Cooperatively Coevolving Particle Swarms for Large Scale Optimization
This paper presents a new cooperative coevolving particle swarm optimization (CCPSO) algorithm in an attempt to address the issue of scaling up particle swarm optimization (PSO) algorithms in solving large-scale optimization problems (up to 2000 real-valued variables). The proposed CCPSO2 builds on...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 16; no. 2; pp. 210 - 224 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a new cooperative coevolving particle swarm optimization (CCPSO) algorithm in an attempt to address the issue of scaling up particle swarm optimization (PSO) algorithms in solving large-scale optimization problems (up to 2000 real-valued variables). The proposed CCPSO2 builds on the success of an early CCPSO that employs an effective variable grouping technique random grouping. CCPSO2 adopts a new PSO position update rule that relies on Cauchy and Gaussian distributions to sample new points in the search space, and a scheme to dynamically determine the coevolving subcomponent sizes of the variables. On high-dimensional problems (ranging from 100 to 2000 variables), the performance of CCPSO2 compared favorably against a state-of-the-art evolutionary algorithm sep-CMA-ES, two existing PSO algorithms, and a cooperative coevolving differential evolution algorithm. In particular, CCPSO2 performed significantly better than sep-CMA-ES and two existing PSO algorithms on more complex multimodal problems (which more closely resemble real-world problems), though not as well as the existing algorithms on unimodal functions. Our experimental results and analysis suggest that CCPSO2 is a highly competitive optimization algorithm for solving large-scale and complex multimodal optimization problems. |
---|---|
AbstractList | This paper presents a new cooperative coevolving particle swarm optimization (CCPSO) algorithm in an attempt to address the issue of scaling up particle swarm optimization (PSO) algorithms in solving large-scale optimization problems (up to 2000 real-valued variables). The proposed CCPSO2 builds on the success of an early CCPSO that employs an effective variable grouping technique random grouping. CCPSO2 adopts a new PSO position update rule that relies on Cauchy and Gaussian distributions to sample new points in the search space, and a scheme to dynamically determine the coevolving subcomponent sizes of the variables. On high-dimensional problems (ranging from 100 to 2000 variables), the performance of CCPSO2 compared favorably against a state-of-the-art evolutionary algorithm sep-CMA-ES, two existing PSO algorithms, and a cooperative coevolving differential evolution algorithm. In particular, CCPSO2 performed significantly better than sep-CMA-ES and two existing PSO algorithms on more complex multimodal problems (which more closely resemble real-world problems), though not as well as the existing algorithms on unimodal functions. Our experimental results and analysis suggest that CCPSO2 is a highly competitive optimization algorithm for solving large-scale and complex multimodal optimization problems. |
Author | Xiaodong Li Xin Yao |
Author_xml | – sequence: 1 surname: Xiaodong Li fullname: Xiaodong Li email: xiaodong.li@rmit.edu.au organization: Sch. of Comput. Sci. & Inf. Technol., R. Melbourne Inst. of Technol., Melbourne, VIC, Australia – sequence: 2 surname: Xin Yao fullname: Xin Yao email: x.yao@cs.bham.ac.uk organization: Center of Excellence for Res. in Comput. Intell. & Applic., Univ. of Birmingham, Birmingham, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25796679$$DView record in Pascal Francis |
BookMark | eNp9kE9LAzEUxINUsK1-APGyF49b87K7yeYoS_0DhQpW8RbS9G2JbDdLslTqpze11YMHT-8xzG8YZkQGrWuRkEugEwAqbxbT12rCKMCEATDO2QkZgswhpZTxQfxpKVMhyrczMgrhnVLIC5BDMq2c69Dr3m6x2SWVw61rtrZdJ0_a99Y0mDx_aL8JSe18MtN-HQWjozzveruxn5F07Tk5rXUT8OJ4x-TlbrqoHtLZ_P6xup2lJuPQp8hKI3KJGaKkJUdcSU4pldropeF6WZei4Ag6X-Zl7LvKayMyvWK1YRAdNBuT60Nup0MsUXvdGhtU5-1G-51ihZCcCxl94uAz3oXgsVbG9t9Ne69to4Cq_Wpqv5rar6aOq0US_pA_4f8xVwfGIuKvv5BAs5JmX6v3ey8 |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1109_TEVC_2015_2455812 crossref_primary_10_1016_j_eswa_2015_08_030 crossref_primary_10_1016_j_ijinfomgt_2016_07_009 crossref_primary_10_1371_journal_pone_0272632 crossref_primary_10_1016_j_ins_2023_03_086 crossref_primary_10_1016_j_swevo_2022_101084 crossref_primary_10_1007_s12065_014_0117_3 crossref_primary_10_1109_TCYB_2020_2968400 crossref_primary_10_1007_s00500_016_2187_x crossref_primary_10_1109_TEVC_2017_2743016 crossref_primary_10_1016_j_cmpb_2015_05_007 crossref_primary_10_1080_0305215X_2014_895338 crossref_primary_10_1016_j_knosys_2021_107080 crossref_primary_10_1016_j_swevo_2018_08_016 crossref_primary_10_1007_s10489_017_1113_y crossref_primary_10_1109_TCYB_2018_2846179 crossref_primary_10_1016_j_swevo_2020_100789 crossref_primary_10_1115_1_4031982 crossref_primary_10_1016_j_epsr_2023_109860 crossref_primary_10_1109_TEVC_2023_3277501 crossref_primary_10_1007_s10489_019_01556_8 crossref_primary_10_1016_j_jestch_2015_11_004 crossref_primary_10_1371_journal_pone_0139190 crossref_primary_10_1007_s00500_017_2626_3 crossref_primary_10_1007_s40747_023_00993_w crossref_primary_10_1109_ACCESS_2021_3108177 crossref_primary_10_1007_s00500_016_2209_8 crossref_primary_10_1109_TEVC_2022_3201691 crossref_primary_10_1109_TEVC_2022_3144684 crossref_primary_10_1109_TSMCB_2012_2209115 crossref_primary_10_1109_TCYB_2018_2859342 crossref_primary_10_1109_TETCI_2019_2899604 crossref_primary_10_1016_j_eswa_2022_117397 crossref_primary_10_1109_MCI_2017_2708618 crossref_primary_10_1016_j_solener_2017_10_025 crossref_primary_10_1109_TCYB_2016_2590558 crossref_primary_10_1016_j_ins_2013_12_044 crossref_primary_10_1177_1687814019834161 crossref_primary_10_1007_s00500_017_2964_1 crossref_primary_10_1109_TEVC_2016_2521175 crossref_primary_10_1155_2013_762372 crossref_primary_10_1016_j_asoc_2018_08_020 crossref_primary_10_1109_TVT_2018_2882130 crossref_primary_10_1007_s10732_017_9351_z crossref_primary_10_1007_s41870_018_0243_8 crossref_primary_10_1109_TCYB_2022_3164143 crossref_primary_10_1371_journal_pone_0169817 crossref_primary_10_1007_s12652_023_04705_7 crossref_primary_10_1007_s10489_023_04822_y crossref_primary_10_1109_TEVC_2022_3170793 crossref_primary_10_1016_j_ins_2015_09_055 crossref_primary_10_1080_17445760_2018_1472262 crossref_primary_10_1109_TEVC_2016_2627581 crossref_primary_10_1109_ACCESS_2018_2797268 crossref_primary_10_1109_TCYB_2019_2906383 crossref_primary_10_1109_TNNLS_2023_3283308 crossref_primary_10_1016_j_swevo_2017_05_007 crossref_primary_10_1016_j_swevo_2024_101832 crossref_primary_10_1016_j_asoc_2022_109651 crossref_primary_10_1016_j_asoc_2022_108684 crossref_primary_10_1007_s00500_019_03939_y crossref_primary_10_1016_j_swevo_2015_09_001 crossref_primary_10_3390_e25040561 crossref_primary_10_1016_j_ejor_2017_02_015 crossref_primary_10_1109_TEVC_2020_3034769 crossref_primary_10_1016_j_ijar_2020_01_012 crossref_primary_10_7498_aps_62_190202 crossref_primary_10_1016_j_swevo_2021_100991 crossref_primary_10_1002_ente_202100493 crossref_primary_10_1007_s10287_023_00483_x crossref_primary_10_1016_j_asoc_2020_106911 crossref_primary_10_1155_2019_2653512 crossref_primary_10_1109_TCYB_2016_2600577 crossref_primary_10_1109_JIOT_2020_3033473 crossref_primary_10_32604_cmes_2023_030391 crossref_primary_10_1016_j_ins_2016_12_043 crossref_primary_10_1016_j_swevo_2020_100684 crossref_primary_10_1007_s11721_023_00229_0 crossref_primary_10_1016_j_ins_2016_01_035 crossref_primary_10_1109_ACCESS_2018_2869334 crossref_primary_10_1016_j_ins_2016_11_013 crossref_primary_10_1016_j_apenergy_2018_06_092 crossref_primary_10_1109_TMAG_2013_2256430 crossref_primary_10_1007_s11280_022_01053_y crossref_primary_10_1016_j_ins_2015_08_038 crossref_primary_10_3233_ICA_210655 crossref_primary_10_1109_MCI_2020_3039066 crossref_primary_10_1080_0305215X_2016_1141204 crossref_primary_10_1016_j_dajour_2023_100251 crossref_primary_10_3233_JIFS_211008 crossref_primary_10_1016_j_asoc_2013_05_011 crossref_primary_10_1016_j_swevo_2020_100794 crossref_primary_10_1109_TSMC_2015_2464787 crossref_primary_10_1109_TSMC_2024_3454051 crossref_primary_10_1007_s13042_019_01030_4 crossref_primary_10_1016_j_energy_2022_125762 crossref_primary_10_1109_TCYB_2020_3034427 crossref_primary_10_1016_j_apenergy_2017_04_076 crossref_primary_10_1109_ACCESS_2018_2842114 crossref_primary_10_1007_s00500_017_2514_x crossref_primary_10_1109_TEVC_2019_2895860 crossref_primary_10_1109_TSMC_2021_3131312 crossref_primary_10_1109_TEVC_2021_3065659 crossref_primary_10_1109_TEVC_2016_2598858 crossref_primary_10_1109_TEVC_2017_2778089 crossref_primary_10_3390_math7060521 crossref_primary_10_1016_j_array_2021_100074 crossref_primary_10_1007_s11227_022_04644_8 crossref_primary_10_1016_j_tws_2021_108206 crossref_primary_10_1109_TII_2019_2961340 crossref_primary_10_1109_ACCESS_2020_3009429 crossref_primary_10_1016_j_procs_2014_05_148 crossref_primary_10_1016_j_ins_2017_06_024 crossref_primary_10_1109_TCBB_2017_2684800 crossref_primary_10_1109_TSMC_2022_3212045 crossref_primary_10_1007_s00521_014_1669_y crossref_primary_10_1016_j_swevo_2017_12_004 crossref_primary_10_1155_2019_1520213 crossref_primary_10_1186_s41044_016_0003_3 crossref_primary_10_1109_ACCESS_2019_2931824 crossref_primary_10_1016_j_array_2022_100249 crossref_primary_10_1016_j_asoc_2014_06_026 crossref_primary_10_1007_s13042_018_0810_0 crossref_primary_10_1080_09540091_2016_1185392 crossref_primary_10_1016_j_epsr_2022_108618 crossref_primary_10_1016_j_engappai_2016_02_006 crossref_primary_10_1109_ACCESS_2020_3031003 crossref_primary_10_1155_2015_498626 crossref_primary_10_1007_s00500_018_3098_9 crossref_primary_10_1016_j_enconman_2011_10_001 crossref_primary_10_1016_j_engappai_2022_105249 crossref_primary_10_1016_j_measurement_2013_11_041 crossref_primary_10_1016_j_asoc_2018_01_016 crossref_primary_10_1080_18756891_2015_1046324 crossref_primary_10_1109_TCYB_2017_2685944 crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1016_j_knosys_2022_108382 crossref_primary_10_1016_j_neucom_2016_01_105 crossref_primary_10_1109_ACCESS_2017_2702561 crossref_primary_10_1016_j_comnet_2016_02_010 crossref_primary_10_1007_s11063_019_10112_x crossref_primary_10_1007_s00521_016_2379_4 crossref_primary_10_1007_s10588_019_09293_6 crossref_primary_10_1016_j_swevo_2025_101865 crossref_primary_10_1109_TSMC_2024_3389751 crossref_primary_10_1007_s10586_024_04600_6 crossref_primary_10_1007_s10458_015_9318_0 crossref_primary_10_1007_s00500_017_2700_x crossref_primary_10_1016_j_isprsjprs_2018_12_005 crossref_primary_10_1155_2014_402616 crossref_primary_10_1016_j_jnca_2014_02_012 crossref_primary_10_1016_j_neucom_2020_09_007 crossref_primary_10_1016_j_swevo_2021_100906 crossref_primary_10_1002_2050_7038_12935 crossref_primary_10_1109_TEVC_2021_3066301 crossref_primary_10_3390_math10091384 crossref_primary_10_1016_j_asoc_2023_110990 crossref_primary_10_1016_j_ins_2014_09_041 crossref_primary_10_1007_s00500_013_1128_1 crossref_primary_10_1007_s11390_012_1283_3 crossref_primary_10_1016_j_ijhydene_2013_09_072 crossref_primary_10_1016_j_asoc_2023_110517 crossref_primary_10_1109_TCYB_2015_2447574 crossref_primary_10_1002_ett_3048 crossref_primary_10_1155_2021_7667173 crossref_primary_10_1109_TCYB_2019_2933499 crossref_primary_10_1109_TSC_2019_2923912 crossref_primary_10_1007_s00500_022_07182_w crossref_primary_10_1109_TCYB_2022_3165374 crossref_primary_10_1016_j_asoc_2020_106650 crossref_primary_10_1016_j_asoc_2020_106773 crossref_primary_10_1109_TEVC_2018_2868770 crossref_primary_10_1155_2013_384125 crossref_primary_10_1142_S0218001415590053 crossref_primary_10_1016_j_knosys_2016_07_001 crossref_primary_10_1109_TEVC_2020_2985672 crossref_primary_10_1007_s12293_020_00305_6 crossref_primary_10_1016_j_cogr_2022_03_005 crossref_primary_10_1109_TEVC_2015_2511142 crossref_primary_10_1016_j_asoc_2018_02_012 crossref_primary_10_1109_TCYB_2014_2339495 crossref_primary_10_1016_j_asoc_2014_11_014 crossref_primary_10_1162_evco_a_00214 crossref_primary_10_1109_TFUZZ_2019_2896533 crossref_primary_10_1007_s00500_013_1106_7 crossref_primary_10_1016_j_ins_2012_05_017 crossref_primary_10_1109_TCYB_2020_3025577 crossref_primary_10_1109_TFUZZ_2019_2895562 crossref_primary_10_1016_j_swevo_2019_100626 crossref_primary_10_1109_TCYB_2017_2756874 crossref_primary_10_1016_S1874_1029_14_60398_0 crossref_primary_10_1007_s10489_017_0901_8 crossref_primary_10_1016_j_ins_2012_11_017 crossref_primary_10_1016_j_ins_2019_09_065 crossref_primary_10_1109_TEVC_2017_2704782 crossref_primary_10_1142_S0218001415590065 crossref_primary_10_1016_j_ins_2022_04_053 crossref_primary_10_3923_itj_2013_1796_1803 crossref_primary_10_1016_j_ins_2016_02_007 crossref_primary_10_1007_s13042_017_0711_7 crossref_primary_10_1109_TCST_2014_2312324 crossref_primary_10_1016_j_compbiolchem_2018_02_006 crossref_primary_10_1109_TEVC_2022_3185665 crossref_primary_10_1016_j_swevo_2018_08_005 crossref_primary_10_1016_j_swevo_2020_100710 crossref_primary_10_1109_TEVC_2016_2601922 crossref_primary_10_1007_s40747_018_0071_2 crossref_primary_10_1007_s10489_020_02078_4 crossref_primary_10_1007_s10489_017_0953_9 crossref_primary_10_1109_TEVC_2022_3166815 crossref_primary_10_1109_MCI_2023_3277772 crossref_primary_10_1007_s11071_015_2252_5 crossref_primary_10_1049_trit_2018_1090 crossref_primary_10_3390_math8050785 crossref_primary_10_3233_JCM_180875 crossref_primary_10_1162_evco_a_00211 crossref_primary_10_1016_j_asoc_2014_11_003 crossref_primary_10_1109_TEVC_2023_3326327 crossref_primary_10_1109_TCYB_2017_2728725 crossref_primary_10_3390_s140610361 crossref_primary_10_1016_j_ins_2022_11_019 crossref_primary_10_1016_j_ins_2019_04_037 crossref_primary_10_5302_J_ICROS_2013_13_9007 crossref_primary_10_1109_TSMC_2015_2482938 crossref_primary_10_1145_3469036 crossref_primary_10_1155_2019_1240162 crossref_primary_10_1109_TEVC_2021_3102863 crossref_primary_10_1109_TAI_2022_3156952 crossref_primary_10_1016_j_amc_2017_10_022 crossref_primary_10_1007_s40314_016_0407_8 crossref_primary_10_1016_j_eswa_2018_11_032 crossref_primary_10_1016_j_engappai_2013_06_014 crossref_primary_10_1016_j_asoc_2016_07_034 crossref_primary_10_1109_TEVC_2016_2600642 crossref_primary_10_1016_j_ins_2015_04_006 crossref_primary_10_1063_1_5088932 crossref_primary_10_1007_s00500_017_2885_z crossref_primary_10_1109_TKDE_2015_2453952 crossref_primary_10_1016_j_ins_2017_01_038 crossref_primary_10_1021_ie4000954 crossref_primary_10_1109_ACCESS_2019_2925540 crossref_primary_10_1016_j_ijepes_2023_109584 crossref_primary_10_1002_cpe_2910 crossref_primary_10_1109_ACCESS_2021_3076732 crossref_primary_10_1109_ACCESS_2022_3202894 crossref_primary_10_1007_s00521_019_04170_4 crossref_primary_10_1007_s10489_018_1288_x crossref_primary_10_1109_TEVC_2016_2611642 crossref_primary_10_1109_TEVC_2018_2869405 crossref_primary_10_1109_MCI_2023_3304081 crossref_primary_10_1109_TEVC_2022_3218375 crossref_primary_10_1016_j_asoc_2015_05_015 crossref_primary_10_1007_s12065_013_0098_7 crossref_primary_10_1016_j_ins_2014_09_010 crossref_primary_10_1016_j_swevo_2017_03_001 crossref_primary_10_1109_LAWP_2013_2283375 crossref_primary_10_1007_s10489_015_0686_6 crossref_primary_10_1016_j_micpro_2020_103050 crossref_primary_10_1109_TII_2017_2676000 crossref_primary_10_1007_s11704_019_8441_5 crossref_primary_10_1007_s00500_016_2060_y crossref_primary_10_1007_s13369_015_1990_5 crossref_primary_10_1016_j_jfranklin_2017_03_002 crossref_primary_10_1016_j_advengsoft_2018_04_007 crossref_primary_10_1007_s00500_016_2466_6 crossref_primary_10_1016_j_asoc_2017_08_025 crossref_primary_10_1016_j_asoc_2017_08_022 crossref_primary_10_3390_en12203903 crossref_primary_10_1109_TNB_2017_2725991 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1016_j_energy_2020_119077 crossref_primary_10_3233_JIFS_220645 crossref_primary_10_1109_ACCESS_2020_2971574 crossref_primary_10_1007_s00521_018_3657_0 crossref_primary_10_1142_S2737480723500024 crossref_primary_10_1016_j_ejor_2015_10_007 crossref_primary_10_1007_s10489_018_1279_y crossref_primary_10_1007_s12652_022_04432_5 crossref_primary_10_3390_math10224297 crossref_primary_10_1016_j_asoc_2016_06_028 crossref_primary_10_1007_s00500_016_2081_6 crossref_primary_10_3390_math11061362 crossref_primary_10_1007_s10489_014_0587_0 crossref_primary_10_1145_2788397 crossref_primary_10_1016_j_asoc_2020_106120 crossref_primary_10_1016_j_ins_2018_10_033 crossref_primary_10_1016_j_asoc_2016_01_006 crossref_primary_10_1109_TCYB_2019_2904543 crossref_primary_10_1016_j_engappai_2014_07_021 crossref_primary_10_1016_j_swevo_2022_101212 crossref_primary_10_1115_1_4035960 crossref_primary_10_1109_ACCESS_2024_3353047 crossref_primary_10_1016_j_asoc_2019_105619 crossref_primary_10_1016_j_jnca_2017_08_009 crossref_primary_10_1109_ACCESS_2019_2944196 crossref_primary_10_1016_j_cie_2021_107316 crossref_primary_10_1002_nem_1962 crossref_primary_10_1016_j_apenergy_2023_120992 crossref_primary_10_17824_yerbilimleri_815473 crossref_primary_10_1016_j_knosys_2022_110090 crossref_primary_10_1016_j_swevo_2018_12_009 crossref_primary_10_1016_j_swevo_2024_101486 crossref_primary_10_1007_s00158_013_0996_4 crossref_primary_10_1109_TAI_2022_3207450 crossref_primary_10_3390_e24070890 crossref_primary_10_3390_su16031019 crossref_primary_10_1016_j_ins_2017_02_027 crossref_primary_10_1155_2014_941534 crossref_primary_10_1016_j_procs_2015_09_205 crossref_primary_10_1155_2014_941532 crossref_primary_10_1016_j_ins_2016_07_007 crossref_primary_10_1108_IMDS_06_2015_0222 crossref_primary_10_1002_apj_1712 crossref_primary_10_1016_j_cie_2018_09_025 crossref_primary_10_1016_j_cnsns_2013_03_011 crossref_primary_10_1109_TCYB_2018_2859635 crossref_primary_10_1109_TEVC_2018_2883599 crossref_primary_10_1109_MCI_2014_2326099 crossref_primary_10_1007_s00500_016_2385_6 crossref_primary_10_1109_TEVC_2021_3131124 crossref_primary_10_1007_s10878_014_9717_1 crossref_primary_10_1109_TCYB_2020_3041212 crossref_primary_10_1109_TNNLS_2018_2872974 crossref_primary_10_4018_IJCINI_314782 crossref_primary_10_1016_j_asoc_2017_03_003 crossref_primary_10_1016_j_asoc_2017_05_060 crossref_primary_10_1016_j_jclepro_2024_140702 crossref_primary_10_1016_j_eswa_2013_06_043 crossref_primary_10_1109_TCYB_2016_2523000 crossref_primary_10_1007_s00500_019_04209_7 crossref_primary_10_1155_2013_985410 crossref_primary_10_1016_j_asoc_2024_112157 crossref_primary_10_1109_TEVC_2013_2281545 crossref_primary_10_3390_a14050146 crossref_primary_10_3233_ICA_170571 crossref_primary_10_3389_fbuil_2020_00132 crossref_primary_10_3233_ICA_160536 crossref_primary_10_1016_j_future_2017_10_015 crossref_primary_10_1109_ACCESS_2021_3082202 crossref_primary_10_3390_s19091994 crossref_primary_10_1109_JIOT_2018_2801623 crossref_primary_10_1109_TEVC_2013_2260862 crossref_primary_10_1007_s11704_018_7155_4 crossref_primary_10_1109_TEVC_2020_2968743 crossref_primary_10_1109_TITS_2023_3272318 crossref_primary_10_1109_TEVC_2013_2281543 crossref_primary_10_1109_TCBB_2017_2652453 crossref_primary_10_1007_s11071_013_1071_9 crossref_primary_10_1016_j_asoc_2015_04_061 crossref_primary_10_1109_JSEN_2019_2963697 crossref_primary_10_3390_en10020173 crossref_primary_10_1016_j_ins_2023_119472 crossref_primary_10_1109_ACCESS_2020_2976488 crossref_primary_10_1007_s10462_022_10322_1 crossref_primary_10_1016_j_aei_2023_101908 crossref_primary_10_1016_j_knosys_2021_107569 crossref_primary_10_1016_j_ins_2014_11_026 crossref_primary_10_1016_j_ins_2016_08_080 crossref_primary_10_1016_j_ins_2014_12_062 crossref_primary_10_1016_j_eswa_2017_11_002 crossref_primary_10_1016_j_ins_2014_10_051 crossref_primary_10_1109_ACCESS_2019_2906082 crossref_primary_10_1109_TEVC_2015_2395073 crossref_primary_10_3390_s22124467 crossref_primary_10_1109_TSE_2014_2331057 crossref_primary_10_3390_s18051393 crossref_primary_10_1109_ACCESS_2020_3036438 crossref_primary_10_1109_TEVC_2019_2896002 crossref_primary_10_1016_j_jpdc_2017_05_018 crossref_primary_10_1063_1_4996582 crossref_primary_10_1016_j_asoc_2024_112252 crossref_primary_10_1109_TCYB_2020_2977956 crossref_primary_10_1109_TEVC_2023_3264875 crossref_primary_10_1080_17517575_2019_1681518 crossref_primary_10_1007_s10489_014_0604_3 crossref_primary_10_1016_j_ins_2014_10_042 crossref_primary_10_1109_TCYB_2020_2975530 crossref_primary_10_1007_s40747_023_01128_x crossref_primary_10_1016_j_asoc_2016_03_024 crossref_primary_10_1016_j_swevo_2018_10_006 crossref_primary_10_1109_TITS_2022_3224320 crossref_primary_10_1145_2791291 crossref_primary_10_1109_TETCI_2024_3372378 crossref_primary_10_1016_j_asoc_2015_03_050 crossref_primary_10_1007_s11227_022_04553_w crossref_primary_10_1007_s40747_023_01202_4 crossref_primary_10_1109_TEVC_2019_2902626 crossref_primary_10_1109_TEVC_2019_2955110 crossref_primary_10_21205_deufmd_2022247022 crossref_primary_10_1016_j_ins_2014_04_043 crossref_primary_10_1049_joe_2018_8179 crossref_primary_10_1109_TEVC_2017_2694221 crossref_primary_10_1007_s00500_020_05389_3 crossref_primary_10_1002_2050_7038_12233 crossref_primary_10_1109_ACCESS_2019_2946649 crossref_primary_10_20965_jaciii_2012_p0581 crossref_primary_10_1016_j_solener_2016_05_026 crossref_primary_10_1016_j_solener_2017_08_058 crossref_primary_10_1016_j_phycom_2019_100979 crossref_primary_10_1109_TCYB_2016_2616170 crossref_primary_10_1016_j_asoc_2024_112232 crossref_primary_10_1109_TCBB_2020_2971993 crossref_primary_10_1109_TEVC_2017_2672689 crossref_primary_10_1016_j_egypro_2017_03_288 crossref_primary_10_1016_j_ins_2018_01_004 crossref_primary_10_1109_TCYB_2014_2345478 crossref_primary_10_1109_TEVC_2018_2817889 crossref_primary_10_1016_j_neucom_2020_07_094 |
Cites_doi | 10.1109/TEVC.2004.826069 10.1109/MHS.1995.494215 10.1109/CEC.2002.1004493 10.1023/A:1021956306041 10.1109/SIS.2003.1202251 10.1016/0303-2647(96)01621-8 10.1109/CEC.2009.4983126 10.1109/CEC.2010.5586127 10.1109/4235.771163 10.1109/CEC.2009.4983052 10.1109/CEC.2001.934314 10.1109/TEVC.2003.816583 10.1145/1143997.1144118 10.1162/106365601750190398 10.1115/1.1737780 10.1109/SIS.2007.368035 10.1109/CEC.2002.1006270 10.1109/CEC.2005.1554902 10.2514/2.764 10.1145/1830761.1830790 10.1109/CEC.2008.4631320 10.1016/j.ijheatmasstransfer.2005.08.032 10.1109/4235.985692 10.1016/j.ins.2008.02.017 10.1109/SIS.2003.1202268 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | 97E ESBDL RIA RIE AAYXX CITATION IQODW |
DOI | 10.1109/TEVC.2011.2112662 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1941-0026 |
EndPage | 224 |
ExternalDocumentID | 25796679 10_1109_TEVC_2011_2112662 5910380 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG IQODW |
ID | FETCH-LOGICAL-c361t-e28c749e3ee9086eed960009acabc6abf8756e1a4b48089d4fc73ad2fc21abc03 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Mon Jul 21 09:16:07 EDT 2025 Tue Jul 01 01:56:20 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Tue Aug 26 17:19:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Unimodality Scalability Evolutionary algorithm Multiobjective programming evolutionary algorithms Gaussian distribution Updating Competitive algorithms Multiple solution Multidimensional analysis large-scale optimization Cooperation Ecological niche Swarm intelligence Random variable Divide and conquer method Mathematical programming Large scale system Grouping Coevolution Blind equalization Cauchy distribution Particle swarm optimization Cooperative coevolution Large scale Artificial intelligence Parallelization |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-e28c749e3ee9086eed960009acabc6abf8756e1a4b48089d4fc73ad2fc21abc03 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/5910380 |
PageCount | 15 |
ParticipantIDs | ieee_primary_5910380 crossref_citationtrail_10_1109_TEVC_2011_2112662 crossref_primary_10_1109_TEVC_2011_2112662 pascalfrancis_primary_25796679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2012 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref34 ref15 iorio (ref31) 2006 ref14 ref30 richer (ref22) 2006 ref33 ref32 ref10 yang (ref12) 2007 ref2 ref16 chen (ref18) 2008 tang (ref5) 2007 den bergh (ref11) 2002 yang (ref19) 2008 potter (ref9) 1994 vesterstrom (ref7) 2004; 2 hansen (ref38) 2004 ref24 ref23 ref26 ref25 ref20 ref41 ref21 hansen (ref36) 0 shi (ref17) 2005 ref28 kennedy (ref1) 2001 ref27 ref29 ref8 tang (ref6) 2009 hsieh (ref39) 2008 ref4 ref3 zhang (ref42) 2007 ref40 tang (ref37) 2008 ros (ref35) 2008 |
References_xml | – year: 2002 ident: ref11 publication-title: An analysis of particle swarm optimizers – ident: ref8 doi: 10.1109/TEVC.2004.826069 – year: 2001 ident: ref1 publication-title: Swarm Intelligence – ident: ref26 doi: 10.1109/MHS.1995.494215 – year: 2009 ident: ref6 publication-title: Benchmark functions for the CEC'2010 special session and competition on large scale global optimization – ident: ref27 doi: 10.1109/CEC.2002.1004493 – start-page: 3523 year: 2007 ident: ref12 article-title: Differential evolution for high-dimensional function optimization publication-title: Proc IEEE Congr Evol Comput – start-page: 1080 year: 2005 ident: ref17 article-title: Cooperative co-evolutionary differential evolution for function optimization publication-title: Proc 1st Int Conf Nat Comput – ident: ref29 doi: 10.1023/A:1021956306041 – start-page: 249 year: 1994 ident: ref9 article-title: A cooperative coevolutionary approach to function optimization publication-title: Proc 3rd Conf Parallel Problem Solving Nat – ident: ref21 doi: 10.1109/SIS.2003.1202251 – year: 2008 ident: ref37 article-title: Summary of results on CEC'08 competition on large scale global optimization publication-title: Nature Inspired Computat Applicat Lab Univ Sci Technol China – ident: ref30 doi: 10.1016/0303-2647(96)01621-8 – start-page: 808 year: 2006 ident: ref22 article-title: The Lévy particle swarm publication-title: Proc IEEE CEC – ident: ref13 doi: 10.1109/CEC.2009.4983126 – ident: ref14 doi: 10.1109/CEC.2010.5586127 – year: 2007 ident: ref5 publication-title: Benchmark Functions for the CEC'2008 Special Session and Competition on Large Scale Global Optimization – ident: ref23 doi: 10.1109/4235.771163 – start-page: 1663 year: 2008 ident: ref19 article-title: Multilevel cooperative coevolution for large scale optimization publication-title: Proc IEEE Congr Evol Comput – ident: ref41 doi: 10.1109/CEC.2009.4983052 – ident: ref15 doi: 10.1109/CEC.2001.934314 – ident: ref24 doi: 10.1109/TEVC.2003.816583 – start-page: 1777 year: 2008 ident: ref39 article-title: Solving large scale global optimization using improved particle swarm optimizer publication-title: Proc IEEE CEC – start-page: 683 year: 2006 ident: ref31 article-title: Rotated test problems for assessing the performance of multiobjective optimization algorithms publication-title: Proc GECCO doi: 10.1145/1143997.1144118 – ident: ref32 doi: 10.1162/106365601750190398 – ident: ref2 doi: 10.1115/1.1737780 – ident: ref28 doi: 10.1109/SIS.2007.368035 – volume: 2 start-page: 1980 year: 2004 ident: ref7 article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems publication-title: Proc IEEE CEC – ident: ref16 doi: 10.1109/CEC.2002.1006270 – start-page: 2009 year: 2007 ident: ref42 article-title: Target shape design optimization by evolving splines publication-title: Proc IEEE Congr Evol Comput – start-page: 541 year: 2008 ident: ref18 article-title: Cooperative approaches to bacterial foraging optimization publication-title: Proc ICIC – ident: ref33 doi: 10.1109/CEC.2005.1554902 – ident: ref3 doi: 10.2514/2.764 – start-page: 296 year: 2008 ident: ref35 article-title: A simple modification in CMA-ES achieving linear time and space complexity publication-title: Proceedings of PPSN X – ident: ref34 doi: 10.1145/1830761.1830790 – ident: ref40 doi: 10.1109/CEC.2008.4631320 – ident: ref4 doi: 10.1016/j.ijheatmasstransfer.2005.08.032 – start-page: 282 year: 2004 ident: ref38 article-title: Evaluating the CMA evolution strategy on multimodal test functions publication-title: Proc PPSN VIII – ident: ref20 doi: 10.1109/4235.985692 – year: 0 ident: ref36 publication-title: CMA Evolution Strategy Source Code – ident: ref10 doi: 10.1016/j.ins.2008.02.017 – ident: ref25 doi: 10.1109/SIS.2003.1202268 |
SSID | ssj0014519 |
Score | 2.5661173 |
Snippet | This paper presents a new cooperative coevolving particle swarm optimization (CCPSO) algorithm in an attempt to address the issue of scaling up particle swarm... |
SourceID | pascalfrancis crossref ieee |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 210 |
SubjectTerms | Algorithm design and analysis Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computer science; control theory; systems Cooperative coevolution evolutionary algorithms Exact sciences and technology Gaussian distribution Heuristic algorithms large-scale optimization Mathematical programming Operational research and scientific management Operational research. Management science Optimization Particle swarm optimization Shape swarm intelligence Theoretical computing Topology |
Title | Cooperatively Coevolving Particle Swarms for Large Scale Optimization |
URI | https://ieeexplore.ieee.org/document/5910380 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzgwnmK8lAMnREebZF1zRNMQQrwkHtqtSlL3AqwINiH49ThNVgFCiFMrNbESO43txP4MsI9CJ7LAOOKiLCJZKIxUJjAyRnCrSea9Gqf74jI9vZNno95oDg6bXBhErIPPsOte67v8orJTd1R21FMOzpsc9Hly3HyuVnNj4GBSfDC9IosxG4UbzCRWR7fD-4EH6-QuYSbl33RQXVTFhUTqV-JK6ctZfNExJ224mI3Oh5Y8dKcT07UfP4Ab_zv8ZVgKxiY79qtjBeZwvArtWSEHFv7rVVj8gkq4BsNBVT2jRwR_fGeDCmkLc-cO7DqsM3bzpl-eXhkZvOzchZITKVI07Ir2n6eQ2LkOdyfD28FpFKotRFakySRCntm-VCgQFfk5pDvJuSELTFttbKpNSZ5NiomWRmbE5EKWti90wUvLE2oRiw1ojasxbgIjpxOlIkJFnMke9dE0baJqDD246HcgnvE_twGK3FXEeMxrlyRWuRNZ7kSWB5F14KDp8uxxOP5qvOa43zQMjO_A3jchN9-5S8hN-2rr937bsEDUuY_X2YHW5GWKu2SKTMxevQY_AZDD2xE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8heBh7GAw2rXzND3tCS0lsJ40fUVXUbS1DWkF9i2zn8gI0CFoh-Os5x24ECKE9JVLOTnzn-O7su98B_EChE1liHHFRlZEsFUYqFxgZI7jVJPO0weken2bDc_l7mk5X4GebC4OITfAZdt1tc5Zf1nbhtsqOUuXgvMlBXyO9n3KfrdWeGTigFB9Or8hmzKfhDDOJ1dFkcNH3cJ3cpcxk_IUWasqquKBIfUd8qXxBi2da5mQDxsvv88Ell93F3HTt4yvoxv8dwCZ8CuYmO_bz4zOs4GwLNpalHFj4s7fg4zNcwm0Y9Ov6Bj0m-NUD69dIi5jbeWBnYaaxf_f69vqOkcnLRi6YnLoiVcP-0gp0HVI7v8D5yWDSH0ah3kJkRZbMI-S57UmFAlGRp0Pak9wbssG01cZm2lTk22SYaGlkTkwuZWV7Qpe8sjwhilh8hdVZPcNvwMjtRKmoozLOZUptNA2bejWGLlz0OhAv-V_YAEbuamJcFY1TEqvCiaxwIiuCyDpw2Da58Ugc7xFvO-63hIHxHTh4IeT2OXcpuVlP7bzd7jt8GE7Go2L06_TPLqzTm7iP3tmD1fntAvfJMJmbg2Y-PgEprN5b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperatively+Coevolving+Particle+Swarms+for+Large+Scale+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Xiaodong+Li&rft.au=Xin+Yao&rft.date=2012-04-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=16&rft.issue=2&rft.spage=210&rft.epage=224&rft_id=info:doi/10.1109%2FTEVC.2011.2112662&rft.externalDocID=5910380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |