Benchmark three-dimensional eye-tracking dataset for visual saliency prediction on stereoscopic three-dimensional video
Visual attention models (VAMs) predict the location of image or video regions that are most likely to attract human attention. Although saliency detection is well explored for two-dimensional (2-D) image and video content, there have been only a few attempts made to design three-dimensional (3-D) sa...
Saved in:
Published in | Journal of electronic imaging Vol. 25; no. 1; p. 013008 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1017-9909 1560-229X |
DOI | 10.1117/1.JEI.25.1.013008 |
Cover
Loading…
Abstract | Visual attention models (VAMs) predict the location of image or video regions that are most likely to attract human attention. Although saliency detection is well explored for two-dimensional (2-D) image and video content, there have been only a few attempts made to design three-dimensional (3-D) saliency prediction models. Newly proposed 3-D VAMs have to be validated over large-scale video saliency prediction datasets, which also contain results of eye-tracking information. There are several publicly available eye-tracking datasets for 2-D image and video content. In the case of 3-D, however, there is still a need for large-scale video saliency datasets for the research community for validating different 3-D VAMs. We introduce a large-scale dataset containing eye-tracking data collected from 61 stereoscopic 3-D videos (and also 2-D versions of those), and 24 subjects participated in a free-viewing test. We evaluate the performance of the existing saliency detection methods over the proposed dataset. In addition, we created an online benchmark for validating the performance of the existing 2-D and 3-D VAMs and facilitating the addition of new VAMs to the benchmark. Our benchmark currently contains 50 different VAMs. |
---|---|
AbstractList | Visual attention models (VAMs) predict the location of image or video regions that are most likely to attract human attention. Although saliency detection is well explored for two-dimensional (2-D) image and video content, there have been only a few attempts made to design three-dimensional (3-D) saliency prediction models. Newly proposed 3-D VAMs have to be validated over large-scale video saliency prediction datasets, which also contain results of eye-tracking information. There are several publicly available eye-tracking datasets for 2-D image and video content. In the case of 3-D, however, there is still a need for large-scale video saliency datasets for the research community for validating different 3-D VAMs. We introduce a large-scale dataset containing eye-tracking data collected from 61 stereoscopic 3-D videos (and also 2-D versions of those), and 24 subjects participated in a free-viewing test. We evaluate the performance of the existing saliency detection methods over the proposed dataset. In addition, we created an online benchmark for validating the performance of the existing 2-D and 3-D VAMs and facilitating the addition of new VAMs to the benchmark. Our benchmark currently contains 50 different VAMs. |
Author | Pourazad, Mahsa T Banitalebi-Dehkordi, Amin Nasiopoulos, Panos Nasiopoulos, Eleni |
Author_xml | – sequence: 1 givenname: Amin surname: Banitalebi-Dehkordi fullname: Banitalebi-Dehkordi, Amin email: dehkordi@ece.ubc.ca organization: aUniversity of British Columbia, Electrical and Computer Engineering Department, Vancouver, BC V6T 1Z4, Canada – sequence: 2 givenname: Eleni surname: Nasiopoulos fullname: Nasiopoulos, Eleni organization: bUniversity of British Columbia, Department of Psychology, Vancouver, BC V6T 1Z4, Canada – sequence: 3 givenname: Mahsa T surname: Pourazad fullname: Pourazad, Mahsa T organization: dTELUS Communications Inc., Vancouver, BC V6B 8N9, Canada – sequence: 4 givenname: Panos surname: Nasiopoulos fullname: Nasiopoulos, Panos organization: cUniversity of British Columbia, Institute for Computing, Information, and Cognitive Systems, Vancouver, BC V6T 1Z4, Canada |
BookMark | eNp9kNFKwzAUhoNMcE4fwLu-QGtOu7bL5ZxTJwO9mOBdSZNTl61rSpJN5tObOUGYUziQQ875fs7_n5NOoxsk5ApoBAD5NUSP40kUpxFEFBJKByekC2lGwzhmrx3fU8hDxig7I-fWLigFGPShS95vsBHzFTfLwM0NYijVChurdMPrALcYOsPFUjVvgeSOW3RBpU2wUXbt55bXyuPboDUolXCeCnxZhwa1FbpV4ojqRknUF-S04rXFy--3R17uxrPRQzh9up-MhtNQJBm4EL05ISuaVALyTJRZSdN-FlNWJkmaohQVrZKEcZbyEmXJaJ4zSaEsSyEGLBdJj-R7XWG0tQarQijHd5d6Y6ougBa7_AoofH5FnPpmn58n4YBsjfJBbf9lZnvGtgqLhV4bb9j-rH2o9pD5-hsap0SNz7d3v8atrLxsdEz27zs-AUPSorg |
CitedBy_id | crossref_primary_10_1007_s11042_016_4126_3 crossref_primary_10_1007_s11042_016_4155_y crossref_primary_10_1109_TIM_2022_3225009 crossref_primary_10_1109_TITS_2023_3275279 crossref_primary_10_3390_ijgi10100664 crossref_primary_10_4018_IJSSCI_2018100101 crossref_primary_10_1007_s13319_017_0115_1 crossref_primary_10_1016_j_neucom_2018_09_009 crossref_primary_10_1109_TIP_2017_2721112 crossref_primary_10_1109_TMM_2018_2867742 crossref_primary_10_1007_s11042_018_5837_4 crossref_primary_10_1109_TBC_2019_2957670 |
ContentType | Journal Article |
Copyright | 2016 SPIE and IS&T |
Copyright_xml | – notice: 2016 SPIE and IS&T |
DBID | AAYXX CITATION |
DOI | 10.1117/1.JEI.25.1.013008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Visual Arts Engineering |
EISSN | 1560-229X |
EndPage | 013008 |
ExternalDocumentID | 10_1117_1_JEI_25_1_013008 |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: STPGP 447339-13 |
GroupedDBID | 0R 29K 5GY ABPTK ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 D-I DU5 EBS EJD F5P FQ0 G8K HZ ITE M4W M4X NU. O9- P2P RNS SJN SPBNH TAE ULE UT2 .DC 0R~ 4.4 AAJMC AAYXX ABDPE ABJNI ACGFO ADMLS AKROS CITATION HZ~ |
ID | FETCH-LOGICAL-c361t-e111cdf03fc176cb6b0546209b3355edcf0f339a95abedb90779d01bbbcc897c3 |
ISSN | 1017-9909 |
IngestDate | Tue Jul 01 01:22:27 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Fri Jan 15 20:10:21 EST 2021 Fri May 31 16:22:02 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | visual attention modeling eye tracking saliency prediction stereoscopic video three-dimensional video |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-e111cdf03fc176cb6b0546209b3355edcf0f339a95abedb90779d01bbbcc897c3 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1117_1_JEI_25_1_013008 crossref_primary_10_1117_1_JEI_25_1_013008 spie_journals_10_1117_1_JEI_25_1_013008 |
ProviderPackageCode | FQ0 SPBNH UT2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of electronic imaging |
PublicationTitleAlternate | J. Electron. Imaging |
PublicationYear | 2016 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
SSID | ssj0011841 |
Score | 2.1565917 |
SecondaryResourceType | review_article |
Snippet | Visual attention models (VAMs) predict the location of image or video regions that are most likely to attract human attention. Although saliency detection is... |
SourceID | crossref spie |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 013008 |
Title | Benchmark three-dimensional eye-tracking dataset for visual saliency prediction on stereoscopic three-dimensional video |
URI | http://www.dx.doi.org/10.1117/1.JEI.25.1.013008 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6F9AUeOAqopYD8gIREtMH38RhIqrYipRIt6pu1u14rVhvbit0i8qf5C8wecZyjVUGKLGe9R-L5dnZmdmYWoQ-J7YehkzoYVp8AuxE1ceh6Hky8MGA2DWwm49bGp_7RhXty6V12On9aXks3Ne2z-da4kv-hKpQBXUWU7D9QtukUCuAe6AtXoDBcH0TjL_BjJlMyuxLH7XCOE5GqX6XZ6PHfHNczwoQpvCf8QCteS5_C26wSISMVCOAy7LKcib0aJTjmPZE3gRciViVjW3oVUXvFHQJt60SdbCoPP1qaSXNxNgmnGR7yyRXou9KHYDDNGmieEhihLG6uldvfCBbDrGHbMAaZKyyOyaQiS8_utWZnJC9WDBnWuiFj4aUqXP8mRV3g76Wy5h_LVLpTHYqVN4kaW8ZMwVcwrKuK-XLNyn0T2-qg3obXqyDrFUwrxi02cM2wJQYsC7YsMjJNQf9kdNy3vb7Vbzdeyd2tNKwgtmKoG9se3Ki6j9CODXoNrCQ7g-H4249m4wsUbmkjWPwhvREPnXzeGHBFlOpWZcZbotH5c_RUQ8AYKIC-QB2e76JnWr8x9OpR7aInreSX8O2nBKJoVr1EvxosGxuoM9pYNjSWDcCyobBsLLBsLLFswKeN5S29Siy_QheHo_OvR1gfCoKZ41s15vAuWJKaTsqswGfUp6B0-LYZUQdEZ56w1EwdJyKRRyhPaGQGQZSYFqWUsTAKmPMadfMi53vI8GwvCSOSgITNXG7zyCIsdVPqJlLP9_eRuXi_MdMZ88XBLdfxnXTdR5-aJqVKF3Nf5Y-CaLHmKNV9NcerNZvn86xcryzLNMnPhocbj8skffPgkQ_Q4-VcfYu6MBP5OxDDa_peQ_cv13nfnQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmark+three-dimensional+eye-tracking+dataset+for+visual+saliency+prediction+on+stereoscopic+three-dimensional+video&rft.jtitle=Journal+of+electronic+imaging&rft.au=Banitalebi-Dehkordi%2C+Amin&rft.au=Nasiopoulos%2C+Eleni&rft.au=Pourazad%2C+Mahsa+T&rft.au=Nasiopoulos%2C+Panos&rft.date=2016-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1017-9909&rft.eissn=1560-229X&rft.volume=25&rft.issue=1&rft.spage=013008&rft.epage=013008&rft_id=info:doi/10.1117%2F1.JEI.25.1.013008&rft.externalDocID=10_1117_1_JEI_25_1_013008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-9909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-9909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-9909&client=summon |