Soliton surfaces associated with sigma models: differential and algebraic aspects

In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the sigma model with finite action, defined in the Riemann sphere, are themselves so...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. A, Mathematical and theoretical Vol. 45; no. 39; pp. 395208 - 19
Main Authors Goldstein, P P, Grundland, A M, Post, S
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 05.10.2012
IOP
Subjects
Online AccessGet full text
ISSN1751-8113
1751-8121
DOI10.1088/1751-8113/45/39/395208

Cover

Abstract In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler-Lagrange equations for sigma models. On the other hand, we show that the Euler-Lagrange equations for surfaces immersed in the Lie algebra with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler-Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model.
AbstractList In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler-Lagrange equations for sigma models. On the other hand, we show that the Euler-Lagrange equations for surfaces immersed in the Lie algebra with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler-Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model.
In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the CP super(N-1) sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler-Lagrange equations for sigma models. On the other hand, we show that the Euler-Lagrange equations for surfaces immersed in the Lie algebra su (N), with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler-Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model.
Author Grundland, A M
Post, S
Goldstein, P P
Author_xml – sequence: 1
  givenname: P P
  surname: Goldstein
  fullname: Goldstein, P P
  email: Piotr.Goldstein@fuw.edu.pl
  organization: National Centre for Nuclear Research, Theoretical Physics Division, Hoza 69, 00-681 Warsaw, Poland
– sequence: 2
  givenname: A M
  surname: Grundland
  fullname: Grundland, A M
  email: grundlan@crm.umontreal.ca
  organization: Centre de Recherches Mathématiques. Université de Montréal, Montréal, CP6128, QC H3C 3J7, Canada
– sequence: 3
  givenname: S
  surname: Post
  fullname: Post, S
  email: spost@hawaii.edu
  organization: University of Hawaii, Department of Mathematics, Manoa 2565, McCarthy Mall, Honolulu, HI 96822, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26419640$$DView record in Pascal Francis
BookMark eNqFkMFqGzEQQEVIoUmaXyh7KfTiWtJKa6n0UkLbBAwhJDmLsXbkKMiSq5EJ_fuusckhl4BgBPPeHN45O80lI2OfBf8muDFzsdBiZoTo50rPezs9Lbk5YWfHhRSnr3_Rf2TnRM-ca8WtPGN39yXFVnJHuxrAI3VAVHyEhmP3EttTR3G9gW5TRkz0vRtjCFgxtwipgzx2kNa4qhD9JG7RN_rEPgRIhJfHecEef_96uLqeLW__3Fz9XM58P4g2w1FwYTyX4FdhJUdruA4LCeBH8HwBqAJXyFH3Rgm0OGg9KmlXWgNfSOP7C_b1cHdby98dUnObSB5TgoxlR04MgzXayp5P6JcjCuQhhQrZR3LbGjdQ_zk5KGEHteeGA-drIaoYXhHB3b6122d0-4xOaddbd2g9iT_eiD42aLHkNqVJ7-vyoMeydc9lV_MU7j3pPxwplZY
CODEN JPHAC5
CitedBy_id crossref_primary_10_1088_1751_8121_aa7953
crossref_primary_10_1088_1751_8121_aac971
crossref_primary_10_1088_1751_8121_aaa8a0
crossref_primary_10_1088_2399_6528_abbcb2
Cites_doi 10.1088/0951-7715/25/1/1
10.1142/S0217751X96000547
10.1007/BF02859738
10.1016/B978-0-444-87002-5.50019-9
10.4310/jdg/1214443286
10.1017/CBO9780511543036
10.1017/CBO9781139174848
10.1016/0370-2693(83)91065-1
10.1103/PhysRev.177.2239
10.1016/0550-3213(80)90291-6
10.1088/0305-4470/36/48/003
10.1142/9789812816856
10.1088/0305-4470/29/6/012
10.1103/PhysRev.177.2247
10.1088/1751-8113/43/26/265206
10.1007/s11232-011-0076-0
10.1103/PhysRevLett.67.1681
10.1088/1742-6596/284/1/012031
10.1002/sapm19969619
10.1088/0305-4470/39/29/013
ContentType Journal Article
Copyright 2012 IOP Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2012 IOP Publishing Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7U5
8FD
H8D
L7M
DOI 10.1088/1751-8113/45/39/395208
DatabaseName CrossRef
Pascal-Francis
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Soliton surfaces associated with sigma models: differential and algebraic aspects
EISSN 1751-8121
EndPage 19
ExternalDocumentID 26419640
10_1088_1751_8113_45_39_395208
jpa438263
GroupedDBID 1JI
1WK
4.4
5B3
5GY
5VS
5ZH
6TJ
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
02O
5ZI
AAYXX
ADEQX
AERVB
AFFNX
BBWZM
CBCFC
CEBXE
CITATION
H~9
IQODW
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c361t-ed1018c02acbfb2d9805f72aacdac07ae4f04e0e53841e9e655d429b55a0728c3
IEDL.DBID IOP
ISSN 1751-8113
IngestDate Fri Sep 05 08:51:21 EDT 2025
Mon Jul 21 09:14:59 EDT 2025
Tue Jul 01 02:32:27 EDT 2025
Thu Apr 24 23:03:30 EDT 2025
Wed Aug 21 03:33:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 39
Keywords Operator
Unitary matrix
Euler Lagrange equation
Lie algebras
Polynomial identity
Solitons
SU(N) theory
Immersion
Spheres
Functionals
Dynamics
Sigma model
Surface properties
Eigenvalues
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-ed1018c02acbfb2d9805f72aacdac07ae4f04e0e53841e9e655d429b55a0728c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669859230
PQPubID 23500
PageCount 19
ParticipantIDs crossref_primary_10_1088_1751_8113_45_39_395208
pascalfrancis_primary_26419640
proquest_miscellaneous_1669859230
iop_journals_10_1088_1751_8113_45_39_395208
crossref_citationtrail_10_1088_1751_8113_45_39_395208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-05
PublicationDateYYYYMMDD 2012-10-05
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-05
  day: 05
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. A, Mathematical and theoretical
PublicationTitleAbbrev JPhysA
PublicationTitleAlternate J. Phys. A: Math. Theor
PublicationYear 2012
Publisher IOP Publishing
IOP
Publisher_xml – name: IOP Publishing
– name: IOP
References Goldstein P P (10) 2010; 43
Konopelchenko B (22) 1996; 29
27
28
Uhlenbeck K (32) 1989; 30
Manton N (24) 2004
Grundland A M (15) 2012; 45
Goldstein P P Grundland A M (9) 2009
Zakrzewski W J (35) 1989
Ward R (33) 1994
31
Zakharov V E (34) 1979; 40
11
Konopelchenko B (20) 1996; 96
Grundland A M (14) 2011; 44
Polyakov A M (29) 1987
18
19
Grundland A M (16) 2005; 39
Grundland A M (17) 2009; 42
David F (5) 1996
Post S (30) 2012; 25
Mikhailov A V (25) 1986
2
3
4
Goldstein P P (12) 2011; 284
Gross D G (13) 1992
7
Konopelchenko B (21) 1999; 96
8
Davydov A (6) 1999
Bobenko A (1) 1994
Nelson D (26) 1992
Landolfi G (23) 2003; 36
References_xml – volume: 25
  start-page: 1
  issn: 0951-7715
  year: 2012
  ident: 30
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/25/1/1
– ident: 3
  doi: 10.1142/S0217751X96000547
– year: 1987
  ident: 29
  publication-title: Gauge Fields and Strings
– year: 2004
  ident: 24
  publication-title: Topological Solitons Cambridge Monographs on Mathematical Physics
– ident: 8
  doi: 10.1007/BF02859738
– start-page: 623
  year: 1986
  ident: 25
  publication-title: Solitons
  doi: 10.1016/B978-0-444-87002-5.50019-9
– volume: 30
  start-page: 1
  issn: 0022-040X
  year: 1989
  ident: 32
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214443286
– year: 1996
  ident: 5
  publication-title: Fluctuation Geometries in Statistical Mechanics and Field Theory
– ident: 19
  doi: 10.1017/CBO9780511543036
– volume: 40
  start-page: 1017
  year: 1979
  ident: 34
  publication-title: Sov. Phys.—JETP
– year: 1989
  ident: 35
  publication-title: Low Dimensional Sigma Models
– ident: 18
  doi: 10.1017/CBO9781139174848
– ident: 31
  doi: 10.1016/0370-2693(83)91065-1
– ident: 4
  doi: 10.1103/PhysRev.177.2239
– ident: 7
  doi: 10.1016/0550-3213(80)90291-6
– volume: 96
  start-page: 129
  year: 1999
  ident: 21
  publication-title: Stud. Appl. Math.
– volume: 42
  issn: 1751-8113
  year: 2009
  ident: 17
  publication-title: J. Phys. A: Math. Theor.
– volume: 36
  start-page: 4699
  year: 2003
  ident: 23
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/36/48/003
– ident: 27
  doi: 10.1142/9789812816856
– volume: 45
  issn: 1751-8113
  year: 2012
  ident: 15
  publication-title: J. Phys. A: Math. Theor.
– year: 2009
  ident: 9
– volume: 29
  start-page: 1261
  issn: 0305-4470
  year: 1996
  ident: 22
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/29/6/012
– year: 1994
  ident: 33
  publication-title: Harmonic Maps and Integrable Systems
– year: 1999
  ident: 6
  publication-title: Solitons in Molecular Systems
– year: 1994
  ident: 1
  publication-title: Harmonic Maps and Integrable Systems
– ident: 2
  doi: 10.1103/PhysRev.177.2247
– year: 1992
  ident: 13
  publication-title: Two Dimensional Quantum Gravity and Random Surfaces
– volume: 43
  issn: 1751-8113
  year: 2010
  ident: 10
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/43/26/265206
– ident: 11
  doi: 10.1007/s11232-011-0076-0
– year: 1992
  ident: 26
  publication-title: Statistical Mechanics of Membranes and Surfaces
– ident: 28
  doi: 10.1103/PhysRevLett.67.1681
– volume: 44
  issn: 1751-8113
  year: 2011
  ident: 14
  publication-title: J. Phys. A: Math. Theor.
– volume: 284
  issn: 1742-6596
  year: 2011
  ident: 12
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/284/1/012031
– volume: 96
  start-page: 9
  issn: 0022-2526
  year: 1996
  ident: 20
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm19969619
– volume: 39
  start-page: 9187
  year: 2005
  ident: 16
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/29/013
SSID ssj0054092
Score 2.1032126
Snippet In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the...
SourceID proquest
pascalfrancis
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 395208
SubjectTerms Algebra
Eigenvalues
Euler-Lagrange equation
Exact sciences and technology
Immersion
integrable systems
Lie algebras
Lie groups
Mathematical analysis
Mathematical models
Physics
Polynomials
sigma models
Soliton surface
Transformations (mathematics)
Title Soliton surfaces associated with sigma models: differential and algebraic aspects
URI https://iopscience.iop.org/article/10.1088/1751-8113/45/39/395208
https://www.proquest.com/docview/1669859230
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-ELz4FtcXEbxJd9sm6abeRBQVfKGCt5AmUxG1K3b34q93po8FFREReuihkzaTycyk8_gY2_UuTQBSF0gV-0CijQs0hRCdlNK6XAgBFNE9v0hO7uTZvWqzCatamMFro_q7eFs3Cq5Z2CTE6R4avCjQUSR6UvVEipeKqdx3muArSchPL69aZYz-SIWLPKZpi4R_HOeTfZrEb6BsSVsiw_Ia6eKb0q4s0fE8y9o51AkoT93RMOu69y_tHf81yQU21_ip_KAmWGQTUCyxmSpf1JXL7PqG8uYGBS9HbzlldXHbrDN4Tv92efn48GJ5BbRT7vMWhwX1yTO3hecEL4IH9UeHhFTsWa6wu-Oj28OToEFnCJxIomEAnpp9uTC2Lsuz2Kc6VHk_ttZ568K-BZmHEkJAjSojSCFRyqPxy5SyYT_WTqyyqWJQwBrjWuVKAR7lROIlOEBaLTzkWiQyRf-nw1S7JsY1rcsJQePZVCF0rQ2xyxC7jFRGpKZmV4f1xnSvdfOOXyn2cEVMs4_LX5_e_iQa45egl0mNzsIO22llxeC2pViMLWAwwoGTJNUKvetw_U-v3GCz6LLFVTqh2mRTw7cRbKFbNMy2K8H_ACEe_NM
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6EIgLlEfF8miNxA1l48SerNNbBV21PEoRVOrNcuwxqijZVbN74dczzmOlgqqqqpRDDhk7GdsznzOfZxh7611ZIJYuUZD7RJGPS3QMITqllHVBSokxovvluDg8VR_P4GyNHazOwszmvekf022XKLhTYU-I0yk5vCzRWSZTBaks6YJc6HTuwzrbBDLIkdl19PVkMMiESdrayCu54aDwtW1d8VHr9B6RMWkbUlroql38Z7hbbzR91LFGmjaJYSSh_BovF9XY_fknxeOdP3SLPezxKt_vhB6zNayfsHstb9Q1T9m375E_N6t5s7wMkd3FbT_e6Hn8x8ub85-_LW8L7jR7fKjHQnblgtva81hmhDbs544E46HP5hk7nR78eH-Y9FUaEieLbJGgj0m_nMitq0KV-1ILCJPcWuetExOLKgiFAsmyqgxLLAA8OcEKwIpJrp3cZhv1rMbnjGsIAEhbOll4hQ5JVkuPQctClYSDRgyGcTGuT2EeK2lcmDaUrrWJKjNRZUaBkaXpVDZi6Upu3iXxuFHiHY2K6ddzc-PTO1emx6oTQpsx4ZkYsTfDfDG0fGNMxtY4W1LDRVFqIJQtXtyqy112_-TD1Hw-Ov70kj0gFJe3DEN4xTYWl0t8TUhpUe206-AvfrQCRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soliton+surfaces+associated+with+sigma+models%3A+differential+and+algebraic+aspects&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Goldstein%2C+P+P&rft.au=Grundland%2C+A+M&rft.au=Post%2C+S&rft.date=2012-10-05&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=45&rft.issue=39&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1088%2F1751-8113%2F45%2F39%2F395208&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon