Cooperatively Coevolving Particle Swarms for Large Scale Optimization

This paper presents a new cooperative coevolving particle swarm optimization (CCPSO) algorithm in an attempt to address the issue of scaling up particle swarm optimization (PSO) algorithms in solving large-scale optimization problems (up to 2000 real-valued variables). The proposed CCPSO2 builds on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 16; no. 2; pp. 210 - 224
Main Authors Xiaodong Li, Xin Yao
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new cooperative coevolving particle swarm optimization (CCPSO) algorithm in an attempt to address the issue of scaling up particle swarm optimization (PSO) algorithms in solving large-scale optimization problems (up to 2000 real-valued variables). The proposed CCPSO2 builds on the success of an early CCPSO that employs an effective variable grouping technique random grouping. CCPSO2 adopts a new PSO position update rule that relies on Cauchy and Gaussian distributions to sample new points in the search space, and a scheme to dynamically determine the coevolving subcomponent sizes of the variables. On high-dimensional problems (ranging from 100 to 2000 variables), the performance of CCPSO2 compared favorably against a state-of-the-art evolutionary algorithm sep-CMA-ES, two existing PSO algorithms, and a cooperative coevolving differential evolution algorithm. In particular, CCPSO2 performed significantly better than sep-CMA-ES and two existing PSO algorithms on more complex multimodal problems (which more closely resemble real-world problems), though not as well as the existing algorithms on unimodal functions. Our experimental results and analysis suggest that CCPSO2 is a highly competitive optimization algorithm for solving large-scale and complex multimodal optimization problems.
AbstractList This paper presents a new cooperative coevolving particle swarm optimization (CCPSO) algorithm in an attempt to address the issue of scaling up particle swarm optimization (PSO) algorithms in solving large-scale optimization problems (up to 2000 real-valued variables). The proposed CCPSO2 builds on the success of an early CCPSO that employs an effective variable grouping technique random grouping. CCPSO2 adopts a new PSO position update rule that relies on Cauchy and Gaussian distributions to sample new points in the search space, and a scheme to dynamically determine the coevolving subcomponent sizes of the variables. On high-dimensional problems (ranging from 100 to 2000 variables), the performance of CCPSO2 compared favorably against a state-of-the-art evolutionary algorithm sep-CMA-ES, two existing PSO algorithms, and a cooperative coevolving differential evolution algorithm. In particular, CCPSO2 performed significantly better than sep-CMA-ES and two existing PSO algorithms on more complex multimodal problems (which more closely resemble real-world problems), though not as well as the existing algorithms on unimodal functions. Our experimental results and analysis suggest that CCPSO2 is a highly competitive optimization algorithm for solving large-scale and complex multimodal optimization problems.
Author Xiaodong Li
Xin Yao
Author_xml – sequence: 1
  surname: Xiaodong Li
  fullname: Xiaodong Li
  email: xiaodong.li@rmit.edu.au
  organization: Sch. of Comput. Sci. & Inf. Technol., R. Melbourne Inst. of Technol., Melbourne, VIC, Australia
– sequence: 2
  surname: Xin Yao
  fullname: Xin Yao
  email: x.yao@cs.bham.ac.uk
  organization: Center of Excellence for Res. in Comput. Intell. & Applic., Univ. of Birmingham, Birmingham, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25796679$$DView record in Pascal Francis
BookMark eNp9kE9LAzEUxINUsK1-APGyF49b87K7yeYoS_0DhQpW8RbS9G2JbDdLslTqpze11YMHT-8xzG8YZkQGrWuRkEugEwAqbxbT12rCKMCEATDO2QkZgswhpZTxQfxpKVMhyrczMgrhnVLIC5BDMq2c69Dr3m6x2SWVw61rtrZdJ0_a99Y0mDx_aL8JSe18MtN-HQWjozzveruxn5F07Tk5rXUT8OJ4x-TlbrqoHtLZ_P6xup2lJuPQp8hKI3KJGaKkJUdcSU4pldropeF6WZei4Ag6X-Zl7LvKayMyvWK1YRAdNBuT60Nup0MsUXvdGhtU5-1G-51ihZCcCxl94uAz3oXgsVbG9t9Ne69to4Cq_Wpqv5rar6aOq0US_pA_4f8xVwfGIuKvv5BAs5JmX6v3ey8
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TEVC_2015_2455812
crossref_primary_10_1016_j_eswa_2015_08_030
crossref_primary_10_1016_j_ijinfomgt_2016_07_009
crossref_primary_10_1371_journal_pone_0272632
crossref_primary_10_1016_j_ins_2023_03_086
crossref_primary_10_1016_j_swevo_2022_101084
crossref_primary_10_1007_s12065_014_0117_3
crossref_primary_10_1109_TCYB_2020_2968400
crossref_primary_10_1007_s00500_016_2187_x
crossref_primary_10_1109_TEVC_2017_2743016
crossref_primary_10_1016_j_cmpb_2015_05_007
crossref_primary_10_1080_0305215X_2014_895338
crossref_primary_10_1016_j_knosys_2021_107080
crossref_primary_10_1016_j_swevo_2018_08_016
crossref_primary_10_1007_s10489_017_1113_y
crossref_primary_10_1109_TCYB_2018_2846179
crossref_primary_10_1016_j_swevo_2020_100789
crossref_primary_10_1115_1_4031982
crossref_primary_10_1016_j_epsr_2023_109860
crossref_primary_10_1109_TEVC_2023_3277501
crossref_primary_10_1007_s10489_019_01556_8
crossref_primary_10_1016_j_jestch_2015_11_004
crossref_primary_10_1371_journal_pone_0139190
crossref_primary_10_1007_s00500_017_2626_3
crossref_primary_10_1007_s40747_023_00993_w
crossref_primary_10_1109_ACCESS_2021_3108177
crossref_primary_10_1007_s00500_016_2209_8
crossref_primary_10_1109_TEVC_2022_3201691
crossref_primary_10_1109_TEVC_2022_3144684
crossref_primary_10_1109_TSMCB_2012_2209115
crossref_primary_10_1109_TCYB_2018_2859342
crossref_primary_10_1109_TETCI_2019_2899604
crossref_primary_10_1016_j_eswa_2022_117397
crossref_primary_10_1109_MCI_2017_2708618
crossref_primary_10_1016_j_solener_2017_10_025
crossref_primary_10_1109_TCYB_2016_2590558
crossref_primary_10_1016_j_ins_2013_12_044
crossref_primary_10_1177_1687814019834161
crossref_primary_10_1007_s00500_017_2964_1
crossref_primary_10_1109_TEVC_2016_2521175
crossref_primary_10_1155_2013_762372
crossref_primary_10_1016_j_asoc_2018_08_020
crossref_primary_10_1109_TVT_2018_2882130
crossref_primary_10_1007_s10732_017_9351_z
crossref_primary_10_1007_s41870_018_0243_8
crossref_primary_10_1109_TCYB_2022_3164143
crossref_primary_10_1371_journal_pone_0169817
crossref_primary_10_1007_s12652_023_04705_7
crossref_primary_10_1007_s10489_023_04822_y
crossref_primary_10_1109_TEVC_2022_3170793
crossref_primary_10_1016_j_ins_2015_09_055
crossref_primary_10_1080_17445760_2018_1472262
crossref_primary_10_1109_TEVC_2016_2627581
crossref_primary_10_1109_ACCESS_2018_2797268
crossref_primary_10_1109_TCYB_2019_2906383
crossref_primary_10_1109_TNNLS_2023_3283308
crossref_primary_10_1016_j_swevo_2017_05_007
crossref_primary_10_1016_j_swevo_2024_101832
crossref_primary_10_1016_j_asoc_2022_109651
crossref_primary_10_1016_j_asoc_2022_108684
crossref_primary_10_1007_s00500_019_03939_y
crossref_primary_10_1016_j_swevo_2015_09_001
crossref_primary_10_3390_e25040561
crossref_primary_10_1016_j_ejor_2017_02_015
crossref_primary_10_1109_TEVC_2020_3034769
crossref_primary_10_1016_j_ijar_2020_01_012
crossref_primary_10_7498_aps_62_190202
crossref_primary_10_1016_j_swevo_2021_100991
crossref_primary_10_1002_ente_202100493
crossref_primary_10_1007_s10287_023_00483_x
crossref_primary_10_1016_j_asoc_2020_106911
crossref_primary_10_1155_2019_2653512
crossref_primary_10_1109_TCYB_2016_2600577
crossref_primary_10_1109_JIOT_2020_3033473
crossref_primary_10_32604_cmes_2023_030391
crossref_primary_10_1016_j_ins_2016_12_043
crossref_primary_10_1016_j_swevo_2020_100684
crossref_primary_10_1007_s11721_023_00229_0
crossref_primary_10_1016_j_ins_2016_01_035
crossref_primary_10_1109_ACCESS_2018_2869334
crossref_primary_10_1016_j_ins_2016_11_013
crossref_primary_10_1016_j_apenergy_2018_06_092
crossref_primary_10_1109_TMAG_2013_2256430
crossref_primary_10_1007_s11280_022_01053_y
crossref_primary_10_1016_j_ins_2015_08_038
crossref_primary_10_3233_ICA_210655
crossref_primary_10_1109_MCI_2020_3039066
crossref_primary_10_1080_0305215X_2016_1141204
crossref_primary_10_1016_j_dajour_2023_100251
crossref_primary_10_3233_JIFS_211008
crossref_primary_10_1016_j_asoc_2013_05_011
crossref_primary_10_1016_j_swevo_2020_100794
crossref_primary_10_1109_TSMC_2015_2464787
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1007_s13042_019_01030_4
crossref_primary_10_1016_j_energy_2022_125762
crossref_primary_10_1109_TCYB_2020_3034427
crossref_primary_10_1016_j_apenergy_2017_04_076
crossref_primary_10_1109_ACCESS_2018_2842114
crossref_primary_10_1007_s00500_017_2514_x
crossref_primary_10_1109_TEVC_2019_2895860
crossref_primary_10_1109_TSMC_2021_3131312
crossref_primary_10_1109_TEVC_2021_3065659
crossref_primary_10_1109_TEVC_2016_2598858
crossref_primary_10_1109_TEVC_2017_2778089
crossref_primary_10_3390_math7060521
crossref_primary_10_1016_j_array_2021_100074
crossref_primary_10_1007_s11227_022_04644_8
crossref_primary_10_1016_j_tws_2021_108206
crossref_primary_10_1109_TII_2019_2961340
crossref_primary_10_1109_ACCESS_2020_3009429
crossref_primary_10_1016_j_procs_2014_05_148
crossref_primary_10_1016_j_ins_2017_06_024
crossref_primary_10_1109_TCBB_2017_2684800
crossref_primary_10_1109_TSMC_2022_3212045
crossref_primary_10_1007_s00521_014_1669_y
crossref_primary_10_1016_j_swevo_2017_12_004
crossref_primary_10_1155_2019_1520213
crossref_primary_10_1186_s41044_016_0003_3
crossref_primary_10_1109_ACCESS_2019_2931824
crossref_primary_10_1016_j_array_2022_100249
crossref_primary_10_1016_j_asoc_2014_06_026
crossref_primary_10_1007_s13042_018_0810_0
crossref_primary_10_1080_09540091_2016_1185392
crossref_primary_10_1016_j_epsr_2022_108618
crossref_primary_10_1016_j_engappai_2016_02_006
crossref_primary_10_1109_ACCESS_2020_3031003
crossref_primary_10_1155_2015_498626
crossref_primary_10_1007_s00500_018_3098_9
crossref_primary_10_1016_j_enconman_2011_10_001
crossref_primary_10_1016_j_engappai_2022_105249
crossref_primary_10_1016_j_measurement_2013_11_041
crossref_primary_10_1016_j_asoc_2018_01_016
crossref_primary_10_1080_18756891_2015_1046324
crossref_primary_10_1109_TCYB_2017_2685944
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1016_j_knosys_2022_108382
crossref_primary_10_1016_j_neucom_2016_01_105
crossref_primary_10_1109_ACCESS_2017_2702561
crossref_primary_10_1016_j_comnet_2016_02_010
crossref_primary_10_1007_s11063_019_10112_x
crossref_primary_10_1007_s00521_016_2379_4
crossref_primary_10_1007_s10588_019_09293_6
crossref_primary_10_1016_j_swevo_2025_101865
crossref_primary_10_1109_TSMC_2024_3389751
crossref_primary_10_1007_s10586_024_04600_6
crossref_primary_10_1007_s10458_015_9318_0
crossref_primary_10_1007_s00500_017_2700_x
crossref_primary_10_1016_j_isprsjprs_2018_12_005
crossref_primary_10_1155_2014_402616
crossref_primary_10_1016_j_jnca_2014_02_012
crossref_primary_10_1016_j_neucom_2020_09_007
crossref_primary_10_1016_j_swevo_2021_100906
crossref_primary_10_1002_2050_7038_12935
crossref_primary_10_1109_TEVC_2021_3066301
crossref_primary_10_3390_math10091384
crossref_primary_10_1016_j_asoc_2023_110990
crossref_primary_10_1016_j_ins_2014_09_041
crossref_primary_10_1007_s00500_013_1128_1
crossref_primary_10_1007_s11390_012_1283_3
crossref_primary_10_1016_j_ijhydene_2013_09_072
crossref_primary_10_1016_j_asoc_2023_110517
crossref_primary_10_1109_TCYB_2015_2447574
crossref_primary_10_1002_ett_3048
crossref_primary_10_1155_2021_7667173
crossref_primary_10_1109_TCYB_2019_2933499
crossref_primary_10_1109_TSC_2019_2923912
crossref_primary_10_1007_s00500_022_07182_w
crossref_primary_10_1109_TCYB_2022_3165374
crossref_primary_10_1016_j_asoc_2020_106650
crossref_primary_10_1016_j_asoc_2020_106773
crossref_primary_10_1109_TEVC_2018_2868770
crossref_primary_10_1155_2013_384125
crossref_primary_10_1142_S0218001415590053
crossref_primary_10_1016_j_knosys_2016_07_001
crossref_primary_10_1109_TEVC_2020_2985672
crossref_primary_10_1007_s12293_020_00305_6
crossref_primary_10_1016_j_cogr_2022_03_005
crossref_primary_10_1109_TEVC_2015_2511142
crossref_primary_10_1016_j_asoc_2018_02_012
crossref_primary_10_1109_TCYB_2014_2339495
crossref_primary_10_1016_j_asoc_2014_11_014
crossref_primary_10_1162_evco_a_00214
crossref_primary_10_1109_TFUZZ_2019_2896533
crossref_primary_10_1007_s00500_013_1106_7
crossref_primary_10_1016_j_ins_2012_05_017
crossref_primary_10_1109_TCYB_2020_3025577
crossref_primary_10_1109_TFUZZ_2019_2895562
crossref_primary_10_1016_j_swevo_2019_100626
crossref_primary_10_1109_TCYB_2017_2756874
crossref_primary_10_1016_S1874_1029_14_60398_0
crossref_primary_10_1007_s10489_017_0901_8
crossref_primary_10_1016_j_ins_2012_11_017
crossref_primary_10_1016_j_ins_2019_09_065
crossref_primary_10_1109_TEVC_2017_2704782
crossref_primary_10_1142_S0218001415590065
crossref_primary_10_1016_j_ins_2022_04_053
crossref_primary_10_3923_itj_2013_1796_1803
crossref_primary_10_1016_j_ins_2016_02_007
crossref_primary_10_1007_s13042_017_0711_7
crossref_primary_10_1109_TCST_2014_2312324
crossref_primary_10_1016_j_compbiolchem_2018_02_006
crossref_primary_10_1109_TEVC_2022_3185665
crossref_primary_10_1016_j_swevo_2018_08_005
crossref_primary_10_1016_j_swevo_2020_100710
crossref_primary_10_1109_TEVC_2016_2601922
crossref_primary_10_1007_s40747_018_0071_2
crossref_primary_10_1007_s10489_020_02078_4
crossref_primary_10_1007_s10489_017_0953_9
crossref_primary_10_1109_TEVC_2022_3166815
crossref_primary_10_1109_MCI_2023_3277772
crossref_primary_10_1007_s11071_015_2252_5
crossref_primary_10_1049_trit_2018_1090
crossref_primary_10_3390_math8050785
crossref_primary_10_3233_JCM_180875
crossref_primary_10_1162_evco_a_00211
crossref_primary_10_1016_j_asoc_2014_11_003
crossref_primary_10_1109_TEVC_2023_3326327
crossref_primary_10_1109_TCYB_2017_2728725
crossref_primary_10_3390_s140610361
crossref_primary_10_1016_j_ins_2022_11_019
crossref_primary_10_1016_j_ins_2019_04_037
crossref_primary_10_5302_J_ICROS_2013_13_9007
crossref_primary_10_1109_TSMC_2015_2482938
crossref_primary_10_1145_3469036
crossref_primary_10_1155_2019_1240162
crossref_primary_10_1109_TEVC_2021_3102863
crossref_primary_10_1109_TAI_2022_3156952
crossref_primary_10_1016_j_amc_2017_10_022
crossref_primary_10_1007_s40314_016_0407_8
crossref_primary_10_1016_j_eswa_2018_11_032
crossref_primary_10_1016_j_engappai_2013_06_014
crossref_primary_10_1016_j_asoc_2016_07_034
crossref_primary_10_1109_TEVC_2016_2600642
crossref_primary_10_1016_j_ins_2015_04_006
crossref_primary_10_1063_1_5088932
crossref_primary_10_1007_s00500_017_2885_z
crossref_primary_10_1109_TKDE_2015_2453952
crossref_primary_10_1016_j_ins_2017_01_038
crossref_primary_10_1021_ie4000954
crossref_primary_10_1109_ACCESS_2019_2925540
crossref_primary_10_1016_j_ijepes_2023_109584
crossref_primary_10_1002_cpe_2910
crossref_primary_10_1109_ACCESS_2021_3076732
crossref_primary_10_1109_ACCESS_2022_3202894
crossref_primary_10_1007_s00521_019_04170_4
crossref_primary_10_1007_s10489_018_1288_x
crossref_primary_10_1109_TEVC_2016_2611642
crossref_primary_10_1109_TEVC_2018_2869405
crossref_primary_10_1109_MCI_2023_3304081
crossref_primary_10_1109_TEVC_2022_3218375
crossref_primary_10_1016_j_asoc_2015_05_015
crossref_primary_10_1007_s12065_013_0098_7
crossref_primary_10_1016_j_ins_2014_09_010
crossref_primary_10_1016_j_swevo_2017_03_001
crossref_primary_10_1109_LAWP_2013_2283375
crossref_primary_10_1007_s10489_015_0686_6
crossref_primary_10_1016_j_micpro_2020_103050
crossref_primary_10_1109_TII_2017_2676000
crossref_primary_10_1007_s11704_019_8441_5
crossref_primary_10_1007_s00500_016_2060_y
crossref_primary_10_1007_s13369_015_1990_5
crossref_primary_10_1016_j_jfranklin_2017_03_002
crossref_primary_10_1016_j_advengsoft_2018_04_007
crossref_primary_10_1007_s00500_016_2466_6
crossref_primary_10_1016_j_asoc_2017_08_025
crossref_primary_10_1016_j_asoc_2017_08_022
crossref_primary_10_3390_en12203903
crossref_primary_10_1109_TNB_2017_2725991
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_energy_2020_119077
crossref_primary_10_3233_JIFS_220645
crossref_primary_10_1109_ACCESS_2020_2971574
crossref_primary_10_1007_s00521_018_3657_0
crossref_primary_10_1142_S2737480723500024
crossref_primary_10_1016_j_ejor_2015_10_007
crossref_primary_10_1007_s10489_018_1279_y
crossref_primary_10_1007_s12652_022_04432_5
crossref_primary_10_3390_math10224297
crossref_primary_10_1016_j_asoc_2016_06_028
crossref_primary_10_1007_s00500_016_2081_6
crossref_primary_10_3390_math11061362
crossref_primary_10_1007_s10489_014_0587_0
crossref_primary_10_1145_2788397
crossref_primary_10_1016_j_asoc_2020_106120
crossref_primary_10_1016_j_ins_2018_10_033
crossref_primary_10_1016_j_asoc_2016_01_006
crossref_primary_10_1109_TCYB_2019_2904543
crossref_primary_10_1016_j_engappai_2014_07_021
crossref_primary_10_1016_j_swevo_2022_101212
crossref_primary_10_1115_1_4035960
crossref_primary_10_1109_ACCESS_2024_3353047
crossref_primary_10_1016_j_asoc_2019_105619
crossref_primary_10_1016_j_jnca_2017_08_009
crossref_primary_10_1109_ACCESS_2019_2944196
crossref_primary_10_1016_j_cie_2021_107316
crossref_primary_10_1002_nem_1962
crossref_primary_10_1016_j_apenergy_2023_120992
crossref_primary_10_17824_yerbilimleri_815473
crossref_primary_10_1016_j_knosys_2022_110090
crossref_primary_10_1016_j_swevo_2018_12_009
crossref_primary_10_1016_j_swevo_2024_101486
crossref_primary_10_1007_s00158_013_0996_4
crossref_primary_10_1109_TAI_2022_3207450
crossref_primary_10_3390_e24070890
crossref_primary_10_3390_su16031019
crossref_primary_10_1016_j_ins_2017_02_027
crossref_primary_10_1155_2014_941534
crossref_primary_10_1016_j_procs_2015_09_205
crossref_primary_10_1155_2014_941532
crossref_primary_10_1016_j_ins_2016_07_007
crossref_primary_10_1108_IMDS_06_2015_0222
crossref_primary_10_1002_apj_1712
crossref_primary_10_1016_j_cie_2018_09_025
crossref_primary_10_1016_j_cnsns_2013_03_011
crossref_primary_10_1109_TCYB_2018_2859635
crossref_primary_10_1109_TEVC_2018_2883599
crossref_primary_10_1109_MCI_2014_2326099
crossref_primary_10_1007_s00500_016_2385_6
crossref_primary_10_1109_TEVC_2021_3131124
crossref_primary_10_1007_s10878_014_9717_1
crossref_primary_10_1109_TCYB_2020_3041212
crossref_primary_10_1109_TNNLS_2018_2872974
crossref_primary_10_4018_IJCINI_314782
crossref_primary_10_1016_j_asoc_2017_03_003
crossref_primary_10_1016_j_asoc_2017_05_060
crossref_primary_10_1016_j_jclepro_2024_140702
crossref_primary_10_1016_j_eswa_2013_06_043
crossref_primary_10_1109_TCYB_2016_2523000
crossref_primary_10_1007_s00500_019_04209_7
crossref_primary_10_1155_2013_985410
crossref_primary_10_1016_j_asoc_2024_112157
crossref_primary_10_1109_TEVC_2013_2281545
crossref_primary_10_3390_a14050146
crossref_primary_10_3233_ICA_170571
crossref_primary_10_3389_fbuil_2020_00132
crossref_primary_10_3233_ICA_160536
crossref_primary_10_1016_j_future_2017_10_015
crossref_primary_10_1109_ACCESS_2021_3082202
crossref_primary_10_3390_s19091994
crossref_primary_10_1109_JIOT_2018_2801623
crossref_primary_10_1109_TEVC_2013_2260862
crossref_primary_10_1007_s11704_018_7155_4
crossref_primary_10_1109_TEVC_2020_2968743
crossref_primary_10_1109_TITS_2023_3272318
crossref_primary_10_1109_TEVC_2013_2281543
crossref_primary_10_1109_TCBB_2017_2652453
crossref_primary_10_1007_s11071_013_1071_9
crossref_primary_10_1016_j_asoc_2015_04_061
crossref_primary_10_1109_JSEN_2019_2963697
crossref_primary_10_3390_en10020173
crossref_primary_10_1016_j_ins_2023_119472
crossref_primary_10_1109_ACCESS_2020_2976488
crossref_primary_10_1007_s10462_022_10322_1
crossref_primary_10_1016_j_aei_2023_101908
crossref_primary_10_1016_j_knosys_2021_107569
crossref_primary_10_1016_j_ins_2014_11_026
crossref_primary_10_1016_j_ins_2016_08_080
crossref_primary_10_1016_j_ins_2014_12_062
crossref_primary_10_1016_j_eswa_2017_11_002
crossref_primary_10_1016_j_ins_2014_10_051
crossref_primary_10_1109_ACCESS_2019_2906082
crossref_primary_10_1109_TEVC_2015_2395073
crossref_primary_10_3390_s22124467
crossref_primary_10_1109_TSE_2014_2331057
crossref_primary_10_3390_s18051393
crossref_primary_10_1109_ACCESS_2020_3036438
crossref_primary_10_1109_TEVC_2019_2896002
crossref_primary_10_1016_j_jpdc_2017_05_018
crossref_primary_10_1063_1_4996582
crossref_primary_10_1016_j_asoc_2024_112252
crossref_primary_10_1109_TCYB_2020_2977956
crossref_primary_10_1109_TEVC_2023_3264875
crossref_primary_10_1080_17517575_2019_1681518
crossref_primary_10_1007_s10489_014_0604_3
crossref_primary_10_1016_j_ins_2014_10_042
crossref_primary_10_1109_TCYB_2020_2975530
crossref_primary_10_1007_s40747_023_01128_x
crossref_primary_10_1016_j_asoc_2016_03_024
crossref_primary_10_1016_j_swevo_2018_10_006
crossref_primary_10_1109_TITS_2022_3224320
crossref_primary_10_1145_2791291
crossref_primary_10_1109_TETCI_2024_3372378
crossref_primary_10_1016_j_asoc_2015_03_050
crossref_primary_10_1007_s11227_022_04553_w
crossref_primary_10_1007_s40747_023_01202_4
crossref_primary_10_1109_TEVC_2019_2902626
crossref_primary_10_1109_TEVC_2019_2955110
crossref_primary_10_21205_deufmd_2022247022
crossref_primary_10_1016_j_ins_2014_04_043
crossref_primary_10_1049_joe_2018_8179
crossref_primary_10_1109_TEVC_2017_2694221
crossref_primary_10_1007_s00500_020_05389_3
crossref_primary_10_1002_2050_7038_12233
crossref_primary_10_1109_ACCESS_2019_2946649
crossref_primary_10_20965_jaciii_2012_p0581
crossref_primary_10_1016_j_solener_2016_05_026
crossref_primary_10_1016_j_solener_2017_08_058
crossref_primary_10_1016_j_phycom_2019_100979
crossref_primary_10_1109_TCYB_2016_2616170
crossref_primary_10_1016_j_asoc_2024_112232
crossref_primary_10_1109_TCBB_2020_2971993
crossref_primary_10_1109_TEVC_2017_2672689
crossref_primary_10_1016_j_egypro_2017_03_288
crossref_primary_10_1016_j_ins_2018_01_004
crossref_primary_10_1109_TCYB_2014_2345478
crossref_primary_10_1109_TEVC_2018_2817889
crossref_primary_10_1016_j_neucom_2020_07_094
Cites_doi 10.1109/TEVC.2004.826069
10.1109/MHS.1995.494215
10.1109/CEC.2002.1004493
10.1023/A:1021956306041
10.1109/SIS.2003.1202251
10.1016/0303-2647(96)01621-8
10.1109/CEC.2009.4983126
10.1109/CEC.2010.5586127
10.1109/4235.771163
10.1109/CEC.2009.4983052
10.1109/CEC.2001.934314
10.1109/TEVC.2003.816583
10.1145/1143997.1144118
10.1162/106365601750190398
10.1115/1.1737780
10.1109/SIS.2007.368035
10.1109/CEC.2002.1006270
10.1109/CEC.2005.1554902
10.2514/2.764
10.1145/1830761.1830790
10.1109/CEC.2008.4631320
10.1016/j.ijheatmasstransfer.2005.08.032
10.1109/4235.985692
10.1016/j.ins.2008.02.017
10.1109/SIS.2003.1202268
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TEVC.2011.2112662
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 224
ExternalDocumentID 25796679
10_1109_TEVC_2011_2112662
5910380
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
ID FETCH-LOGICAL-c361t-e28c749e3ee9086eed960009acabc6abf8756e1a4b48089d4fc73ad2fc21abc03
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Mon Jul 21 09:16:07 EDT 2025
Tue Jul 01 01:56:20 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Tue Aug 26 17:19:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Unimodality
Scalability
Evolutionary algorithm
Multiobjective programming
evolutionary algorithms
Gaussian distribution
Updating
Competitive algorithms
Multiple solution
Multidimensional analysis
large-scale optimization
Cooperation
Ecological niche
Swarm intelligence
Random variable
Divide and conquer method
Mathematical programming
Large scale system
Grouping
Coevolution
Blind equalization
Cauchy distribution
Particle swarm optimization
Cooperative coevolution
Large scale
Artificial intelligence
Parallelization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-e28c749e3ee9086eed960009acabc6abf8756e1a4b48089d4fc73ad2fc21abc03
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/5910380
PageCount 15
ParticipantIDs ieee_primary_5910380
crossref_citationtrail_10_1109_TEVC_2011_2112662
crossref_primary_10_1109_TEVC_2011_2112662
pascalfrancis_primary_25796679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref34
ref15
iorio (ref31) 2006
ref14
ref30
richer (ref22) 2006
ref33
ref32
ref10
yang (ref12) 2007
ref2
ref16
chen (ref18) 2008
tang (ref5) 2007
den bergh (ref11) 2002
yang (ref19) 2008
potter (ref9) 1994
vesterstrom (ref7) 2004; 2
hansen (ref38) 2004
ref24
ref23
ref26
ref25
ref20
ref41
ref21
hansen (ref36) 0
shi (ref17) 2005
ref28
kennedy (ref1) 2001
ref27
ref29
ref8
tang (ref6) 2009
hsieh (ref39) 2008
ref4
ref3
zhang (ref42) 2007
ref40
tang (ref37) 2008
ros (ref35) 2008
References_xml – year: 2002
  ident: ref11
  publication-title: An analysis of particle swarm optimizers
– ident: ref8
  doi: 10.1109/TEVC.2004.826069
– year: 2001
  ident: ref1
  publication-title: Swarm Intelligence
– ident: ref26
  doi: 10.1109/MHS.1995.494215
– year: 2009
  ident: ref6
  publication-title: Benchmark functions for the CEC'2010 special session and competition on large scale global optimization
– ident: ref27
  doi: 10.1109/CEC.2002.1004493
– start-page: 3523
  year: 2007
  ident: ref12
  article-title: Differential evolution for high-dimensional function optimization
  publication-title: Proc IEEE Congr Evol Comput
– start-page: 1080
  year: 2005
  ident: ref17
  article-title: Cooperative co-evolutionary differential evolution for function optimization
  publication-title: Proc 1st Int Conf Nat Comput
– ident: ref29
  doi: 10.1023/A:1021956306041
– start-page: 249
  year: 1994
  ident: ref9
  article-title: A cooperative coevolutionary approach to function optimization
  publication-title: Proc 3rd Conf Parallel Problem Solving Nat
– ident: ref21
  doi: 10.1109/SIS.2003.1202251
– year: 2008
  ident: ref37
  article-title: Summary of results on CEC'08 competition on large scale global optimization
  publication-title: Nature Inspired Computat Applicat Lab Univ Sci Technol China
– ident: ref30
  doi: 10.1016/0303-2647(96)01621-8
– start-page: 808
  year: 2006
  ident: ref22
  article-title: The Lévy particle swarm
  publication-title: Proc IEEE CEC
– ident: ref13
  doi: 10.1109/CEC.2009.4983126
– ident: ref14
  doi: 10.1109/CEC.2010.5586127
– year: 2007
  ident: ref5
  publication-title: Benchmark Functions for the CEC'2008 Special Session and Competition on Large Scale Global Optimization
– ident: ref23
  doi: 10.1109/4235.771163
– start-page: 1663
  year: 2008
  ident: ref19
  article-title: Multilevel cooperative coevolution for large scale optimization
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref41
  doi: 10.1109/CEC.2009.4983052
– ident: ref15
  doi: 10.1109/CEC.2001.934314
– ident: ref24
  doi: 10.1109/TEVC.2003.816583
– start-page: 1777
  year: 2008
  ident: ref39
  article-title: Solving large scale global optimization using improved particle swarm optimizer
  publication-title: Proc IEEE CEC
– start-page: 683
  year: 2006
  ident: ref31
  article-title: Rotated test problems for assessing the performance of multiobjective optimization algorithms
  publication-title: Proc GECCO
  doi: 10.1145/1143997.1144118
– ident: ref32
  doi: 10.1162/106365601750190398
– ident: ref2
  doi: 10.1115/1.1737780
– ident: ref28
  doi: 10.1109/SIS.2007.368035
– volume: 2
  start-page: 1980
  year: 2004
  ident: ref7
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: Proc IEEE CEC
– ident: ref16
  doi: 10.1109/CEC.2002.1006270
– start-page: 2009
  year: 2007
  ident: ref42
  article-title: Target shape design optimization by evolving splines
  publication-title: Proc IEEE Congr Evol Comput
– start-page: 541
  year: 2008
  ident: ref18
  article-title: Cooperative approaches to bacterial foraging optimization
  publication-title: Proc ICIC
– ident: ref33
  doi: 10.1109/CEC.2005.1554902
– ident: ref3
  doi: 10.2514/2.764
– start-page: 296
  year: 2008
  ident: ref35
  article-title: A simple modification in CMA-ES achieving linear time and space complexity
  publication-title: Proceedings of PPSN X
– ident: ref34
  doi: 10.1145/1830761.1830790
– ident: ref40
  doi: 10.1109/CEC.2008.4631320
– ident: ref4
  doi: 10.1016/j.ijheatmasstransfer.2005.08.032
– start-page: 282
  year: 2004
  ident: ref38
  article-title: Evaluating the CMA evolution strategy on multimodal test functions
  publication-title: Proc PPSN VIII
– ident: ref20
  doi: 10.1109/4235.985692
– year: 0
  ident: ref36
  publication-title: CMA Evolution Strategy Source Code
– ident: ref10
  doi: 10.1016/j.ins.2008.02.017
– ident: ref25
  doi: 10.1109/SIS.2003.1202268
SSID ssj0014519
Score 2.5661173
Snippet This paper presents a new cooperative coevolving particle swarm optimization (CCPSO) algorithm in an attempt to address the issue of scaling up particle swarm...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 210
SubjectTerms Algorithm design and analysis
Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Cooperative coevolution
evolutionary algorithms
Exact sciences and technology
Gaussian distribution
Heuristic algorithms
large-scale optimization
Mathematical programming
Operational research and scientific management
Operational research. Management science
Optimization
Particle swarm optimization
Shape
swarm intelligence
Theoretical computing
Topology
Title Cooperatively Coevolving Particle Swarms for Large Scale Optimization
URI https://ieeexplore.ieee.org/document/5910380
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzgwnmK8lAMnREebZF1zRNMQQrwkHtqtSlL3AqwINiH49ThNVgFCiFMrNbESO43txP4MsI9CJ7LAOOKiLCJZKIxUJjAyRnCrSea9Gqf74jI9vZNno95oDg6bXBhErIPPsOte67v8orJTd1R21FMOzpsc9Hly3HyuVnNj4GBSfDC9IosxG4UbzCRWR7fD-4EH6-QuYSbl33RQXVTFhUTqV-JK6ctZfNExJ224mI3Oh5Y8dKcT07UfP4Ab_zv8ZVgKxiY79qtjBeZwvArtWSEHFv7rVVj8gkq4BsNBVT2jRwR_fGeDCmkLc-cO7DqsM3bzpl-eXhkZvOzchZITKVI07Ir2n6eQ2LkOdyfD28FpFKotRFakySRCntm-VCgQFfk5pDvJuSELTFttbKpNSZ5NiomWRmbE5EKWti90wUvLE2oRiw1ojasxbgIjpxOlIkJFnMke9dE0baJqDD246HcgnvE_twGK3FXEeMxrlyRWuRNZ7kSWB5F14KDp8uxxOP5qvOa43zQMjO_A3jchN9-5S8hN-2rr937bsEDUuY_X2YHW5GWKu2SKTMxevQY_AZDD2xE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8heBh7GAw2rXzND3tCS0lsJ40fUVXUbS1DWkF9i2zn8gI0CFoh-Os5x24ECKE9JVLOTnzn-O7su98B_EChE1liHHFRlZEsFUYqFxgZI7jVJPO0weken2bDc_l7mk5X4GebC4OITfAZdt1tc5Zf1nbhtsqOUuXgvMlBXyO9n3KfrdWeGTigFB9Or8hmzKfhDDOJ1dFkcNH3cJ3cpcxk_IUWasqquKBIfUd8qXxBi2da5mQDxsvv88Ell93F3HTt4yvoxv8dwCZ8CuYmO_bz4zOs4GwLNpalHFj4s7fg4zNcwm0Y9Ov6Bj0m-NUD69dIi5jbeWBnYaaxf_f69vqOkcnLRi6YnLoiVcP-0gp0HVI7v8D5yWDSH0ah3kJkRZbMI-S57UmFAlGRp0Pak9wbssG01cZm2lTk22SYaGlkTkwuZWV7Qpe8sjwhilh8hdVZPcNvwMjtRKmoozLOZUptNA2bejWGLlz0OhAv-V_YAEbuamJcFY1TEqvCiaxwIiuCyDpw2Da58Ugc7xFvO-63hIHxHTh4IeT2OXcpuVlP7bzd7jt8GE7Go2L06_TPLqzTm7iP3tmD1fntAvfJMJmbg2Y-PgEprN5b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperatively+Coevolving+Particle+Swarms+for+Large+Scale+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Xiaodong+Li&rft.au=Xin+Yao&rft.date=2012-04-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=16&rft.issue=2&rft.spage=210&rft.epage=224&rft_id=info:doi/10.1109%2FTEVC.2011.2112662&rft.externalDocID=5910380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon