Comparing Performances of Five Distinct Automatic Classifiers for Fin Whale Vocalizations in Beamformed Spectrograms of Coherent Hydrophone Array
A large variety of sound sources in the ocean, including biological, geophysical, and man-made, can be simultaneously monitored over instantaneous continental-shelf scale regions via the passive ocean acoustic waveguide remote sensing (POAWRS) technique by employing a large-aperture densely-populate...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 2; p. 326 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A large variety of sound sources in the ocean, including biological, geophysical, and man-made, can be simultaneously monitored over instantaneous continental-shelf scale regions via the passive ocean acoustic waveguide remote sensing (POAWRS) technique by employing a large-aperture densely-populated coherent hydrophone array system. Millions of acoustic signals received on the POAWRS system per day can make it challenging to identify individual sound sources. An automated classification system is necessary to enable sound sources to be recognized. Here, the objectives are to (i) gather a large training and test data set of fin whale vocalization and other acoustic signal detections; (ii) build multiple fin whale vocalization classifiers, including a logistic regression, support vector machine (SVM), decision tree, convolutional neural network (CNN), and long short-term memory (LSTM) network; (iii) evaluate and compare performance of these classifiers using multiple metrics including accuracy, precision, recall and F1-score; and (iv) integrate one of the classifiers into the existing POAWRS array and signal processing software. The findings presented here will (1) provide an automatic classifier for near real-time fin whale vocalization detection and recognition, useful in marine mammal monitoring applications; and (2) lay the foundation for building an automatic classifier applied for near real-time detection and recognition of a wide variety of biological, geophysical, and man-made sound sources typically detected by the POAWRS system in the ocean. |
---|---|
AbstractList | A large variety of sound sources in the ocean, including biological, geophysical, and man-made, can be simultaneously monitored over instantaneous continental-shelf scale regions via the passive ocean acoustic waveguide remote sensing (POAWRS) technique by employing a large-aperture densely-populated coherent hydrophone array system. Millions of acoustic signals received on the POAWRS system per day can make it challenging to identify individual sound sources. An automated classification system is necessary to enable sound sources to be recognized. Here, the objectives are to (i) gather a large training and test data set of fin whale vocalization and other acoustic signal detections; (ii) build multiple fin whale vocalization classifiers, including a logistic regression, support vector machine (SVM), decision tree, convolutional neural network (CNN), and long short-term memory (LSTM) network; (iii) evaluate and compare performance of these classifiers using multiple metrics including accuracy, precision, recall and F1-score; and (iv) integrate one of the classifiers into the existing POAWRS array and signal processing software. The findings presented here will (1) provide an automatic classifier for near real-time fin whale vocalization detection and recognition, useful in marine mammal monitoring applications; and (2) lay the foundation for building an automatic classifier applied for near real-time detection and recognition of a wide variety of biological, geophysical, and man-made sound sources typically detected by the POAWRS system in the ocean. |
Author | Galor, Amit Garcia, Heriberto A. Couture, Trenton Huang, Wei Topple, Jessica M. Tiwari, Devesh Ratilal, Purnima |
Author_xml | – sequence: 1 givenname: Heriberto A. surname: Garcia fullname: Garcia, Heriberto A. – sequence: 2 givenname: Trenton surname: Couture fullname: Couture, Trenton – sequence: 3 givenname: Amit orcidid: 0000-0001-6511-4592 surname: Galor fullname: Galor, Amit – sequence: 4 givenname: Jessica M. orcidid: 0000-0002-8980-3082 surname: Topple fullname: Topple, Jessica M. – sequence: 5 givenname: Wei surname: Huang fullname: Huang, Wei – sequence: 6 givenname: Devesh surname: Tiwari fullname: Tiwari, Devesh – sequence: 7 givenname: Purnima surname: Ratilal fullname: Ratilal, Purnima |
BookMark | eNpNkc9u1DAQxiNUJErphSewxA1pwX-T-LgESitVaqUWOEa2M971KrHDOIu0vEXfGLdbAXOZ0eib38yneV2dxBShqt4y-kEITT9iZpxyKnj9ojrltOEryTU_-a9-VZ3nvKMlhGCaytPqoUvTbDDEDbkF9AknEx1kkjy5CL-AfA55CdEtZL1f0mSW4Eg3mpyDD4CZlIGii-TH1oxAvidnxvC7qFLMpLQ_gZkemTCQuxncgmmDZnqid2kLCHEhl4cB07wtVsga0RzeVC-9GTOcP-ez6tvFl_vucnV98_WqW1-vnKjZsgIFrYWBOm05BeFr1kjZOCsdo3owntYgpWqsVRasYa1qqaRaUjr4VsvWiLPq6sgdktn1M4bJ4KFPJvRPjYSb3mDxO0IvmK9VXVtoXC25Z9q20hlFnRKDLbTCendkzZh-7iEv_S7tMZbze64U5VoIoYrq_VHlMOWM4P9uZbR__GD_74PiDzdLkSY |
CitedBy_id | crossref_primary_10_1098_rsif_2021_0297 crossref_primary_10_3390_rs12223731 crossref_primary_10_2139_ssrn_4119910 crossref_primary_10_1121_10_0001810 crossref_primary_10_7717_peerj_13152 crossref_primary_10_3390_rs15225346 crossref_primary_10_1109_ACCESS_2020_3000477 |
Cites_doi | 10.1093/icesjms/fsx197 10.1016/j.apacoust.2010.05.016 10.1126/science.1169441 10.1371/journal.pone.0104733 10.3390/rs11212464 10.1385/1-59259-364-X:159 10.3354/meps08266 10.1126/science.1121756 10.1002/2014GC005454 10.1111/faf.12331 10.21437/Interspeech.2017-434 10.1121/1.4874601 10.1121/1.395685 10.3390/rs8090712 10.1038/nature14539 10.1121/1.412440 10.1121/1.3132525 10.1109/TIM.2004.834070 10.1121/1.1909155 10.1121/1.381109 10.3390/rs9080772 10.1016/0734-189X(90)90161-N 10.1121/1.3562166 10.1038/nature16960 10.1111/j.1748-7692.2011.00491.x 10.1121/1.3514383 10.23919/OCEANS40490.2019.8962739 10.1121/1.3495946 10.1016/j.dsp.2009.10.024 10.3390/rs8110881 10.6339/JDS.201104_09(2).0007 10.1093/icesjms/fsy127 10.1162/neco.1989.1.4.541 10.1109/OCEANS.2003.178321 10.1121/1.5036628 10.3390/rs10111699 10.1109/ICMLA.2019.00150 10.1109/TPAMI.2002.1017616 10.1109/OCEANS.2007.4449356 10.1121/1.4861348 10.3390/app9051020 10.1121/1.1799252 10.3390/rs9101036 10.3390/s150614241 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs12020326 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_31f6566be7c642f19b84ca50c53db894 10_3390_rs12020326 |
GeographicLocations | Norwegian Sea Gulf of Maine |
GeographicLocations_xml | – name: Gulf of Maine – name: Norwegian Sea |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c361t-e5e8bed0c9b20e3f617447cb4c109daf06e4457bb5beba18580409400df8948a3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:14:08 EDT 2024 Sat Nov 09 05:41:44 EST 2024 Thu Sep 26 21:30:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-e5e8bed0c9b20e3f617447cb4c109daf06e4457bb5beba18580409400df8948a3 |
ORCID | 0000-0001-6511-4592 0000-0002-8980-3082 |
OpenAccessLink | https://doaj.org/article/31f6566be7c642f19b84ca50c53db894 |
PQID | 2550293335 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31f6566be7c642f19b84ca50c53db894 proquest_journals_2550293335 crossref_primary_10_3390_rs12020326 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Malhi (ref_57) 2004; 53 Clark (ref_16) 2004; 52 Makris (ref_35) 2006; 311 Hirose (ref_51) 2011; 9 ref_14 ref_13 Wenz (ref_3) 1962; 34 ref_12 ref_56 ref_11 ref_55 ref_53 ref_52 Baumgartner (ref_29) 2011; 129 Villacorta (ref_54) 2015; 15 ref_19 Matsumoto (ref_7) 2014; 15 LeCun (ref_20) 2015; 521 Roch (ref_30) 2011; 129 LeCun (ref_21) 1989; 1 Makris (ref_36) 2009; 323 Makris (ref_40) 1995; 97 Tran (ref_10) 2014; 135 Shamir (ref_25) 2014; 135 Pace (ref_26) 2010; 71 Bahoura (ref_28) 2010; 20 Sezan (ref_45) 1990; 49 ref_24 Shapiro (ref_47) 2009; 126 ref_23 ref_22 ref_27 Cato (ref_4) 1976; 60 Kanungo (ref_49) 2002; 24 Simon (ref_17) 2010; 128 Ester (ref_58) 1996; 240 Wang (ref_2) 2016; 531 ref_34 Garcia (ref_1) 2018; 76 ref_31 Castellote (ref_18) 2012; 28 Pine (ref_5) 2017; 75 Jagannathan (ref_37) 2009; 395 ref_39 ref_38 Malfante (ref_32) 2018; 143 Makris (ref_33) 2019; 20 Ratilal (ref_41) 2005; 117 ref_46 ref_44 ref_43 ref_42 Watkins (ref_15) 1987; 82 ref_48 ref_9 ref_8 ref_6 |
References_xml | – volume: 75 start-page: 510 year: 2017 ident: ref_5 article-title: Investigating the spatiotemporal variation of fish choruses to help identify important foraging habitat for Indo-Pacific humpback dolphins, Sousa chinensis publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsx197 contributor: fullname: Pine – volume: 71 start-page: 1107 year: 2010 ident: ref_26 article-title: Subunit definition and analysis for humpback whale call classification publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2010.05.016 contributor: fullname: Pace – volume: 323 start-page: 1734 year: 2009 ident: ref_36 article-title: Critical population density triggers rapid formation of vast oceanic fish shoals publication-title: Science doi: 10.1126/science.1169441 contributor: fullname: Makris – ident: ref_39 – ident: ref_11 doi: 10.1371/journal.pone.0104733 – ident: ref_34 doi: 10.3390/rs11212464 – ident: ref_56 doi: 10.1385/1-59259-364-X:159 – ident: ref_42 – ident: ref_23 – volume: 395 start-page: 137 year: 2009 ident: ref_37 article-title: Ocean acoustic waveguide remote sensing (OAWRS) of marine ecosystems publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps08266 contributor: fullname: Jagannathan – volume: 311 start-page: 660 year: 2006 ident: ref_35 article-title: Fish population and behavior revealed by instantaneous continental shelf-scale imaging publication-title: Science doi: 10.1126/science.1121756 contributor: fullname: Makris – volume: 15 start-page: 3448 year: 2014 ident: ref_7 article-title: Antarctic icebergs: A significant natural ocean sound source in the S outhern H emisphere publication-title: Geochem. Geophys. Geosystems doi: 10.1002/2014GC005454 contributor: fullname: Matsumoto – volume: 20 start-page: 201 year: 2019 ident: ref_33 article-title: Instantaneous areal population density of entire Atlantic cod and herring spawning groups and group size distribution relative to total spawning population publication-title: Fish Fish. doi: 10.1111/faf.12331 contributor: fullname: Makris – ident: ref_52 – ident: ref_55 doi: 10.21437/Interspeech.2017-434 – volume: 135 start-page: 3352 year: 2014 ident: ref_10 article-title: Using a coherent hydrophone array for observing sperm whale range, classification, and shallow-water dive profiles publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4874601 contributor: fullname: Tran – ident: ref_48 – volume: 82 start-page: 1901 year: 1987 ident: ref_15 article-title: The 20-Hz signals of finback whales (B alaenopteraphysalus) publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.395685 contributor: fullname: Watkins – ident: ref_9 doi: 10.3390/rs8090712 – volume: 521 start-page: 436 year: 2015 ident: ref_20 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – volume: 97 start-page: 3547 year: 1995 ident: ref_40 article-title: Deterministic reverberation from ocean ridges publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.412440 contributor: fullname: Makris – volume: 126 start-page: 451 year: 2009 ident: ref_47 article-title: A versatile pitch tracking algorithm: From human speech to killer whale vocalizations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3132525 contributor: fullname: Shapiro – volume: 53 start-page: 1517 year: 2004 ident: ref_57 article-title: PCA-based feature selection scheme for machine defect classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2004.834070 contributor: fullname: Malhi – volume: 34 start-page: 1936 year: 1962 ident: ref_3 article-title: Acoustic ambient noise in the ocean: Spectra and sources publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1909155 contributor: fullname: Wenz – volume: 60 start-page: 320 year: 1976 ident: ref_4 article-title: Ambient sea noise in waters near Australia publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.381109 contributor: fullname: Cato – ident: ref_12 doi: 10.3390/rs9080772 – volume: 240 start-page: 6 year: 1996 ident: ref_58 article-title: Density-based spatial clustering of applications with noise publication-title: Int. Conf. Knowl. Discov. Data Min. contributor: fullname: Ester – volume: 49 start-page: 36 year: 1990 ident: ref_45 article-title: A peak detection algorithm and its application to histogram-based image data reduction publication-title: Comput. Vision Graph. Image Process. doi: 10.1016/0734-189X(90)90161-N contributor: fullname: Sezan – volume: 129 start-page: 2889 year: 2011 ident: ref_29 article-title: A generalized baleen whale call detection and classification system publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3562166 contributor: fullname: Baumgartner – volume: 531 start-page: 366 year: 2016 ident: ref_2 article-title: Vast assembly of vocal marine mammals from diverse species on fish spawning ground publication-title: Nature doi: 10.1038/nature16960 contributor: fullname: Wang – volume: 28 start-page: 325 year: 2012 ident: ref_18 article-title: Fin whale (Balaenoptera physalus) population identity in the western Mediterranean Sea publication-title: Mar. Mammal Sci. doi: 10.1111/j.1748-7692.2011.00491.x contributor: fullname: Castellote – volume: 129 start-page: 467 year: 2011 ident: ref_30 article-title: Classification of echolocation clicks from odontocetes in the Southern California Bight publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3514383 contributor: fullname: Roch – ident: ref_53 – ident: ref_14 doi: 10.23919/OCEANS40490.2019.8962739 – volume: 128 start-page: 3200 year: 2010 ident: ref_17 article-title: Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3495946 contributor: fullname: Simon – volume: 20 start-page: 1256 year: 2010 ident: ref_28 article-title: Blue whale calls classification using short-time Fourier and wavelet packet transforms and artificial neural network publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2009.10.024 contributor: fullname: Bahoura – ident: ref_8 doi: 10.3390/rs8110881 – volume: 9 start-page: 243 year: 2011 ident: ref_51 article-title: Bayesian information criterion and selection of the number of factors in factor analysis models publication-title: J. Data Sci. doi: 10.6339/JDS.201104_09(2).0007 contributor: fullname: Hirose – volume: 76 start-page: 268 year: 2018 ident: ref_1 article-title: Temporal–spatial, spectral, and source level distributions of fin whale vocalizations in the Norwegian Sea observed with a coherent hydrophone array publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsy127 contributor: fullname: Garcia – volume: 1 start-page: 541 year: 1989 ident: ref_21 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 contributor: fullname: LeCun – ident: ref_38 doi: 10.1109/OCEANS.2003.178321 – ident: ref_6 – volume: 143 start-page: 2834 year: 2018 ident: ref_32 article-title: Automatic fish sounds classification publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5036628 contributor: fullname: Malfante – ident: ref_50 – ident: ref_13 doi: 10.3390/rs10111699 – ident: ref_46 – ident: ref_24 doi: 10.1109/ICMLA.2019.00150 – volume: 24 start-page: 881 year: 2002 ident: ref_49 article-title: An efficient k-means clustering algorithm: Analysis and implementation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017616 contributor: fullname: Kanungo – volume: 52 start-page: 48 year: 2004 ident: ref_16 article-title: Low-frequency vocal behaviors of baleen whales in the North Atlantic: Insights from Integrated Undersea Surveillance System detections, locations, and tracking from 1992 to 1996 publication-title: J. Underw. Acoust. (USN) contributor: fullname: Clark – ident: ref_27 doi: 10.1109/OCEANS.2007.4449356 – volume: 135 start-page: 953 year: 2014 ident: ref_25 article-title: Classification of large acoustic datasets using machine learning and crowdsourcing: Application to whale calls publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4861348 contributor: fullname: Shamir – ident: ref_31 doi: 10.3390/app9051020 – ident: ref_19 – ident: ref_43 – ident: ref_22 – volume: 117 start-page: 1977 year: 2005 ident: ref_41 article-title: Long range acoustic imaging of the continental shelf environment: The Acoustic Clutter Reconnaissance Experiment 2001 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1799252 contributor: fullname: Ratilal – ident: ref_44 doi: 10.3390/rs9101036 – volume: 15 start-page: 14241 year: 2015 ident: ref_54 article-title: Acoustic biometric system based on preprocessing techniques and linear support vector machines publication-title: Sensors doi: 10.3390/s150614241 contributor: fullname: Villacorta |
SSID | ssj0000331904 |
Score | 2.3295746 |
Snippet | A large variety of sound sources in the ocean, including biological, geophysical, and man-made, can be simultaneously monitored over instantaneous... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 326 |
SubjectTerms | 20 hz Acoustic waveguides Acoustics Algorithms Aquatic mammals Arrays Artificial neural networks Automatic classification chirp classification Classifiers Clustering cnn Continental shelves decision tree Decision trees fin whale Fish Geophysics Hydrophones logistic regression Long short-term memory lstm Machine learning marine mammal Marine mammals Neural networks passive ocean acoustic waveguide remote sensing poawrs Real time Recognition Remote sensing Signal processing Sound Sound sources Spectrograms support vector machine Support vector machines Underwater acoustics vocalization Wavelet transforms Whales & whaling |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbK9lAuCPpQl5cswTXCie04OSEW2K4qUXEoLbfIT-BAsmTDYX8G_5gZJ8uqqsTVcRzL43lmZj5Cjm2WZ660JlEhBQclOJtoKWXiVRBKl6CEGBYKX_3KZzfi5628HQJuiyGtciUTo6B2jcUY-QmYvgxUE-fydP6UIGoU_l0dIDQ2yMc0Uwqdr2L64y3GwjhcMCb6rqQcvPuTdpFmETQ8_0cPxXb9_0njqGKm22RrsA3pWU_MHfLB15_JpwGm_H75hbyc96iB9R29Xif8L2gT6BSkFr1Ahq1tR8-euyb2YqUR9PIhIOA1hRdgXk3_3oNWoH9Qi62qMCkMT7x-xDW9o4hK3_WZW3F1LOLANk50tnRtg-nsHrbZ6uVXcjO9_H0-SwZMhcTyPO0SL31hvGO2NBnzPIABI4SyRtiUlU4HlnshpDJGGm80KPOCoQfImAtFKQrNv5FRDR_5TiiYWlLkWtuQOTDrMlOWhnvNgMOZ0j6MydHqhKt53zqjApcD6VCt6TAmEzz8txnY7joONO1dNXBPxdOAdqfxyoK_FNLSFAKxHKzkzsC-xmR_Rbpq4MFFtb4xu-8_3iObuJk-sLJPRl377A_A1OjMYbxPr9IL1kI priority: 102 providerName: ProQuest |
Title | Comparing Performances of Five Distinct Automatic Classifiers for Fin Whale Vocalizations in Beamformed Spectrograms of Coherent Hydrophone Array |
URI | https://www.proquest.com/docview/2550293335 https://doaj.org/article/31f6566be7c642f19b84ca50c53db894 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZoOLSXqkBR00JkCa4rvGt7H8cECBESCCFoc1v52XDopkqWQ34G_5gZe8NDHLhwtby2NWN7vlmNv4-QQ5Plma2MTgqfQoLirUmUlDJxhReFqiAIMXwofHGZT27F-VROX0h9YU1YpAeOhjviqUfIoV1hACr7tNKlQBp_I7nVZRWZQFn1IpkKdzCHrcVE5CPlkNcfLZZpFuTC81cRKBD1v7mHQ3AZfyNfO1RIh3E1W2TDNdvkcydQPlvtkIfjqBfY_KVXz6X-Szr3dAz3FT3Bo9qYlg7v23lgYaVB7vLOo9Q1hQ-gX0P_zCAe0N8Yv9bvLyk0j5z6h2M6S1GPvo01W2F0fL6BBE50srKLORayO1jmQq2-k9vx6c3xJOnUFBLD87RNnHSldpaZSmfMcQ_QRYjCaGHAfFZ5ljshZKG11E4rCOMlw9yPMevBzKXiu6TXwCQ_CAWQJUWulPGZBUCX6arS3CkGZ5sVyvk-OVhbuP4fSTNqSDbQD_WzH_pkhMZ_6oFE16EB3F937q_fc3-f7K1dV3enb1lDmsQAxnAuf37EHL_IF1xy_PGyR3rt4t7tAxRp9YB8KsdnA7I5Or28uh6EPfgIFWzhFQ |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaONBL1ZaiboFiCa4RTmzncUIssFpaWCEEhVvk58KBBLLhsD-Df9yZxMsKVeLqOI7l8TwzMx8heyZJE1sYHWU-BgfFWxMpKWXkMi8yVYASYlgofD5Jx9fi9628DQG3WUirXMjETlDb2mCMfB9MXwaqiXN58PgUIWoU_l0NEBofySq2qgLna3V4Mrm4fI2yMA5XjIm-LykH_36_mcVJBxuevtFEXcP-_-Rxp2RGX8jnYB3Sw56cX8kHV30jawGo_G6-Tl6OetzAakovlin_M1p7OgK5RY-RZSvT0sPntu66sdIO9vLeI-Q1hRdgXkVv7kAv0L-oxxZ1mBSGh0494JrOUsSlb_vcrW51LOPARk50PLdNjQntDrbZqPl3cj06uToaRwFVITI8jdvISZdrZ5kpdMIc92DCCJEZLUzMCqs8S50QMtNaaqcVqPOcoQ_ImPV5IXLFN8hKBR_5QSgYW1KkShmfWDDsEl0UmjvFgMdZppwfkN3FCZePffOMEpwOpEO5pMOADPHwX2dgw-tuoG6mZeCfksceLU_tMgMek48LnQtEczCSWw37GpCtBenKwIWzcnlnfr7_eIesja_Oz8qz08mfTfIJN9aHWbbISts8u20wPFr9K9yuf6bV2pM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgIuiKdYKGAJrtE6sZ3HCXXbrpbXaoUo9Bb52XIgKdn0sD-Df8xM4u0KIXF1HMfyvCfj-QDe2izPXGVNUoQUA5TgbKKVUokvgix0hUaI00Xhz6t8eSY_nKvzWP-0iWWVO504KGrXWsqRz9D15WiahFCzEMsi1ieLd1e_EkKQoj-tEU7jNhwUMhd8Agfz09X6y03GhQtkNy7HHqUCY_1Zt0mzAUI8_8sqDc37_9HNg8FZPID70VNkRyNpH8It3zyCuxG0_HL7GH4fjxiCzQVb78v_N6wNbIE6jJ2Q-Da2Z0fXfTt0ZmUDBOaPQPDXDF_AeQ37fok2gn0jm7a7k8lweO71T1rTO0YY9f1YxzWsTlc6qKkTW25d11Jxu8dtdnr7BM4Wp1-Pl0lEWEisyNM-8cqXxjtuK5NxLwK6M1IW1kib8srpwHMvpSqMUcYbjaa95BQPcu5CWclSi6cwafAjz4Ch46VkrrUNmUMnLzNVZYTXHOWdF9qHKbzZnXB9NTbSqDEAITrUezpMYU6HfzODml8PA213UUdZqkUayAs1vrAYPYW0MqUkZAerhDO4rykc7khXR4nc1Hv-ef7_x6_hDjJW_en96uMLuEf7GjMuhzDpu2v_En2Q3ryKzPUHi5newQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Performances+of+Five+Distinct+Automatic+Classifiers+for+Fin+Whale+Vocalizations+in+Beamformed+Spectrograms+of+Coherent+Hydrophone+Array&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Heriberto+A.+Garcia&rft.au=Trenton+Couture&rft.au=Amit+Galor&rft.au=Jessica+M.+Topple&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=2&rft.spage=326&rft_id=info:doi/10.3390%2Frs12020326&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_31f6566be7c642f19b84ca50c53db894 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |