Soliton surfaces associated with sigma models: differential and algebraic aspects
In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the sigma model with finite action, defined in the Riemann sphere, are themselves so...
Saved in:
Published in | Journal of physics. A, Mathematical and theoretical Vol. 45; no. 39; pp. 395208 - 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
05.10.2012
IOP |
Subjects | |
Online Access | Get full text |
ISSN | 1751-8113 1751-8121 |
DOI | 10.1088/1751-8113/45/39/395208 |
Cover
Abstract | In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler-Lagrange equations for sigma models. On the other hand, we show that the Euler-Lagrange equations for surfaces immersed in the Lie algebra with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler-Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model. |
---|---|
AbstractList | In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler-Lagrange equations for sigma models. On the other hand, we show that the Euler-Lagrange equations for surfaces immersed in the Lie algebra with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler-Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model. In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the CP super(N-1) sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler-Lagrange equations for sigma models. On the other hand, we show that the Euler-Lagrange equations for surfaces immersed in the Lie algebra su (N), with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler-Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model. |
Author | Grundland, A M Post, S Goldstein, P P |
Author_xml | – sequence: 1 givenname: P P surname: Goldstein fullname: Goldstein, P P email: Piotr.Goldstein@fuw.edu.pl organization: National Centre for Nuclear Research, Theoretical Physics Division, Hoza 69, 00-681 Warsaw, Poland – sequence: 2 givenname: A M surname: Grundland fullname: Grundland, A M email: grundlan@crm.umontreal.ca organization: Centre de Recherches Mathématiques. Université de Montréal, Montréal, CP6128, QC H3C 3J7, Canada – sequence: 3 givenname: S surname: Post fullname: Post, S email: spost@hawaii.edu organization: University of Hawaii, Department of Mathematics, Manoa 2565, McCarthy Mall, Honolulu, HI 96822, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26419640$$DView record in Pascal Francis |
BookMark | eNqFkMFqGzEQQEVIoUmaXyh7KfTiWtJKa6n0UkLbBAwhJDmLsXbkKMiSq5EJ_fuusckhl4BgBPPeHN45O80lI2OfBf8muDFzsdBiZoTo50rPezs9Lbk5YWfHhRSnr3_Rf2TnRM-ca8WtPGN39yXFVnJHuxrAI3VAVHyEhmP3EttTR3G9gW5TRkz0vRtjCFgxtwipgzx2kNa4qhD9JG7RN_rEPgRIhJfHecEef_96uLqeLW__3Fz9XM58P4g2w1FwYTyX4FdhJUdruA4LCeBH8HwBqAJXyFH3Rgm0OGg9KmlXWgNfSOP7C_b1cHdby98dUnObSB5TgoxlR04MgzXayp5P6JcjCuQhhQrZR3LbGjdQ_zk5KGEHteeGA-drIaoYXhHB3b6122d0-4xOaddbd2g9iT_eiD42aLHkNqVJ7-vyoMeydc9lV_MU7j3pPxwplZY |
CODEN | JPHAC5 |
CitedBy_id | crossref_primary_10_1088_1751_8121_aa7953 crossref_primary_10_1088_1751_8121_aac971 crossref_primary_10_1088_1751_8121_aaa8a0 crossref_primary_10_1088_2399_6528_abbcb2 |
Cites_doi | 10.1088/0951-7715/25/1/1 10.1142/S0217751X96000547 10.1007/BF02859738 10.1016/B978-0-444-87002-5.50019-9 10.4310/jdg/1214443286 10.1017/CBO9780511543036 10.1017/CBO9781139174848 10.1016/0370-2693(83)91065-1 10.1103/PhysRev.177.2239 10.1016/0550-3213(80)90291-6 10.1088/0305-4470/36/48/003 10.1142/9789812816856 10.1088/0305-4470/29/6/012 10.1103/PhysRev.177.2247 10.1088/1751-8113/43/26/265206 10.1007/s11232-011-0076-0 10.1103/PhysRevLett.67.1681 10.1088/1742-6596/284/1/012031 10.1002/sapm19969619 10.1088/0305-4470/39/29/013 |
ContentType | Journal Article |
Copyright | 2012 IOP Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 IOP Publishing Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7U5 8FD H8D L7M |
DOI | 10.1088/1751-8113/45/39/395208 |
DatabaseName | CrossRef Pascal-Francis Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Soliton surfaces associated with sigma models: differential and algebraic aspects |
EISSN | 1751-8121 |
EndPage | 19 |
ExternalDocumentID | 26419640 10_1088_1751_8113_45_39_395208 jpa438263 |
GroupedDBID | 1JI 1WK 4.4 5B3 5GY 5VS 5ZH 6TJ 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L NT- NT. PJBAE Q02 RIN RNS RO9 ROL RPA SY9 TN5 W28 02O 5ZI AAYXX ADEQX AERVB AFFNX BBWZM CBCFC CEBXE CITATION H~9 IQODW 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c361t-ed1018c02acbfb2d9805f72aacdac07ae4f04e0e53841e9e655d429b55a0728c3 |
IEDL.DBID | IOP |
ISSN | 1751-8113 |
IngestDate | Fri Sep 05 08:51:21 EDT 2025 Mon Jul 21 09:14:59 EDT 2025 Tue Jul 01 02:32:27 EDT 2025 Thu Apr 24 23:03:30 EDT 2025 Wed Aug 21 03:33:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Keywords | Operator Unitary matrix Euler Lagrange equation Lie algebras Polynomial identity Solitons SU(N) theory Immersion Spheres Functionals Dynamics Sigma model Surface properties Eigenvalues |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-ed1018c02acbfb2d9805f72aacdac07ae4f04e0e53841e9e655d429b55a0728c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669859230 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1088_1751_8113_45_39_395208 pascalfrancis_primary_26419640 proquest_miscellaneous_1669859230 iop_journals_10_1088_1751_8113_45_39_395208 crossref_citationtrail_10_1088_1751_8113_45_39_395208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-05 |
PublicationDateYYYYMMDD | 2012-10-05 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. A, Mathematical and theoretical |
PublicationTitleAbbrev | JPhysA |
PublicationTitleAlternate | J. Phys. A: Math. Theor |
PublicationYear | 2012 |
Publisher | IOP Publishing IOP |
Publisher_xml | – name: IOP Publishing – name: IOP |
References | Goldstein P P (10) 2010; 43 Konopelchenko B (22) 1996; 29 27 28 Uhlenbeck K (32) 1989; 30 Manton N (24) 2004 Grundland A M (15) 2012; 45 Goldstein P P Grundland A M (9) 2009 Zakrzewski W J (35) 1989 Ward R (33) 1994 31 Zakharov V E (34) 1979; 40 11 Konopelchenko B (20) 1996; 96 Grundland A M (14) 2011; 44 Polyakov A M (29) 1987 18 19 Grundland A M (16) 2005; 39 Grundland A M (17) 2009; 42 David F (5) 1996 Post S (30) 2012; 25 Mikhailov A V (25) 1986 2 3 4 Goldstein P P (12) 2011; 284 Gross D G (13) 1992 7 Konopelchenko B (21) 1999; 96 8 Davydov A (6) 1999 Bobenko A (1) 1994 Nelson D (26) 1992 Landolfi G (23) 2003; 36 |
References_xml | – volume: 25 start-page: 1 issn: 0951-7715 year: 2012 ident: 30 publication-title: Nonlinearity doi: 10.1088/0951-7715/25/1/1 – ident: 3 doi: 10.1142/S0217751X96000547 – year: 1987 ident: 29 publication-title: Gauge Fields and Strings – year: 2004 ident: 24 publication-title: Topological Solitons Cambridge Monographs on Mathematical Physics – ident: 8 doi: 10.1007/BF02859738 – start-page: 623 year: 1986 ident: 25 publication-title: Solitons doi: 10.1016/B978-0-444-87002-5.50019-9 – volume: 30 start-page: 1 issn: 0022-040X year: 1989 ident: 32 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1214443286 – year: 1996 ident: 5 publication-title: Fluctuation Geometries in Statistical Mechanics and Field Theory – ident: 19 doi: 10.1017/CBO9780511543036 – volume: 40 start-page: 1017 year: 1979 ident: 34 publication-title: Sov. Phys.—JETP – year: 1989 ident: 35 publication-title: Low Dimensional Sigma Models – ident: 18 doi: 10.1017/CBO9781139174848 – ident: 31 doi: 10.1016/0370-2693(83)91065-1 – ident: 4 doi: 10.1103/PhysRev.177.2239 – ident: 7 doi: 10.1016/0550-3213(80)90291-6 – volume: 96 start-page: 129 year: 1999 ident: 21 publication-title: Stud. Appl. Math. – volume: 42 issn: 1751-8113 year: 2009 ident: 17 publication-title: J. Phys. A: Math. Theor. – volume: 36 start-page: 4699 year: 2003 ident: 23 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/36/48/003 – ident: 27 doi: 10.1142/9789812816856 – volume: 45 issn: 1751-8113 year: 2012 ident: 15 publication-title: J. Phys. A: Math. Theor. – year: 2009 ident: 9 – volume: 29 start-page: 1261 issn: 0305-4470 year: 1996 ident: 22 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/29/6/012 – year: 1994 ident: 33 publication-title: Harmonic Maps and Integrable Systems – year: 1999 ident: 6 publication-title: Solitons in Molecular Systems – year: 1994 ident: 1 publication-title: Harmonic Maps and Integrable Systems – ident: 2 doi: 10.1103/PhysRev.177.2247 – year: 1992 ident: 13 publication-title: Two Dimensional Quantum Gravity and Random Surfaces – volume: 43 issn: 1751-8113 year: 2010 ident: 10 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/43/26/265206 – ident: 11 doi: 10.1007/s11232-011-0076-0 – year: 1992 ident: 26 publication-title: Statistical Mechanics of Membranes and Surfaces – ident: 28 doi: 10.1103/PhysRevLett.67.1681 – volume: 44 issn: 1751-8113 year: 2011 ident: 14 publication-title: J. Phys. A: Math. Theor. – volume: 284 issn: 1742-6596 year: 2011 ident: 12 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/284/1/012031 – volume: 96 start-page: 9 issn: 0022-2526 year: 1996 ident: 20 publication-title: Stud. Appl. Math. doi: 10.1002/sapm19969619 – volume: 39 start-page: 9187 year: 2005 ident: 16 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/39/29/013 |
SSID | ssj0054092 |
Score | 2.1032126 |
Snippet | In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the... |
SourceID | proquest pascalfrancis crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 395208 |
SubjectTerms | Algebra Eigenvalues Euler-Lagrange equation Exact sciences and technology Immersion integrable systems Lie algebras Lie groups Mathematical analysis Mathematical models Physics Polynomials sigma models Soliton surface Transformations (mathematics) |
Title | Soliton surfaces associated with sigma models: differential and algebraic aspects |
URI | https://iopscience.iop.org/article/10.1088/1751-8113/45/39/395208 https://www.proquest.com/docview/1669859230 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-ELz4FtcXEbxJd9sm6abeRBQVfKGCt5AmUxG1K3b34q93po8FFREReuihkzaTycyk8_gY2_UuTQBSF0gV-0CijQs0hRCdlNK6XAgBFNE9v0hO7uTZvWqzCatamMFro_q7eFs3Cq5Z2CTE6R4avCjQUSR6UvVEipeKqdx3muArSchPL69aZYz-SIWLPKZpi4R_HOeTfZrEb6BsSVsiw_Ia6eKb0q4s0fE8y9o51AkoT93RMOu69y_tHf81yQU21_ip_KAmWGQTUCyxmSpf1JXL7PqG8uYGBS9HbzlldXHbrDN4Tv92efn48GJ5BbRT7vMWhwX1yTO3hecEL4IH9UeHhFTsWa6wu-Oj28OToEFnCJxIomEAnpp9uTC2Lsuz2Kc6VHk_ttZ568K-BZmHEkJAjSojSCFRyqPxy5SyYT_WTqyyqWJQwBrjWuVKAR7lROIlOEBaLTzkWiQyRf-nw1S7JsY1rcsJQePZVCF0rQ2xyxC7jFRGpKZmV4f1xnSvdfOOXyn2cEVMs4_LX5_e_iQa45egl0mNzsIO22llxeC2pViMLWAwwoGTJNUKvetw_U-v3GCz6LLFVTqh2mRTw7cRbKFbNMy2K8H_ACEe_NM |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6EIgLlEfF8miNxA1l48SerNNbBV21PEoRVOrNcuwxqijZVbN74dczzmOlgqqqqpRDDhk7GdsznzOfZxh7611ZIJYuUZD7RJGPS3QMITqllHVBSokxovvluDg8VR_P4GyNHazOwszmvekf022XKLhTYU-I0yk5vCzRWSZTBaks6YJc6HTuwzrbBDLIkdl19PVkMMiESdrayCu54aDwtW1d8VHr9B6RMWkbUlroql38Z7hbbzR91LFGmjaJYSSh_BovF9XY_fknxeOdP3SLPezxKt_vhB6zNayfsHstb9Q1T9m375E_N6t5s7wMkd3FbT_e6Hn8x8ub85-_LW8L7jR7fKjHQnblgtva81hmhDbs544E46HP5hk7nR78eH-Y9FUaEieLbJGgj0m_nMitq0KV-1ILCJPcWuetExOLKgiFAsmyqgxLLAA8OcEKwIpJrp3cZhv1rMbnjGsIAEhbOll4hQ5JVkuPQctClYSDRgyGcTGuT2EeK2lcmDaUrrWJKjNRZUaBkaXpVDZi6Upu3iXxuFHiHY2K6ddzc-PTO1emx6oTQpsx4ZkYsTfDfDG0fGNMxtY4W1LDRVFqIJQtXtyqy112_-TD1Hw-Ov70kj0gFJe3DEN4xTYWl0t8TUhpUe206-AvfrQCRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soliton+surfaces+associated+with+sigma+models%3A+differential+and+algebraic+aspects&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Goldstein%2C+P+P&rft.au=Grundland%2C+A+M&rft.au=Post%2C+S&rft.date=2012-10-05&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=45&rft.issue=39&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1088%2F1751-8113%2F45%2F39%2F395208&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |