoTA1C7zuIe-TADcs6lgIgybKIsYnxUf5n_YthBCk9aYzuNZ2QDoqJEny_rb_f7LQnnQMf4skIph8GGvgX8LrHb9n8xKZTuf4TMIdzUr8mrmCfS_eXEbpI1374hL_-pHviW-MkMcmc2BWyl41nXd4A0QPQtHWPnM4pNN61eoKyZBmEA1fSwa_9EX4PBsTBHuAQl-O3N34m-nNPJtYYB9y8v4I_72c935Kz-Oj08ZrFrArNcpj1DWaeRFa905YVLtc9l3hQ6zxKfAY3OXFEVSV5oroEqGWddYnC_simssE2Zer5F1tuu9duEpkZKgD9vS8dzz5sSCUYGnMI0Ok0rNyB7K7up-bI4hgJSgdZVD9YdkAM06f0bWNA63OiuLlRcH6rMTQJfIIwrSjwLLo12eOQruTWyEcWA7KwmRMVVtlAPPvH-6ce75Dk4izo9Gf34QF5kSJmD-GaHrPdXv_1HyCt68yk4zB0Bg86d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Photovoltaic+Power+Forecasting+Using+a+Convolutional+Neural+Network%E2%80%93Salp+Swarm+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Aprillia%2C+Happy&rft.au=Hong-Tzer+Yang&rft.au=Chao-Ming%2C+Huang&rft.date=2020-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=8&rft.spage=1879&rft_id=info:doi/10.3390%2Fen13081879&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon