Configurable Fast Block Partitioning for VVC Intra Coding Using Light Gradient Boosting Machine
This article presents a configurable fast block partitioning decision for Versatile Video Coding (VVC) intra-frame prediction using Light Gradient Boosting Machine (LGBM). VVC further improves the coding efficiency by introducing a Quadtree with nested Multi-Type Tree (QTMT), enabling five split typ...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 6; pp. 3947 - 3960 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents a configurable fast block partitioning decision for Versatile Video Coding (VVC) intra-frame prediction using Light Gradient Boosting Machine (LGBM). VVC further improves the coding efficiency by introducing a Quadtree with nested Multi-Type Tree (QTMT), enabling five split types allowing square and rectangular Coding Unit (CU) sizes. However, this improvement in the coding efficiency comes at the cost of a high computational burden since several combinations of block sizes and prediction modes are evaluated through the costly Rate-Distortion Optimization (RDO) process. In this article, we propose a partitioning decision using LGBM classifiers to avoid the exhaustive RDO process and skip the evaluation of split types that are unlikely to be chosen as the best one. For this purpose, five classifiers (one for each split type) were offline trained with an efficient training process and using effective features of texture, coding, and context information. The proposed solution is highly configurable and can provide several operation points with different tradeoffs between timesaving and coding efficiency, according to the application requirements. Considering five operation points, the configurable solution can reduce the encoding time from 35.22% to 61.34%, with coding efficiency losses from 0.46% to 2.43%. Compared to the state-of-the-art, our solution is able to outperform the related works in terms of combined rate-distortion and timesaving. |
---|---|
AbstractList | This article presents a configurable fast block partitioning decision for Versatile Video Coding (VVC) intra-frame prediction using Light Gradient Boosting Machine (LGBM). VVC further improves the coding efficiency by introducing a Quadtree with nested Multi-Type Tree (QTMT), enabling five split types allowing square and rectangular Coding Unit (CU) sizes. However, this improvement in the coding efficiency comes at the cost of a high computational burden since several combinations of block sizes and prediction modes are evaluated through the costly Rate-Distortion Optimization (RDO) process. In this article, we propose a partitioning decision using LGBM classifiers to avoid the exhaustive RDO process and skip the evaluation of split types that are unlikely to be chosen as the best one. For this purpose, five classifiers (one for each split type) were offline trained with an efficient training process and using effective features of texture, coding, and context information. The proposed solution is highly configurable and can provide several operation points with different tradeoffs between timesaving and coding efficiency, according to the application requirements. Considering five operation points, the configurable solution can reduce the encoding time from 35.22% to 61.34%, with coding efficiency losses from 0.46% to 2.43%. Compared to the state-of-the-art, our solution is able to outperform the related works in terms of combined rate-distortion and timesaving. |
Author | Saldanha, Mario Marcon, Cesar Sanchez, Gustavo Agostini, Luciano |
Author_xml | – sequence: 1 givenname: Mario orcidid: 0000-0002-6771-6359 surname: Saldanha fullname: Saldanha, Mario email: mrdfsaldanha@inf.ufpel.edu.br organization: Graduate Program in Computer Science (PPGC) and Video Technology Research Group (ViTech), Federal University of Pelotas, Pelotas, Brazil – sequence: 2 givenname: Gustavo orcidid: 0000-0002-8399-3014 surname: Sanchez fullname: Sanchez, Gustavo email: gustavo.sanchez@iffarroupilha.edu.br organization: Department of Informatics, IF Farroupilha, Alegrete, Brazil – sequence: 3 givenname: Cesar orcidid: 0000-0002-7811-7896 surname: Marcon fullname: Marcon, Cesar email: cesar.marcon@pucrs.br organization: Graduate Program in Computer Science (PPGCC), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil – sequence: 4 givenname: Luciano orcidid: 0000-0002-3421-5830 surname: Agostini fullname: Agostini, Luciano email: agostini@inf.ufpel.edu.br organization: Graduate Program in Computer Science (PPGC) and Video Technology Research Group (ViTech), Federal University of Pelotas, Pelotas, Brazil |
BookMark | eNp9kMFOAjEQQBuDiYD-gF428bzY6XZ3u0fdCJJgNBG4Nt3ShSK22JaDf29XiAcPHjqdzMybSd4A9Yw1CqFrwCMAXN3N67flfEQwgVEGmBUlnKE-5DlLCcF5L-Y4h5QRyC_QwPstxkAZLfuI19a0en1wotmpZCx8SB52Vr4nr8IFHbQ12qyT1rpkuayTqQlOJLVddcWF7-JMrzchmTix0spE2FofuvqzkBtt1CU6b8XOq6vTP0SL8eO8fkpnL5NpfT9LZVZASBURTFVFhWULrJCQCZoBbaBYlbhlohCCNfFJYLSFJq9KSWVeUSoYBlkykg3R7XHv3tnPg_KBb-3BmXiSk6IkDBcZw3GKHKeks9471fK90x_CfXHAvBPJf0TyTiQ_iYwQ-wNJHUSnJsrQu__RmyOqlVK_t6qc0NjMvgFt4IJe |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_3390_electronics12153314 crossref_primary_10_1016_j_knosys_2024_111902 crossref_primary_10_1016_j_jrmge_2023_02_013 crossref_primary_10_3390_electronics12143053 crossref_primary_10_1007_s11760_022_02367_0 crossref_primary_10_1109_TCSVT_2023_3262733 crossref_primary_10_1109_TITS_2023_3331769 crossref_primary_10_1109_TCSVT_2023_3257224 crossref_primary_10_1109_ACCESS_2024_3442201 crossref_primary_10_1109_OJSP_2025_3528897 crossref_primary_10_1109_TCSVT_2024_3428474 crossref_primary_10_1109_TCSVT_2022_3232385 crossref_primary_10_3390_electronics13112214 crossref_primary_10_3390_electronics12061338 crossref_primary_10_3390_info14090494 crossref_primary_10_3390_electronics13030649 crossref_primary_10_1007_s11760_024_03023_5 crossref_primary_10_1109_ACCESS_2024_3469089 crossref_primary_10_1145_3634705 crossref_primary_10_1109_ACCESS_2024_3434682 crossref_primary_10_3390_electronics11162572 crossref_primary_10_1109_LSP_2025_3542692 crossref_primary_10_1186_s13640_024_00651_2 crossref_primary_10_1109_LSP_2024_3383282 crossref_primary_10_1109_TCSVT_2023_3287561 crossref_primary_10_1109_ACCESS_2022_3215163 crossref_primary_10_1109_TBC_2024_3475811 crossref_primary_10_1016_j_dsp_2025_105021 crossref_primary_10_4018_IJITSA_322433 crossref_primary_10_3390_s22155523 crossref_primary_10_3390_s22228990 crossref_primary_10_1016_j_displa_2023_102545 crossref_primary_10_1186_s13640_024_00622_7 crossref_primary_10_1109_TDEI_2023_3271609 crossref_primary_10_1109_TMM_2022_3208516 crossref_primary_10_1109_TIP_2023_3266165 crossref_primary_10_1016_j_eswa_2024_125187 crossref_primary_10_1016_j_jvcir_2024_104294 crossref_primary_10_1016_j_jvcir_2024_104292 |
Cites_doi | 10.1109/TIP.2021.3083447 10.1109/TCSVT.2020.2977118 10.1109/ICIP.2019.8803724 10.1109/TCSVT.2020.3037024 10.1109/ICIP40778.2020.9190797 10.1109/MMSP.2019.8901754 10.1007/s11042-020-09401-8 10.1109/ICIP.2019.8803777 10.1109/TCSVT.2020.3035356 10.1109/TCSVT.2021.3070860 10.1109/TMM.2020.3042062 10.1109/TCSVT.2019.2954749 10.1109/TCSVT.2021.3072204 10.1109/TCSVT.2019.2934752 10.1145/3292500.3330701 10.1109/ICIP40778.2020.9190970 10.1109/TIP.2018.2877355 10.1109/TBC.2021.3073556 10.1109/TCSVT.2021.3072202 10.1515/9783110692303 10.3389/fnbot.2013.00021 10.1109/PCS48520.2019.8954507 10.1109/DCC.2016.9 10.1109/TIP.2019.2938670 10.1109/MCOM.2006.1678121 10.1109/TCSVT.2019.2945048 10.1109/ACCESS.2020.3000565 10.1109/TCSVT.2012.2221191 10.1109/ICIP.2019.8803421 10.1109/ICME.2019.00018 10.1109/TCSVT.2021.3072430 10.1109/DCC.2019.00013 10.1109/DCC47342.2020.00018 10.1109/TCSVT.2019.2904198 10.1109/TCSVT.2021.3072297 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2021.3108671 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 3960 |
ExternalDocumentID | 10_1109_TCSVT_2021_3108671 9524713 |
Genre | orig-research |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Finance Code 001), Brazilian research support agencies funderid: 10.13039/501100002322 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) funderid: 10.13039/501100003593 – fundername: Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) funderid: 10.13039/501100004263 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-e2a8e9690cf186c13a4314b16d70f8a6aa8baa8c184f1b597c4c5944a801c7823 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 16:44:46 EDT 2025 Tue Jul 01 00:41:16 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Wed Aug 27 02:24:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-e2a8e9690cf186c13a4314b16d70f8a6aa8baa8c184f1b597c4c5944a801c7823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7811-7896 0000-0002-3421-5830 0000-0002-6771-6359 0000-0002-8399-3014 |
PQID | 2672806380 |
PQPubID | 85433 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2672806380 crossref_primary_10_1109_TCSVT_2021_3108671 ieee_primary_9524713 crossref_citationtrail_10_1109_TCSVT_2021_3108671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Chen (ref9) 2020 ref12 Bossen (ref14) 2021 ref11 Ke (ref16); 30 ref17 ref19 ref18 Bergstra (ref49); 24 (ref47) 2021 ref48 ref41 Bross (ref10) 2018 ref8 ref7 ref3 ref6 ref5 ref40 ref35 (ref4) 2020 ref34 ref37 ref36 ref31 ref30 Dhapola (ref1) 2020 ref33 ref32 ref2 ref39 ref38 (ref15) 2021 Bossen (ref42) 2019 Daede (ref45) 2019 ref24 ref23 ref26 ref25 Sharman (ref44) 2017 ref20 ref22 ref21 ref28 ref27 ref29 (ref46) 2021 Bjontegaard (ref43) 2001 |
References_xml | – volume-title: AHG Report: Test Model Software Development (AHG3) year: 2021 ident: ref14 – volume-title: Versatile Video Coding year: 2020 ident: ref4 – ident: ref30 doi: 10.1109/TIP.2021.3083447 – ident: ref41 doi: 10.1109/TCSVT.2020.2977118 – volume-title: VVC Test Model (VTM) year: 2021 ident: ref15 – ident: ref12 doi: 10.1109/ICIP.2019.8803724 – ident: ref37 doi: 10.1109/TCSVT.2020.3037024 – ident: ref28 doi: 10.1109/ICIP40778.2020.9190797 – ident: ref19 doi: 10.1109/MMSP.2019.8901754 – ident: ref26 doi: 10.1007/s11042-020-09401-8 – ident: ref13 doi: 10.1109/ICIP.2019.8803777 – ident: ref40 doi: 10.1109/TCSVT.2020.3035356 – ident: ref33 doi: 10.1109/TCSVT.2021.3070860 – ident: ref31 doi: 10.1109/TMM.2020.3042062 – ident: ref38 doi: 10.1109/TCSVT.2019.2954749 – ident: ref32 doi: 10.1109/TCSVT.2021.3072204 – ident: ref39 doi: 10.1109/TCSVT.2019.2934752 – ident: ref48 doi: 10.1145/3292500.3330701 – ident: ref18 doi: 10.1109/ICIP40778.2020.9190970 – ident: ref6 doi: 10.1109/TIP.2018.2877355 – ident: ref23 doi: 10.1109/TBC.2021.3073556 – ident: ref34 doi: 10.1109/TCSVT.2021.3072202 – ident: ref29 doi: 10.1515/9783110692303 – volume-title: COVID-19 Impact: Streaming Services to Dial Down Quality as Internet Speeds Fall year: 2020 ident: ref1 – ident: ref17 doi: 10.3389/fnbot.2013.00021 – ident: ref8 doi: 10.1109/PCS48520.2019.8954507 – volume-title: CE3: Multiple Reference Line Intra Prediction (Test 1.1.1, 1.1.2, 1.1.3 and 1.1.4) year: 2018 ident: ref10 – ident: ref7 doi: 10.1109/DCC.2016.9 – ident: ref27 doi: 10.1109/TIP.2019.2938670 – ident: ref2 doi: 10.1109/MCOM.2006.1678121 – volume-title: Algorithm Description for Versatile Video Coding and Test Model 10 (VTM 10) year: 2020 ident: ref9 – ident: ref5 doi: 10.1109/TCSVT.2019.2945048 – volume-title: Common Test Conditions year: 2017 ident: ref44 – volume: 24 start-page: 2546 volume-title: Proc. Adv. Neural Inf. Process. Syst. Found. (NIPS) ident: ref49 article-title: Algorithms for hyper-parameter optimization – ident: ref22 doi: 10.1109/ACCESS.2020.3000565 – ident: ref3 doi: 10.1109/TCSVT.2012.2221191 – ident: ref20 doi: 10.1109/ICIP.2019.8803421 – volume-title: Video Test Media [Derf’s Collection] year: 2021 ident: ref46 – ident: ref24 doi: 10.1109/ICME.2019.00018 – volume: 30 start-page: 3146 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref16 article-title: LightGBM: A highly efficient gradient boosting decision tree – ident: ref35 doi: 10.1109/TCSVT.2021.3072430 – ident: ref11 doi: 10.1109/DCC.2019.00013 – volume-title: JVET Common Test Conditions and Software Reference Configurations for SDR Video year: 2019 ident: ref42 – start-page: 1 volume-title: Calculation of Average PSNR Differences Between RDCurves year: 2001 ident: ref43 – start-page: 23 volume-title: Video Codec Testing and Quality Measurement year: 2019 ident: ref45 – ident: ref21 doi: 10.1109/DCC47342.2020.00018 – ident: ref25 doi: 10.1109/TCSVT.2019.2904198 – volume-title: Feature Selector year: 2021 ident: ref47 – ident: ref36 doi: 10.1109/TCSVT.2021.3072297 |
SSID | ssj0014847 |
Score | 2.5654871 |
Snippet | This article presents a configurable fast block partitioning decision for Versatile Video Coding (VVC) intra-frame prediction using Light Gradient Boosting... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3947 |
SubjectTerms | Boosting Classifiers Complexity theory Distortion Efficiency Encoding Evaluation intra coding light gradient boosting machine machine learning Optimization Partitioning Shape Streaming media timesaving Transforms VVC |
Title | Configurable Fast Block Partitioning for VVC Intra Coding Using Light Gradient Boosting Machine |
URI | https://ieeexplore.ieee.org/document/9524713 https://www.proquest.com/docview/2672806380 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0VTnBgK4iyyQdukBLHjpMcoaIsogiJUnGLHMdBCNSgNr3w9cy4acUmxCFSDrZkaWy_98azABxGEeJ6LLhXoO7ypBa5l6ko8khn50ifVeZT7nDvVl0-yOvH8LEBx_NcGGutCz6zbfp1b_l5aSbkKjtJwgDvUrEACyjcprla8xcDGbtmYkgXuBcjjs0SZPzkpN-5H_RRCgYcFapPBd2-gJDrqvLjKnb40l2F3mxl07CSl_akytrm_VvRxv8ufQ1WaqLJTqc7Yx0adrgBy5_KDzYhpXS_56fJiNKnWFePK3aG2PbC7mg_1Z5ahqyWDQYddkVuYNYpCeyYizRgN6Ts2cXIhY3h5LIcUxQ167kITbsJD93zfufSqxsueEYoXnk20LFNUC-bgsfKcKGRXsiMqzzyi1grreMMP4OqsOAZShEjTZhIqRHmDFINsQWLw3Jot4EJk_lhHuY2sFqapNCJEFLpAOlSlKNmbQGfWSA1dTVyaorxmjpV4ieps1pKVktrq7XgaD7nbVqL48_RTTLDfGRtgRbszQyd1sd1nAaKunThVeTv_D5rF5YCyntw7pc9WKxGE7uPbKTKDtw2_AAPHtkz |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_i4wAcxtcQ3WD4wI2lxLHjJMetoivQIqSVipvlOA6amJqpTS_76_eem1Z8TIhDpBxsydKz_fv9nt8HwGmSIK6nggcl6q5AGlEEuUqSgHR2gfRZ5SHlDg9uVO9OXt3H9yvwdZkL45zzwWeuTb_-Lb-o7IxcZedZHOFdKlZhHXE_5vNsreWbgUx9OzEkDDxIEckWKTJhdj7s_BwNUQxGHDVqSCXdnsGQ76vy6jL2CNPdhsFibfPAksf2rM7b9u-Lso3vXfwOfGioJvs23xu7sOLGe7D1pADhPmhK-Pv1MJtQAhXrmmnNviO6PbJb2lGNr5Yhr2WjUYddkiOYdSqCO-ZjDViftD37MfGBYzi5qqYUR80GPkbTfYS77sWw0wualguBFYrXgYtM6jJUzLbkqbJcGCQYMueqSMIyNcqYNMfPoi4seY5ixEobZ1IaBDqLZEMcwNq4GrtDYMLmYVzEhYuckTYrTSaEVCZCwpQUqFpbwBcW0LapR05tMX5rr0vCTHurabKabqzWgrPlnD_zahxvjt4nMyxHNhZowdHC0Lo5sFMdKerThZdR-On_s05gozcc9HX_8ub6M2xGlAXhnTFHsFZPZu4YuUmdf_Fb8h-NvNx8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Configurable+Fast+Block+Partitioning+for+VVC+Intra+Coding+Using+Light+Gradient+Boosting+Machine&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Saldanha%2C+Mario&rft.au=Sanchez%2C+Gustavo&rft.au=Marcon%2C+Cesar&rft.au=Agostini%2C+Luciano&rft.date=2022-06-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=6&rft.spage=3947&rft.epage=3960&rft_id=info:doi/10.1109%2FTCSVT.2021.3108671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2021_3108671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |